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The framework of the random-phase approximation (RPA) based on the relativistic Hartree-Fock (RHF) theory
is extended to achieve a self-consistent calculation with the ρ-meson tensor coupling. The model self-consistency
is verified by the check of the isobaric analog state, and it is found that the ρ-tensor and ρ-vector-tensor couplings
play significant roles in maintaining the self-consistency. Using the RHF Lagrangian PKA1, the properties of
the Gamow-Teller resonances (GTR) are investigated, in which the roles played by the particle-hole residual
interaction of various meson-nucleon couplings are clarified in details. Furthermore, the effects of the tensor
force, which is introduced naturally via the Fock terms, are analyzed by comparing the calculations with
full Lagrangians and the ones artificially dropping the tensor force components. It is found that for the RHF
Lagrangians PKOi (i = 1, 2, 3) and PKA1, the tensor forces play the role mainly via the RHF mean field rather
than via the RPA residual interaction in determining the GTR. Moreover, the tensor-force effects are not as strong
as those indicated by the Skyrme Hartree-Fock calculations.
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I. INTRODUCTION

The nuclear isospin excitations [1,2] refer to the transitions
from the ground state of a nucleus (N, Z ) to the final states
in its neighboring nuclei (N ∓ 1, Z ± 1), where the upper and
lower signs correspond to the isospin lowering T− and raising
T+ channels, respectively. These excitations can take place
spontaneously for instance in the β± decays, or be triggered
by external interactions, like the charge-exchange reactions
(p, n), (3He, t ), etc. In these excitation modes, the spin-up and
spin-down nucleons can oscillate in phase or out of phase, and
the latter are usually referred as the spin-flip transitions or the
spin-isospin excitations.

Nowadays, it is well recognized that the spin-isospin exci-
tations are significant not only in nuclear physics but also in
astrophysics, particle physics, etc. For example, the neutron-
skin thickness, an important quantity in nuclear structure
but difficult to be measured [3], can be extracted indirectly
from the properties of spin-isospin excitations [4–6]. For
astrophysics, the spin-isospin excitations can provide essential
inputs for exploring the origin of heavy elements [7–21]. One
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of the well-known examples is the low-energy Gamow-Teller
resonance (GTR), which determines the β-decay half-lives of
hundreds of neutron-rich nuclei located on the rapid neutron
capture process (r-process) path of stellar nucleosynthesis.
Besides, the unitarity of the Cabibbo-Kobayashi-Maskawa
matrix [22,23] can be tested through the isospin corrections
deduced from the isobaric analogy states (IAS) in the super-
allowed Fermi β decays [24–27]. In this work, our particular
interests are partly devoted to the spin and isospin information
of the nuclear interactions in the medium carried by the spin-
isospin excitations [28].

In nuclear physics, it is a longstanding open problem to
understand the nuclear interactions in the medium, which are
usually referred as the effective nuclear interactions. As a
typical example, the important ingredient of nuclear force—
the tensor force has received tremendous attention [29] over
the past years, accompanying the development of the modern
radioactive ion beam facilities and detectors [30–35]. Nowa-
days, it is well recognized that the tensor force should be
considered as an essential ingredient of the effective inter-
actions. Nevertheless, there still remain an amount of open
questions, e.g., the uncertainty of the strengths of the tensor
force in the effective interactions, seeing the recent review
[36] and references therein. To pin down the properties of
the tensor force, it would be quite helpful to find appropriate
observables which are sensitive to the tensor force while they
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do not essentially depend on the other ingredients of nuclear
force [36–40]. Notice the fact mentioned above that the spin-
isospin excitations carry rich spin and isospin information
of the effective interactions. Thus, being consistent with the
spin-dependent nature of the tensor force [29], one would
naturally expect some valuable information extracted from the
spin-isospin excitations, which may pave an efficient way to
constrain the strength of the tensor force [41].

The density functional theory (DFT) [42–44], which re-
duces the many-body problems formulated in terms of N-
body wave functions to the one-body level with local density
distributions, has achieved great successes in the description
of not only the ground-state but also the excited properties
for almost all the nuclides on the whole nuclear chart [45].
Within the framework of the nonrelativistic nuclear DFT, the
effects of the tensor force on the spin-isospin excitations have
been intensively investigated by the random-phase approxi-
mation (RPA) based on the Skyrme Hartree-Fock (Skyrme
HF) theory [41,46–48], and the corresponding constraints on
the strength of tensor force have also been explored [38].
In the Skyrme HF theory, the tensor forces were added
on top of existing parameter sets and fitted perturbatively
[49,50], or refitted with an equal footing as other central
components [51,52]. It shall be noticed that in both cases
additional adjustable parameters associated with the tensor
force are introduced, which still cannot be well constrained
yet [36,38].

On the contrary, within the relativistic version of nuclear
DFT, also known as the covariant DFT (CDFT) [45,53–58],
the tensor forces can arise naturally with the implement of the
Fock terms of the meson-nucleon couplings [59–65]. Thus,
under the CDFT with the Fock terms, namely the relativistic
Hartree-Fock (RHF) theory [59–61,66–68], the strengths of
the tensor forces are determined by the intrinsic meson-
nucleon coupling strengths, other than introducing extra free
parameters. This may serve as a distinctive advantage of
CDFT for the efficient constraint of the effective tensor force.
It shall be mentioned that within the relativistic mean-field
(RMF) theory, a popular branch of the CDFT containing only
the Hartree terms of the meson-nucleon couplings, the tensor
force components are missing due to the limitation of the
Hartree approach.

