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Evolution of clustering structure through the momentum distributions in 8–10Be isotopes
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We investigate the evolution of clustering structure through the momentum distributions in the 8–10Be isotopes.
The nucleon dynamics within the intercluster antisymmetrization are discussed via the momentum distribution of
a Brink type α-α wave function. For the state with a small α-α distance, we observe a significant depression with
a dip structure at zero momentum and an enhanced tail in a relatively higher momentum region. In addition, we
find the “cluster structure” in the intrinsic frame of momentum space, which is complementary to its significant
α-cluster dissolution in the coordinate space because of the strong antisymmetrization. For the physical 8–10Be
isotopes, the Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave functions are adopted. The evolution from the
dilute clustering state to the compact one is demonstrated by a successive depression at zero momentum of
nucleon distribution for the two α clusters within 8–10Be isotopes. For the compact 10Be nucleus, the momentum
distribution of all nucleons shows significant depression at zero momentum with a dip structure, which is found
to be contributed by both the intercluster antisymmetrization and the p-orbit occupation of the valence neutrons.
This study proposes a new window for the investigations of the α-clustering effects via the low-momentum
components of nuclei, which is expected to be extended to the heavier nuclear clustering states.

DOI: 10.1103/PhysRevC.101.064307

I. INTRODUCTION

In atomic nuclei, strongly correlated nucleons compose
spatially localized subsystems, namely the nuclear clus-
ters [1]. The relative motion between the α clusters is the
fundamental mode of dynamics in various nuclear systems,
such as 8Be, 12C, 16O, and 20Ne. These clustering states
have been studied by using different theoretical models, as
reviewed in Refs. [2–11].

The beryllium isotopes are well known for their cluster-
ing structures in the ground states, as discussed in previous
theoretical studies [12–20]. In these works, many interest-
ing physical phenomena, including the formation of two α

clusters [13,14], occupation of nuclear molecular orbits by
the valence neutrons [12], dicluster configurations [9], the
contribution from the tensor force [16,17], and nonlocalized
dynamics of the two α clusters [20], have been studied. It
is found that the low-lying spectrum of the 8–10Be isotopes
can be well described by the Tohsaki-Horiuchi-Schuck-Röpke
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(THSR) wave functions [18–20], which were originally pro-
posed for the description of α-condensate states [21] and
have been applied to many clustering phenomena in nuclei
[18–20,22–26].

In previous works, the physical properties of cluster states
in nuclei, such as the energy spectrum and the charge radii,
have been reproduced by theoretical calculations. In addi-
tion, for probing the clustering effects, observables in vari-
ous cluster-involved nuclear reactions have been investigated,
such as the monopole transition strengths [27,28], the proton
induced α-knockout cross section [29,30], and the α-emission
cross sections in the fusion-evaporation reactions [31]. In this
work, we propose to probe the evolution of the α-clustering
structure through the momentum distributions in the 8–10Be
isotopes. In general, the momentum distributions could be
extracted from the electron scattering reactions [32].

In recent decades, the electron scattering observables
have been adopted to study the high-momentum compo-
nents [32–35] or the deformation [36,37] of nuclei. It is found
that the tensor and short-range components of internucleon
correlations, induced by the nuclear force, dominate in the
momentum regions at about 2 and 4 fm−1, respectively [38].
Comparing to the internucleon correlations, the α correlation
dominates in a much lower momentum region, and hence we
may connect the α-cluster dynamics to the nucleon momen-
tum distributions below the Fermi momentum of 1.4 fm−1.
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Especially, due to the antisymmetrization effect between α

clusters, we expect that the momentum distribution would
be depressed or enhanced in compact systems where α clus-
ters have strong spatial overlap with each other, by analogy
with the internucleon contacts in correlated NN pairs [39].
Through the momentum distributions in the 8–10Be isotopes,
we expect to reveal the evolution of the corresponding clus-
tering structure, from a dilute gaslike state to a compact one
with cluster dissolution.

For the theoretical description of Beryllium isotopes, we
adopt the THSR wave function developed in our previous
works [19,20]. In Ref. [40], the momentum distribution of
9Be was discussed through the antisymmetrized molecular
dynamics (AMD) wave function, but the center-of-mass com-
ponent is not treated in the formulation. In this work, the
momentum distributions are predicted by using the analytical
derivation formulated recently in Ref. [38], with subtraction
of center-of-mass motion.