In fact, with the explicit treatment of the Fock terms,
significant improvements have been obtained by the RHF
theory in the self-consistent description of shell evolution
[62,63,69,70], nuclear spin-isospin excitations [17,26,71–73],
nuclear effective masses [60], symmetry energy [74–78], new
magicity [70,79], the origin of pseudospin symmetry [80,81],
etc. Moreover, considering the ρ-tensor (ρ-T) coupling that
plays the role almost fully via the Fock terms, the spuri-
ous shell closures N (Z ) = 58 and 92, which are commonly
found in the RMF calculations and the one with the RHF
Lagrangians PKOi (i = 1, 2, 3), are eliminated eventually by
the RHF Lagrangian PKA1 [61] with appropriate restoration
of the pseudospin symmetry for the high- j pseudospin part-
ners [81,82]. Even though, one shall notice that the tensor
force components, introduced naturally by the Fock terms,
are mixed with the other components indeed, like the central
ones in the relevant meson-nucleon couplings. This made the

quantitative analyses of the tensor-force effects in determining
the spin-isospin excitations inaccessible before, although the
fully self-consistent RPA method based on the RHF theory
[71] has already been established.

With the self-consistent RPA method based on the RHF
theory (denoting as RHF + RPA hereafter), the properties
of GTR and spin-dipole resonances (SDR) in doubly magic
nuclei can be well described without introducing any extra
free parameters into the particle-hole (ph) residual interaction
[71,72,83]. Specifically, the coefficient of the zero-range
pionic counter-term remains its physical value g′

π = 1/3,
while it is treated as a free parameter to reproduce the GTR
energies for the RPA method based on RMF theory, namely
g′

π ≈ 0.6. Afterwards, the self-consistent quasi-particle
random phase approximation (QRPA) [17] was established
based on the relativistic Hartree-Fock-Bogoliubov (RHFB)
theory [68], namely the RHFB + QRPA method, which
achieves many successes not only in describing the properties
of IAS and GTR, but also in reproducing the β-decay
half-lives of the open-shell nuclei on the nuclear chart
[17,73]. Notice that the mentioned studies were performed
with the RHF Lagrangians PKOi, in which the degree of
freedom associated with the ρ-T coupling is not taken into
account. As mentioned above, the RHF Lagrangian PKA1 that
contains the ρ-T coupling has brought notable improvement
in describing the single-particle structure properties of nuclei.
Since the ρ-T coupling is also one of the essential origins of
the tensor force [61,62,84], it is quite expectable to extend
the existing RHF + RPA method by considering the degree
of freedom of the ρ-T coupling, as well as the accompanying
ρ-vector-tensor (ρ-VT) coupling [61].

Very recently, the tensor force components, introduced
naturally by the Fock terms of various meson-nucleon cou-
pling channels, have been identified quantitatively via the
nonrelativistic reduction [85], which indeed paves an efficient
way to study the tensor-force effects on the spin-isospin
excitations within the RHF + RPA method. Specifically on
the tensor-force effects, this also makes the direct comparison
possible between the CDFT and nonrelativistic DFT. Aiming
at that, we first extend the RHF + RPA method by including
the ρ-T and ρ-VT couplings in the particle-hole residual
interaction. Further, the properties of GTR are explored by
employing the RHF Lagrangian PKA1, and particular efforts
are devoted on the roles of the ρ-T and ρ-VT couplings.
Moreover, to quantify the tensor-force effects on the GTR,
the effects of the tensor force in both RHF mean field and
RPA ph residual interactions are analyzed in details with the
technology proposed in Ref. [85].

This paper is organized as follows. In Sec. II, the general
formalism of the RHF + RPA method is briefly introduced,
and the method to evaluate the contribution tensor force in
the RPA ph residual interactions is given in details. The
discussion on the properties of IAS and GTR as well as the
tensor-force effects on GTR are given in Sec. III. Summary
and perspectives are given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, we will at first introduce the basic ideas
of RHF approach briefly and then illustrate the framework
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of RHF + RPA. The formula to extract the contribution of
tensor force in the RPA ph residual interactions will also be
presented in details.