This paper is organized as follows. In Sec. II, we introduce
the formulation of the clustering wave functions and nucleon
momentum distributions for the 8–10Be isotopes. We note that
the one-body momentum distributions of nucleons are investi-
gated in this work, which are affected by the internucleon and
clustering correlations. In Sec. III A, the relation between the
α-α distance and the nucleon momentum distribution is dis-
cussed through Brink type wave functions of a two-α-cluster
system. In Sec. III B, we discuss the nucleon momentum
distribution for the 8–10Be isotopes predicted by using the
physical THSR wave functions, and present their relation with
the evolution of α-clustering structure. Section IV contains the
conclusion.

II. FORMULATIONS

We introduce briefly the formulations for the clustering
wave functions of the 8–10Be isotopes and the corresponding
nucleon momentum distributions. Detailed introductions can
be found in Refs. [19,20,30] for the wave functions and in
Ref. [38] for the nucleon momentum distributions.

A. Wave functions of 8–10Be isotopes

We start by writing the Brink wave function of the 8Be
nucleus as [41]

�Brink (8Be) =
√

4! × 4!

8!
A{

φα1 (R1)φα2 (R2)
}
, (1)

where A is the antisymmetrizer and the wave function of each
α cluster φα (R) is defined as

φα (R) = 1√
4!
A{φ1(r1, R) · · · φ4(r4, R)}. (2)

The single-nucleon wave functions φ(r, R) with position r are
defined as the Gaussian wave packets,

φ(r, R) = (2ν/π )3/4e−ν(r−R)2
χσ,τ , (3)

with centroids R and width parameter ν = 0.27 fm−2 to
reproduce the binding energy of the α cluster. The component
χσ,τ is for the spin σ and isospin τ of each nucleon.

The Brink wave function in Eq. (1) describes the localized
configuration of two α clusters in the 8Be nucleus. In physical
nuclei, it is known that the α clusters perform nonlocalized
motion, which is confined by the Gaussian container in the
THSR wave function [25]

�THSR(8Be) =
∫

dR1dR2G(R1,βα )G(R2,βα )

×A{φα,1(R1)φα,2(R2)}, (4)

where the container function G is the deformed Gaussian

G(R,β) = exp

(
−R2

x + R2
y

β2
xy

− R2
z

β2
z

)
. (5)

Here, the size of the Gaussian container is determined by the
width parameters βxy and βz in each direction. For the 9,10Be
isotopes, we introduce additional valence neutrons into the
THSR wave function as

�THSR(9Be) =
∫

dR1dR2G(R1,βα )G(R2,βα )

×A{
φα,1(R1)φα,2(R2)φπ

9

}
, (6)

�THSR(10Be) =
∫

dR1dR2G(R1,βα )G(R2,βα )

×A{
φα,1(R1)φα,2(R2)φπ

9 φπ
10

}
, (7)

where φπ
9,10 are the wave functions of valence neutrons occu-

pying π orbits, which are formulated as

φπ
9 (r) =

∫
dR9G(R9,βn)eiφR9 φn↑(r9, R9), (8)

φπ
10(r) =

∫
dR10G(R10,βn)e−iφR10 φn↓(r10, R10). (9)

Here φn↑ and φn↑ are neutron wave functions defined in
Eq. (3) with spin up and down, respectively, and φR is the
azimuthal angle of the neutron generator coordinate R. The
exponential factors e±iφR are introduced to reproduce the
negative parity of the π orbit [19]. More details for the
formulation of Eqs. (8) and (9) can be found in Ref. [19].
The deformation parameters β are optimized by variational
calculation for each isotope [19,20].

B. Momentum distribution of the wave functions

The nucleon momentum distribution operator n̂(k) for
mass number A is defined in the momentum space as

n̂(k) ≡
A∑

i=1

δ(ki − kG − k), (10)

where ki is the single-nucleon momentum and kG is the
center-of-mass momentum,

kG =
A∑

i=1

ki. (11)
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For the AMD wave functions [10]

�AMD = A
{

A∏
i=1

φi(ri, Ri )

}
, (12)

the nucleon momentum distribution with correct treatment for
the center-of-mass motion is written as [38]

n(k) = 〈�AMD|n̂(k)|�AMD〉 =
A∑

i=1

ni(k), (13)

where ni(k) is the momentum distribution of each nucleon,

ni(k) =
(

1

2πνε

)3/2

×
A∑

j=1

exp

[
− 1

2νε
(k − iν(R∗

i − R j ))
2

]
Bi jB

−1
ji , (14)

ε = (A − 1)/A, and Bi j = 〈φi|φ j〉 is the overlap matrix of
single nucleon states. We note that in this formulation, the
center-of-mass motion is correctly treated, as discussed in
Ref. [38]. The momentum distribution n(k) in Eq. (13) sat-
isfies the normalization condition∫

dk n(k) = A. (15)

Similarly, we define the proton momentum distribution as

nP(k) =
∑
i∈p

ni(k), (16)

where subscript i denotes all the protons. For the superposed
AMD wave function |�〉 = ∑

a ca |�a〉, the corresponding
nucleon momentum distribution is given as

n(k) = 1

〈�|�〉
∑
a,b

c∗
acb 〈�a |̂n|�b〉 , (17)

where ca and cb are superposition coefficients.
Mathematically, the Brink wave function in Eq. (1) can be

written as a special case of the AMD wave function,

�Brink (8Be) =
√

1

8!
A{φ1(r1, R1) · · · φ4(r4, R1)

×φ5(r5, R2) · · · φ8(r8, R2)}, (18)

which has the same format as Eq. (12). In addition, the THSR
wave functions in Eqs. (4), (6), and (7) are mathematically
equivalent to the superposed AMD wave functions. As an
example, we write the case for 9Be as

�THSR(9Be)

=
∫

dR1dR2G(R1,βα )G(R2,βα )
∫

dR9G(R9,βn)eiφR9

× A{φ1(r1, R1) · · · φ8(r8, R2)φn↑(r9, R9)}. (19)

Hence, the momentum distributions of the Brink or THSR
wave functions in this work can be calculated using the
analytical formulations in Eqs. (13) and (17).

FIG. 1. The intrinsic momentum distributions of the 8Be nucleus
described by the Brink wave function along the z axis. “Dz” is the
relative distance between α clusters in the z axis. “2 free α-clusters”
denotes the nucleon momentum distribution of two free α clusters.

III. RESULTS

A. Nucleon momentum distribution of the α-α system

We first show the nucleon momentum distribution of two
free α-clusters as the solid curve in Fig. 1. It is found that the
momentum of free α clusters distributes in a Gaussian form,
which is the Fourier transformation of the α-cluster wave
function in Eq. (2). We note that this Gaussian distribution is
only valid in a low-momentum region less than the Fermi mo-
mentum kF = 1.4 fm−1. As predicted in Ref. [38], the high-
momentum region is dominated by the tensor and short-range
correlations around k ≈ 2 fm−1 and k ≈ 4 fm−1, respectively.
In this work, we focus on the clustering correlation and choose
the effective Volkov NN interaction which does not include
the tensor component or the short-range repulsion, and we
limit our discussion to momenta up to kF to avoid the effect
from the high-momentum component. In addition, the G3RS
term is adopted for the spin-orbit interaction. Parameters of
the interactions are taken from Ref. [12].

For the 8Be nucleus, we calculate the intrinsic momentum
distribution along the z axis described by the α-α Brink wave
function in Eq. (1). This is a toy model with the relative
motion of two α-clusters localized around the relative distance
D = R1 − R2. The z axis is set as the symmetry axis, hence
the relative distance of two α clusters is determined by the
parameter Dz. We show in Figs. 1 and 2 the nucleon momen-
tum distributions of 8Be with α-α distances Dz = {4, 3, 2, 1}
fm, which correspond to the evolution from weak to strong
overlap between the two α clusters.

In Fig. 1, the solid and dotted curves are used to illustrate
the momentum distribution of two α clusters without antisym-
metrization between them, where the solid curve shows the
distribution of two free α clusters as discussed before, and
the dotted one is for the α-α Brink wave function at infinite
distance (D → ∞). These two curves have Gaussian shape,
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4 3

12

FIG. 2. The intrinsic nucleon momentum distributions of the α-α
Brink wave function as functions of the α-α distance Dz in the x-z
cross section.

but the one of the Brink wave function has an enhanced tail
part and a smaller value at zero momentum. This difference
arises from the effect of the localization of the intercluster
motion in the α-α Brink wave function. Analytically, using
Eq. (14), we derive the momentum distribution n(k) of two
free α clusters as

nFree
2α (k) =

(
8

3πν

)3/2

exp

(
− 2

3ν
k2

)
, (20)

where ε = 3/4 for both α clusters. For the α-α Brink wave
function at infinite distance D → ∞, we obtain

nInfinite-Brink
2α (k) =

(
16

7πν

)3/2

exp

(
− 4

7ν
k2

)
, (21)

where ε = 7/8. The coefficient in Eq. (21) is smaller than the
one in Eq. (20), which results in a smaller value at the center
for the dotted curve as compared to the solid curve shown in
Fig. 1.