A. Relativistic Hartree-Fock theory

In the relativistic framework, the nucleus is described as
a system of Dirac nucleons that interact through the exchange
of massive mesons [84,86,87]. Coincident with such a picture,
an effective Lagrangian density L , the starting point of the
RHF theory, can be constructed by considering the degrees of
freedom associated with the nucleon field ψ , two isoscalar
meson fields σ and ω, two isovector meson fields π and
ρ, and the photon field A. More precisely, it may contain
the free parts of the nucleon, meson, and photon fields, and
the interaction parts between nucleons and mesons (photons)
[59–61], respectively, L0 and LI,

L = L0 + LI, (1)

where

L0 = ψ̄ (iγμ∂μ − M )ψ + 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 − 1

4

μν


μν

+ 1

2
m2

ωωμωμ − 1

4
�Rμν · �Rμν + 1

2
m2

ρ �ρμ · �ρ μ

+ 1

2
∂μ �π · ∂μ �π − 1

2
m2

π �π · �π − 1

4
FμνFμν, (2a)

LI = −ψ̄

[
gσ σ + gωγ μωμ + gργ

μ�τ · �ρμ − fρ
2M

σμν �τ · ∂ν �ρμ

+ fπ
mπ

γ5γ
μ�τ · ∂μ �π + eγ μ 1 − τ3

2
Aμ

]
ψ, (2b)

with the field tensors 
μν ≡ ∂μων − ∂νωμ, �Rμν ≡ ∂μ�ρ ν −
∂ν �ρ μ, and Fμν ≡ ∂μAν − ∂νAμ. In the above expressions,
M and mφ (φ = σ, ω, ρ, π ) denote the masses of nucleon
and mesons, respectively, and gφ (φ = σ, ω, ρ) and fφ′ (φ′ =
ρ, π ) represent the meson-nucleon coupling strengths. In this
paper, the isovectors are denoted by arrows and the space
vectors are in bold type. In the interaction Lagrangian density
LI Eq. (2b), we consider the Lorentz σ -scalar (σ -S), ω-vector
(ω-V), ρ-vector (ρ-V), ρ-tensor (ρ-T), π -pseudovector (π -
PV), and photon-vector (A-V) couplings. It is worthwhile to
mention that the contributions of ρ-T coupling, as well as
the accompanying ρ-vector-tensor (ρ-VT) one, are taken into
account in the RPA residual interactions for the first time. To
avoid confusion, the capital letter “T” represents the Lorentz
tensor coupling, and the lower case “t” will be used later to
denote the tensor force.

Within the RHF theory, the total energy of the system can
be derived as the expectation value of the Hamiltonian Ĥ [68]
on the trial Hartree-Fock ground state |�〉, i.e.,

E = 〈�|Ĥ |�〉 =
∑

a

〈a|T̂ |a〉

+ 1

2

∑
ab

[〈ab|V̂ (1, 2)|ab〉 − 〈ab|V̂ (1, 2)|ba〉], (3)

where the sum over a and b run over all the occupied
single-particle states in the Fermi sea, corresponding to the

so-called no-sea approximation [87], and the operators T̂ and
V̂ (1, 2) represent the single-particle kinetic energy and two-
body interaction, respectively. The variation of the energy E
with respect to the single-particle states leads to the Hartree-
Fock equation, namely the integro-differential Dirac equation
[59,68,80,88].

The two-body interaction provided by each meson-nucleon
coupling is formally represented as

V̂φ (1, 2) = gφ (1)gφ (2)Iφ (1, 2), (4)

where φ denotes various meson-nucleon coupling channels,
i.e., φ = σ -S, ω-V, ρ-V, ρ-VT, ρ-T, π -PV, and A-V, and
gφ represents the coupling strengths. The expressions of V̂φ

are shown explicitly in Appendix A. Note that the coupling
strengths are taken as functions of the baryon density in the
density-dependent RHF theory. More details about the RHF
theory are referred to Refs. [59–61,74,85,88].

B. Random-phase approximation

1. RPA equations in general form

The relativistic RPA equation is known to be equivalent to
the time-dependent relativistic Hartree(-Fock) equation in the
small amplitude limit, only if the ph configurations include
not only the pairs formed from the occupied and unoccu-
pied Fermi states but also those formed from the occupied
Fermi states and empty Dirac states [89]. In this paper, the
RPA equation will be derived via the linear response of the
time-dependent external field in the small amplitude limit.
The present method is able to be applied to the effective
interactions with density-dependent couplings, in which case
the traditional method of equation of motion may fail [90].

First of all, we make a convention for the notations of
the single-particle states. Namely the letters a, b, . . . and the
capital ones A, B, . . . are used to denote the occupied (hole)
and unoccupied (particle) states, respectively. It should be
noted that the particle states include both in the Fermi sea and
Dirac sea. The letters i, j, . . . are used for general cases.

The details of deriving the RPA equation are given in
Appendix B. Here, we just present the RPA eigen equations
in the matrix form as

∑
Bb

( AAa,Bb BAa,Bb

−BAa,Bb −AAa,Bb

)(
XBb

YBb

)
= ω

(
XAa

YAa

)
, (5)

where the RPA matrix elements A and B read as

A12,34 = (ε1 − ε2)δ12,34 +
∑

φ

14∑
i=1

Hφ
i (1234), (6a)

B12,34 = −
∑

φ

14∑
i=1

Hφ
i (1243). (6b)

In the RPA matrix elements A and B, εi is the single-particle
energy, and Hφ corresponds to the ph residual interaction
of the coupling channel φ, which contain totally 14 terms
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(i = 1, 2, . . . , 14). More details about Hφ are referred to
Appendix C.

2. RPA equations in angular-momentum coupled form

For the nuclei with spherical symmetry, the single-particle
states are denoted by |n jlm〉, where n, l, and j represent
the principle quantum number, orbital, and total angular
momenta, respectively, and m is the projection. Due to the
spherical symmetry, the states with the same n jl but different
m are degenerated, sharing the same radial wave functionals.
Thus, the angular integrations in the RPA matrix elements A
and B in Eq. (5) can be obtained analytically via the angular
momentum algebra. Here, we derive the RPA equations in
the angular-momentum coupled form [19,91], which is con-
venient as will be shown later.

Supposing that the external field W (r) has specific angular
momentum and parity, i.e., W (r) = WJπ M (r), the angular-
momentum coupled X and Y amplitudes can be accordingly
defined as follows:

X J
Bb =

∑
mBmb

(−1) jb−mbCJM
jBmB jb−mb

XBmB,bmb, (7a)

Y J
Bb =

∑
mBmb

(−1) jb−mb+MCJ−M
jBmB jb−mb

YBmB,bmb, (7b)

where Ĵ = √
2J + 1 and the minus sign in −mb comes from

the fact that the single-particle state b corresponds to the hole
state. Meanwhile, the RPA matrix elements in the angular-
momentum coupled form are defined as

AJ
Aa,Bb =

∑
mM

(−1) ja−mA+ jb−mB Ĵ−2CJM
jAmA ja−ma

×CJM
jBmB jb−mb

AAa,Bb, (8a)

BJ
Aa,Bb =

∑
mM

(−1) ja−mA+ jb−mB+MĴ−2CJM
jAmA ja−ma

×CJ−M
jBmB jb−mb

BAa,Bb, (8b)

where the sum over m represents all the sum over the projec-
tions mA, ma, mB, and mb.

With Eqs. (7) and (8), the RPA eigenequation [Eq. (5)]
can be transformed into the angular-momentum coupled form,
which reads

∑
Bb

( AJ
Aa,Bb BJ

Aa,Bb

−BJ
Aa,Bb −AJ

Aa,Bb

)(
X J

Bb

Y J
Bb

)
= ω

(
X J

Aa

Y J
Aa

)
. (9)

3. RPA equations in charge-exchange channels

In this work, we focus on the charge-exchange excita-
tions. Thus, two kinds of ph configurations should be consid-
ered, i.e., the proton-particle-neutron-hole configurations and
neutron-particle-proton-hole ones. The particle and hole pro-
ton (neutron) states are denoted as p and p̄ (n and n̄), respec-
tively. The pn̄ and np̄ configurations correspond to the isospin
lowering T− and raising T+ channels, respectively. With
this convention, the RPA equation in the angular-momentum

coupled form in Eq. (9) can be expressed explicitly as

∑
p′n̄′n′ p̄′

⎛
⎜⎜⎜⎜⎝

AJ
pn̄p′n̄′ AJ

pn̄n′ p̄′ BJ
pn̄p′n̄′ BJ

pn̄n′ p̄′

AJ
np̄p′n̄′ AJ

np̄n′ p̄′ BJ
np̄p′n̄′ BJ

np̄n′ p̄′

−BJ
pn̄p′n̄′ −BJ

pn̄n′ p̄′ −AJ
pn̄p′n̄′ −AJ

pn̄n′ p̄′

−BJ
np̄p′n̄′ −BJ

np̄n′ p̄′ −AJ
np̄p′n̄′ −AJ

np̄n′ p̄′

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

X J
p′n̄′

X J
n′ p̄′

Y J
p′n̄′

Y J
n′ p̄′

⎞
⎟⎟⎟⎟⎠

= ω

⎛
⎜⎜⎜⎜⎝

X J
pn̄

X J
np̄

Y J
pn̄

Y J
np̄

⎞
⎟⎟⎟⎟⎠. (10)

Due to the charge conservation, the matrix elements
AJ

pn̄n′ p̄′ , AJ
np̄p′n̄′ , BJ

pn̄p′n̄′ , BJ
np̄n′ p̄′ , and BJ

pn̄n′ p̄′ shall vanish. Thus,
the RPA equation can be reduced as

∑
p′n̄′n′ p̄′

⎛
⎜⎜⎜⎜⎝

AJ
pn̄p′n̄′ 0 0 BJ

pn̄n′ p̄′

0 AJ
np̄n′ p̄′ BJ

np̄p′n̄′ 0

0 −BJ
pn̄n′ p̄′ −AJ

pn̄p′n̄′ 0

−BJ
np̄p′n̄′ 0 0 −AJ

np̄n′ p̄′

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

X J
p′n̄′

X J
n′ p̄′

Y J
p′n̄′

Y J
n′ p̄′

⎞
⎟⎟⎟⎟⎠

= ω

⎛
⎜⎜⎜⎜⎝

X J
pn̄

X J
np̄

Y J
pn̄

Y J
np̄

⎞
⎟⎟⎟⎟⎠. (11)

Obviously, the T− and T+ channels can be obtained simul-
taneously by solving the following equations:(

AJ
pn̄p′n̄′ BJ

pn̄n′ p̄′

−BJ
np̄p′n̄′ −AJ

np̄n′ p̄′

)(
U J

p′n̄′

V J
n′ p̄′

)
= ω

(
U J

pn̄

V J
np̄

)
. (12)

The solutions for the two channels can be distinguished ac-
cording to the normalization conditions:∑

pn̄

(
U J

pn̄

)2 −
∑
np̄

(
V J

np̄

)2 = +1, T− channel,

(13)∑
pn̄

(
U J

pn̄

)2 −
∑
np̄

(
V J

np̄

)2 = −1, T+ channel.