For the curve with finite Dz = 4 fm in Fig. 1, a Gaussian
shape, which is similar to the dotted curve with infinite Dz,
is observed, but with a slight depression near k = 0 fm−1.
This could be explained by the small overlap between two
α clusters and the nucleons being excited to relatively higher
momentum because of the intercluster antisymmetrization. By
further reducing the α-α distance Dz, it is clearly seen that
the momentum distribution becomes more peripheral and a
dip structure appears at zero momentum, which corresponds
to a rather compact system where the nucleon excitation is
most significant. This process, in which the Gaussian form
of momentum distribution is broken, shows the dissolution of
two α clusters when they are in large spatial overlap with each
other.

The nucleon dynamics within the overlapped α clusters
can be more clearly demonstrated by the intrinsic density
distribution in the momentum space. The corresponding den-
sity values in the x-z cross section are shown in Fig. 2 for

TABLE I. Components of the deformation parameter β in the
optimized THSR wave functions of 8–10Be isotopes. All values are in
fm.

βα,xy βα,z βn,xy βn,z

8Be 1.0 11.0
9Be 0.1 4.2 2.5 2.8
10Be 0.1 2.5 1.9 2.9

different α-α distances Dz. With large distance Dz = 4 fm, the
momentum distribution of two α clusters is almost spherical,
which is similar to the Gaussian distribution predicted for the
two free α clusters with infinite distance. As the intercluster
distance is decreased, the spherical symmetry is found to be
broken and a large deformation of momentum distribution
emerges. The most intriguing observation is that in the most
compact configuration with Dz = 1 fm, a “cluster structure”
is observed in the intrinsic momentum distribution of two α

clusters, which is astonishing when considering the fact that
the α clusters are strongly dissolved in the coordinate space
under this short relative distance.

B. Nucleon momentum distribution of beryllium isotopes

We calculate the nucleon momentum distribution for the
8–10Be isotopes by using the corresponding THSR wave func-
tion for each nucleus, as formulated in Sec. II A. In our
previous works [18–20], the accuracy of the THSR wave
functions was proved by reproducing the physical properties
of the 8–10Be isotopes, such as the energy spectra and radii.
The Hamiltonian is adopted from Ref. [19] and the THSR
wave function is variationally determined for each nucleus.
The β parameters in the optimized THSR wave functions are
listed in Table I. The resonant state of the 8Be nucleus is
simulated by a weakly bounded solution that corresponds to
a local energy minimum in the variation of the THSR wave
function [18].

From Table I, it is clearly shown that the β parameter
shrinks when introducing additional valence neutrons into the
nucleus, which corresponds to an evolution from the dilute
cluster gas in 8Be to the compact structure in 10Be. The motion
of α clusters in the Be isotopes is demonstrated by the proton
momentum distribution of 8–10Be isotopes, as shown in Fig. 3.
For the dilute 8Be, we obtain spherical Gaussian distribution
for the protons while clear deformation is observed for the
compact 10Be nucleus, which is similar to the Brink model
discussed in Fig. 2. We note that the deformation in the THSR
wave function of 8Be is weaker than the Brink wave functions
in Sec. III A, which is due to the spatially extended motion of
α clusters in 8Be described by the THSR wave functions.

To obtain the distribution of two α clusters for the 8–10Be
isotopes in the laboratory frame, we calculate the angle-
averaged momentum distribution on the sphere surface S with
radius k, which is defined as

n(k) = 1

4πk2

∫
|k|=k

n(k)dS. (22)
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FIG. 3. The intrinsic proton momentum distributions of 8–10Be
isotopes in the x-z cross section.

The THSR wave functions are adopted for the 8Be(0+
1 ),

9Be(3/2−
1 ), and 10Be(0+

1 ) isotopes after angular momentum
projection [1], and the calculated distributions are shown in
Fig. 4. In addition, corresponding curves for the intrinsic
frames are also included for comparison, where only slight
differences before and after angular momentum projection are
observed.