Meanwhile, the corresponding excitation energies and the X J

and Y J amplitudes are determined by the following relation-
ship:


 = +ω, X J
pn̄ = U J

pn̄, Y J
np̄ = V J

np̄, T− channel,
(14)


 = −ω, X J
np̄ = V J

np̄, Y J
pn̄ = U J

pn̄, T+ channel.

The most critical step in solving the RPA equation [Eq. (12)]
is to calculate the RPA matrix elements AJ and BJ . The details
about the calculation can be referred to Appendix C.

4. Transition probabilities

Formally, the excited state |ν〉, which is the eigenstate of
the system Hamiltonian, can be obtained by acting an operator
Q†

ν on the ground state |GS〉. In the RPA framework, Q†
ν can
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be expressed with the eigenvector of the RPA equation as

Q†
ν =

∑
pmphmh

X ν
phc†pch +

∑
pmphmh

Y ν
phc†hcp. (15)

Notice that the ground state here is not the Hartree-Fock
ground state |HF〉 ≡ |�〉, but the so-called RPA ground state
|RPA〉 [90], which satisfies

|ν〉 = Q†
ν |RPA〉, Qν |RPA〉 = 0. (16)

An operator f̂ with specific angular momentum J and M
can be expressed with the second-quantized form as

F̂JM =
∑

i j

〈i| f̂JM | j〉c†i c j . (17)

For the charge-exchange excitations IAS, GTR, and SDR, the
operator f̂ reads as

f̂ ±
IAS =

A∑
i=1

τ±(i), (18a)

f̂ ±
GTR =

A∑
i=1

[1 ⊗ σ(i)]J=1τ±(i), (18b)

f̂ ±
SDR =

A∑
i=1

[riY1(i) ⊗ σ(i)]J=(0, 1, 2)τ±(i), (18c)

where J = 0 in the IAS, and τ± = τx ± iτy.
With the angular-momentum coupled amplitudes X J and

Y J [Eq. (7)], as well as the Wigner-Eckart theorem [92], one
can expand the transition amplitude as

〈νJM |F̂JM |RPA〉
= Ĵ−1

∑
ph

{
X Jν

ph 〈p‖ f̂J‖h〉 + (−1) jp+ jhY Jν
ph 〈h‖ f̂J‖p〉}. (19)

In deriving Eq. (19), the quasiboson approximation [90] has
been adopted, namely, the RPA ground state |RPA〉 is approx-
imated as the Hatree-Fock one |HF〉,

〈νJM |c†i c j |RPA〉
=
∑

pmphmh

〈RPA|[X ν
phc†hcp + Y ν

phc†pch, c†i c j
]|RPA〉

≈
∑

pmphmh

〈HF|[X ν
phc†hcp + Y ν

phc†pch, c†i c j
]|HF〉

=
∑

pmphmh

{
X ν

phδipδ jh − Y ν
phδihδ j p

}
. (20)

The transition probability between the ground state and the
excited state induced by the single-particle operator F̂JM reads

Bν = |〈νJM |F̂JM |RPA〉|2. (21)

To obtain a smooth transition strength as a function of
the excitation energy, one usually chooses to calculate the
Lorentzian-averaged strength distribution, which reads

R(E ) =
∑

ν

Bν

�/2π

(E − 
ν )2 + �2/4
, (22)

where � is the averaging width.

C. Contribution of tensor force

As mentioned before, the tensor force components can be
introduced naturally via the Fock terms, but mixed together
with other components. In Ref. [85], the tensor force com-
ponents in relevant meson-nucleon coupling channels have
been identified within the RHF theory. In this work, the same
method will be used to extract the contributions from the ten-
sor force components on the RHF level. To avoid confusion,
here we make it clear that the two-particle-two-hole effects
of tensor force [93–98] are not explicitly taken into account,
but implicitly absorbed into the effective interactions to some
extent.

In the RHF + RPA framework, the tensor force can also
contribute to the RPA ph residual interactions. In Ref. [85],
two sets of formulas were given to extract the tensor-force
contribution in the two-body interaction matrix elements.
These two sets of formulas have the pseudovector and tensor
forms, respectively, and they were shown to be identical.
Accordingly, we can get two sets of formulas to evaluate
the tensor-force contributions to the RPA matrix elements,
also with the pseudovector (PV) and tensor (T) forms, re-
spectively. For the charge-exchange excitations, only the reg-
ular terms HJ

1 (1234) and HJ
8 (1234) (see Appendix C) have

nonvanishing contributions, while all the rearrangement terms
due to the density dependence vanish [71,90,99,100]. Here,
we will present specifically the tensor-force contributions
to HJ

1 (1234), since the ones to HJ
8 (1234) can be derived

straightforwardly with the relationship shown in Eq. (C6c).
The formulas with the PV and T forms, denoted, respectively,
as HJ,PV

1,t (1234) and HJ,T
1,t (1234), can be expressed as,

HJ,PV
1,t (1234) = I Ĵ−2m2

φ

∫∫
dr1 dr2 Fφ (1, 2)

J±1∑
L1L2

(−1)L1+L2CL10
J010C

L20
J010

×
[
−RL1L2 (mφ ; r1, r2) + 1

m2
φr2

1

δ(r1 − r2)

][
G1G2〈1‖TJL1‖2〉]r1

[
G3G4〈3‖TJL2‖4〉]r2

− I 1

3
Ĵ−2

∑
L

∫∫
dr1 dr2

1

r2
1

δ(r1 − r2)Fφ (1, 2)[G1G2〈1‖TJL‖2〉]r1 [G3G4〈3‖TJL‖4〉]r2

+ I
m2

φ

3
Ĵ−2

∑
L

∫∫
dr1 dr2 Fφ (1, 2)[G1G2〈1‖TJL‖2〉]r1 RLL(mφ ; r1, r2)[G3G4〈3‖TJL‖4〉]r2 , (23)
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and

HJ,T
1,t (1234) = −I6Ĵ−2m2

φ

∫∫
dr1 dr2 Fφ (1, 2)

∑
L

J±1∑
L1L2

(−1)L1+L2CL10
L010C

L20
L010

{
1 L1 L
J 1 1

}{
1 L2 L
J 1 1

}

×
[
−RL1L2 (mφ ; r1, r2) + 1

m2
φr2

1

δ(r1 − r2)

][
G1G2〈1‖TJL1‖2〉]r1

[
G3G4〈3‖TJL2‖4〉]r2

+ I 2

3
Ĵ−2

∑
L

∫∫
dr1 dr2 δ(r1 − r2)Fφ (1, 2)

1

r2
1

[G1G2〈1‖TJL‖2〉]r1 [G3G4〈3‖TJL‖4〉]r2

− I 2

3
Ĵ−2m2

φ

∑
L

∫∫
dr1 dr2 Fφ (1, 2)[G1G2〈1‖TJL‖2〉]r1 RLL(mφ, r1, r2)[G3G4〈3‖TJL‖4〉]r2 . (24)

The definition of RL1L2 reads

RL1L2 (mφ ; r1, r2) ≡ mφ

√
1

z1z2

[
IL1+ 1

2
(z1)KL2+ 1

2
(z2)θ (z2 − z1)

+ KL1+ 1
2
(z1)IL2+ 1

2
(z2)θ (z1 − z2)

]
, (25)

with z = mφr, I and K being the spherical Bessel functions
[101], and θ the step function. The reduced matrix element
〈a‖TJL‖b〉 is explicitly expressed as

〈a‖TJL‖b〉 = (−1)lb

(
6

4π

)1/2

ĵbl̂al̂bĴCL0
la0lb0

⎧⎨
⎩

ja jb J
la lb L

1/2 1/2 1

⎫⎬
⎭,

(26)

where j and l are the total and orbital angular momentums.
In Eqs. (23) and (24), φ represent the coupling channels ω-V,
π -PV, ρ-V, ρ-T, and ρ-VT, and the details for Fφ are shown
in Table I. The symbol I in Eqs. (23) and (24) represents the
isospin factor, i.e.,

I =
{
δq1q2δq3q4 , isoscalar meson;
〈q1|�τ|q2〉 · 〈q4|�τ|q3〉, isovector meson,

(27)

where |qi〉 denotes the isospin spinor of the state |i〉.

III. RESULTS AND DISCUSSION

A. Isobaric analog state

The IAS belongs to the simplest isospin excitations in
nuclei, which is characterized by the quantum numbers
�S = 0, �L = 0, and �Jπ = 0+. The IAS can be defined by
acting the isospin lowering T− or raising T+ operators on the

TABLE I. Expressions of Fφ in Eqs. (23) and (24) for the meson-
nucleon coupling channels φ = ω-V, π -PV, ρ-V, ρ-T, and ρ-VT, in
which the M∗ is the Dirac mass [60,102].

φ Fφ φ Fφ

ω-V gω (1)gω (2)
4M∗ (1)M∗ (2) π -PV − fπ (1) fπ (2)

m2
π

ρ-V gρ (1)gρ (2)
4M∗ (1)M∗ (2) ρ-T fρ (1) fρ (2)

4M2

ρ-VT fρ (1)gρ (2)
4MM∗ (2) + (1 ↔ 2)

parent states, i.e., T±|parent〉. When the Coulomb interaction
is switched off, the system Hamiltonian commutes with
T− and T+ (neglecting the tiny isospin-symmetry-breaking
components in the nuclear interaction). In this case, the
IAS defined by T−|parent〉 and T+|parent〉 are degenerate
with the initial state |parent〉. Thus, EIAS = 0 MeV, and the
IAS transition strength, which is denoted as B− for the T−
channel, will exhaust 100% of the nonenergy weighted sum
rule (N − Z ) [103].

The degeneracy mentioned above is broken in the mean-
field approach, since the single-particle Hamiltonian no longer
commutes with T±. However, this broken isospin symme-
try can be restored by the self-consistent RPA approaches
[90,104]. In return, the IAS energy and the transition strength
can provide a rigorous test for the self-consistency of the
HF + RPA calculations.