For the compact cluster state in 10Be, the depression at zero
momentum and the enhanced tail region are observed once
again in Fig. 4, as compared to the Gaussian-like curve of
8Be. The depression in the distribution of the two α clusters
in 10Be is not strong enough to produce a dip structure,

FIG. 4. The nucleon momentum distributions of the two α clus-
ters within the 8–10Be isotopes. Curves denoted with parentheses are
for the 8Be (0+

1 ), 9Be (3/2−
1 ), and 10Be (0+

1 ) nuclei in the laboratory
frames. Curves denoted with “intrinsic” are for the intrinsic frames
before angular momentum projections.

FIG. 5. The total momentum distributions of the 8Be(0+
1 ),

9Be(3/2−
1 ), and 10Be(0+

1 ) isotopes with THSR wave function.

but the large deviation from the 8Be curve shows clearly
the strong antisymmetrization between α clusters. In 9Be,
relatively weaker α-α overlap is found from the intermediate
zero-momentum depression.

We also calculate the momentum distribution of all nu-
cleons in each isotope, as shown in Fig. 5. The solid curve
for the 8Be nucleus is not changed from Fig. 4, except for
the different amplitude. However, the dip structures appear in
the curves of 9Be and 10Be isotopes, with further enhanced
tail region, as compared to Fig. 4. In Ref. [32], similar dip
structures have been observed in experimental results for 12C
and 16O nuclei. We note that the dip structures in Fig. 5
are also contributed by the p-shell occupation by valence
neutrons, in addition to the α-α antisymmetrization, which is
the major origin of the dip structure in Fig. 1. This conjecture

FIG. 6. Decomposition of momentum distributions in 10Be (0+
1 )

into components contributed by α clusters and valence neutrons.
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is proved by the decomposition of the momentum distribution
in 10Be, as shown in Fig. 6. Here, the momentum component
contributed by the α-clusters and the valence neutrons are
calculated by replacing the summation over i in Eq. (13) with
the corresponding set of nucleon indices. In this figure, the
contribution from valence neutrons is presented by the blue
dotted curve, in which the node structure of a p wave is clearly
observed. It is also found that the valence neutrons contribute
mostly around k ≈ 0.5 fm−1, which enhances the tail region in
Fig. 5. We note that, using the relation 〈k〉 = 2νD in Ref. [42],
this k corresponds to the high-momentum excitation of a
neutron with imaginary shift of about D = 1 fm in coordinate
space, which is the mean location of the valence neutron
measured from the center of mass.

IV. CONCLUSION

We investigated the evolution of clustering structure
through the momentum distributions in the 8–10Be isotopes,
which are calculated by using the analytical expressions
formulated in our recent work. The general features of the
nucleon dynamics within a two-α-cluster system under an-
tisymmetrization have been discussed via the momentum
distribution of a Brink type α-α wave function. For the state
with a strong intercluster overlap at small relative distance, we
observed a significant depression with a dip structure at zero
momentum and an enhanced tail in a relatively higher mo-
mentum region, which is a clear manifestation for the nucleon
momentum excitation induced by the antisymmetrization be-
tween two α clusters. The most interesting observation is that
the momentum distribution of the extremely compact α-α
system shows a “cluster structure” in the intrinsic frame of
momentum space, which is complementary to its significant
α-cluster dissolution in the coordinate space because of the
strong antisymmetrization.

For the physical nuclei, we adopted the THSR wave
functions for the clustering states in the 8–10Be isotopes,
which provided successful descriptions for these nuclei in our

previous works. The evolution from a dilute gaslike state to
a compact one with α-cluster dissolution was demonstrated
by the calculated nucleon distribution for the two α clusters
within the Be isotopes, where the successive depression at
zero momentum was observed in the curves of 9–10Be, as
compared to the curve of 8Be. We also calculated the mo-
mentum distribution of total nucleons for the 8–10Be isotopes,
and observed a significant depression at zero momentum for
the compact 10Be nucleus. We performed the decomposition
for the momentum distribution and found that both the in-
tercluster antisymmetrization and the p-orbit occupation by
the valence neutrons contribute to the dip structure at zero
momentum in the 10Be nucleus. In this study, we propose a
new window for the investigations of α-clustering structures
in the 8–10Be isotopes by connecting the lower region of mo-
mentum distributions with the nuclear clustering structures,
which could be extended to future studies of heavier nuclear
clustering states.
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