To test the self-consistency of the RHF + RPA approach
with the presence of the ρ-T coupling, we first calculate
the IAS energies and the corresponding transition strengths
in doubly magic nuclei 48Ca, 90Zr, and 208Pb by using the
effective interaction PKA1, in which the Coulomb interaction
is switched off. The results are shown in Table II. It is found
that the excitation energies of IAS are all of the order of 10−4

MeV. Meanwhile, the strengths exhaust more than 99.9999 %
of the corresponding sum rule values (N − Z ). This indicates
that the RHF + RPA approach with ρ-T coupling developed
in this work is of excellent self-consistency and also of high
numerical accuracy.

By switching off the ph residual interactions from various
meson-nucleon couplings one by one, one can evaluate the
role played by the relevant channel in deducing zero IAS
excitation energy. Figure 1 shows the IAS excitation energy
E (MeV) and the transition probability B− of 208Pb calculated

TABLE II. IAS excitation energies EIAS (MeV) and the corre-
sponding transition probabilities B− in 48Ca, 90Zr, and 208Pb. The
calculations are performed by the RHF+RPA approach with the
effective interaction PKA1 [61], where the Coulomb interaction is
switched off.

48Ca 90Zr 208Pb

EIAS −0.000371 −0.000310 −0.000163
B− 8.000000 10.000000 43.999990
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208Pb IAS

FIG. 1. IAS excitation energies E and transition probabilities B−

in 208Pb calculated by RHF + RPA with PKA1 without the Coulomb
interaction. From left to right, the unperturbed result, the ones which
exclude the contributions from specific coupling channels in the
ph residual interactions, and the full self-consistent calculation are
shown. See the text for details.

by PKA1. For comparison, the results of the unperturbed cal-
culation (without residual interaction), the ones which exclude
the σ -S + ω-V, ρ-V, ρ-T + ρ-VT, the π contact term (g′

π = 0)
and π -PV couplings, and the fully self-consistent calculation
are shown from the left to the right. It can be seen that the
isoscalar σ -S and ω-V couplings, as well as the isovector
ρ-V one, play the most important role in restoring the isospin
symmetry via the ph residual interactions. The π -PV coupling
also plays certain role, but not as remarkable as the mentioned
ones. Qualitatively, these are in consistence with the PKO1
calculations [100]. In particular, it can be found in Fig. 1 that
the ρ-T and ρ-VT couplings play more significant role than
the π -PV one.

Moreover, it shall be mentioned that the coefficient of the π

contact term, denoted by g′
π , is not a free parameter any more,

which is usually adjusted in the RMF + RPA calculations
to give proper excitation energy. Within the RHF + RPA, if
the g′

π value in the ph residual interaction is changed from
g′

π = 1/3, the self-consistency can be notably violated. When
neglecting the π contact term (g′

π = 0) in the ph residual
interaction, the IAS excitation energy calculated with PKA1
turns out to be around −900 keV, similar as the PKO1 result
[71], seeing Fig. 1.

B. Gamow-Teller resonance

The Gamow-Teller resonance is characterized by the quan-
tum numbers �S = 1, �L = 0, and Jπ = 1+. We show in
Table III the excitation energies E (MeV) and the transi-
tion probabilities B− (in percentage of the sum rule value
3(N − Z )) of the magic nuclei 48Ca, 90Zr, and 208Pb. The
results are calculated by the RHF + RPA method with the
RHF Lagrangians PKA1 and PKOi (i = 1, 2, 3), as compared
to the experimental data [105–108] and the calculations by

TABLE III. GTR excitation energies E (MeV) and the transition
probabilities B− [in percentage of the sum rule value 3(N − Z )] of
the magic nuclei 48Ca, 90Zr, and 208Pb, calculated by the RHF+RPA
with PKA1 and PKOi (i = 1, 2, 3). For comparison, the experimental
data [105–108] and the results given by the RMF+RPA with DD-
ME1 [109] are also shown.

48Ca 90Zr 208Pb

E B− E B− E B−

Exp. 10.5 15.6 ± 0.3 19.2 ± 0.2 60 ∼ 70
PKA1 11.85 66.4 17.21 65.1 19.76 60.2
PKO1 10.72 69.4 15.80 68.1 18.15 65.6
PKO2 10.83 66.7 15.99 66.3 18.20 60.5
PKO3 10.42 70.7 15.71 68.9 18.14 67.7
DD-ME1 10.28 72.5 15.81 71.0 19.19 70.6

the RMF + RPA with DD-ME1 [109]. All the results shown
in Table III correspond to the main peaks. It is found that
the GTR excitation energies given by PKA1 are systemat-
ically higher than those by PKOi, and all the RHF + RPA
calculations present higher energies than the RMF + RPA
ones. The model discrepancy might be related to the different
symmetry energies given by the selected models as mentioned
in Refs. [110,111], which deserves further careful analysis.
However, the transition strengths given by the selected models
exhaust 60−70 % of the sum rule values 3(N − Z ), being
consistent with the available experimental data [108].

To clarify the roles played by various channels in deter-
mining the ph residual interaction, Fig. 2 shows the transition
strength R− (MeV−1) with respect to the excitation energy

0 5 10 15 20 25 30
0

10

20

30

40

50

60

208Pb GTR

unperturbed
σ + ω
σ + ω + ρ-V
σ + ω + ρ-V + ρ-VT+ρ-T
full

R
-
(M
eV

-1
)

E (MeV)

PKA1

FIG. 2. Transition strength distributions R− (MeV−1) of GTR
in 208Pb with respect to the excitation energy E (MeV) calculated
by RHF + RPA with PKA1, including the unperturbed results, the
ones of the HF plus the ph residual interactions contributed by
relevant channels successively, and the full calculation. A Lorentzian
smearing parameter � = 1 MeV is used, and the arrow denotes the
experimental peak energy [104]. See the text for details.
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FIG. 3. Transition strength distributions in the T− channel of GTR in 208Pb calculated by RHF + RPA with PKA1 and PKOi (i = 1, 2, 3).
A Lorentzian smearing parameter � = 1 MeV is used. The horizontal position of the arrow corresponds to the experimental peak energy [104].
See the text for the meanings of labels 11, 10, and 00.

E (MeV) for 208Pb, including the full self-consistent calcu-
lation, the unperturbed one, and the ones of the HF plus the
ph residual interactions contributed by the relevant channels
successively. The results are calculated by RHF + RPA with
PKA1, as referred to the experimental peak energy denoted by
the arrow, and a Lorentzian smearing parameter is set as � =
1 MeV. It can be seen that the unperturbed results (thin solid
line), in which all the ph residual interactions are dropped, are
very far away from the fully self-consistent calculation (thick
solid line). If considering the ph residual interaction from the
σ + ω channels, then the results are largely improved not only
for the excitation energy but also for the transition strength,
as referred to the full calculation. Notice that such distinctive
improvement is totally due to the Fock diagrams of the σ -S
and ω-V couplings [71].

Further considering the contributions to the ph residual
interactions from the isovector ρ-V, ρ-T, and π -PV channels
successively, the results become gradually closer to the fully
self-consistent ones. By comparison one can find that the
contribution of the ρ-T coupling channel, together with the
accompanying ρ-VT one, is more pronounced than that of
the ρ-V and π -PV ones. Similar as the conclusion clarified
in Ref. [71], the isoscalar σ -S and ω-V couplings present
substantial contributions to the ph residual interactions, fully
via the Fock terms. Nevertheless, it is worthwhile to mention
that the contributions from the isoscalar channels σ -S and
ω-V given by PKA1 are less remarkable, as compared to
PKO1 [71], because the balance between the attractive σ -S

and repulsive ω-V couplings is notably changed from PKO1
to PKA1 [81]. Such change is due to the degree of freedom
associated with the ρ-T coupling that presents fairly strong
attractive potential [81]. Coincidentally, the ρ-T coupling, to-
gether with the ρ-VT one, presents significant contributions to
the ph residual interactions. Despite of that, the contributions
from the ρ-V and π -PV couplings given by both PKA1 and
PKO1 [71] are similar.

C. Effects of tensor force on GTR

Within the framework of fully self-consistent RHF + RPA,
the tensor force is included naturally in both the RHF mean
field and the RPA residual interactions. Thus, the tensor-force
effects on the spin-isospin excitations can be manifested in
two ways. One is reflected on the single-particle properties
(energies and wave functions) via the RHF mean field, fur-
ther on the RPA calculation. The other influences the RPA
calculation directly through the ph residual interactions. In
this paper, we mainly focus on the net contribution in specific
effective interactions rather than the individual contributions
of the relevant meson-nucleon couplings. Taking 208Pb as an
example, we explore the effects of tensor force on the GTR,
from both the RHF level and RPA level, by performing the
following three RHF + RPA calculations:

(a) tensor force is included in both the RHF and RPA
levels, corresponding to the “11” results in Fig. 3;
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FIG. 4. Neutron and proton single-particle spectum of 208Pb given by PKO2 (left panel) and PKO3 (right panel), as compared to the ones
excluding the tensor force components in the RHF mean fields.

(b) tensor force is included in RHF but excluded in the
RPA level, namely the “10” results in Fig. 3;

(c) tensor force is excluded in both the RHF and RPA
levels, which gives the “00” results in Fig. 3.

The results given by the RHF Lagrangians PKA1 and
PKOi are shown in Fig. 3, specifically the excitation energies
and transition strengths of the GTR for 208Pb. It is seen that
PKA1 shows larger excitation energy for the main peak of
208Pb than the others. Referring to the experimental value
(denoted by arrow), it is slightly overestimated by PKA1
while underestimated by PKOi. For 48Ca and 90Zr shown in
Table III, it is found that PKOi and DD-ME2 show appropriate
agreement with the experimental values on the peak energies,
which are overestimated distinctly by PKA1.

Comparing the “10” results to the full ones “11” in Fig. 3,
it can be seen that the main peaks given by the selected RHF
Lagrangians remain almost unchanged, and the low-energy
peaks is only slightly changed. This may indicate that the
tensor force components introduced via the Fock terms do
not essentially contribute to the ph residual interactions. It is
different from the indications from nonrelativistic RPA cal-
culations based on the Skyrme Hartree-Fock theory (SHF +
RPA) with the effective interactions SIII and SIII + T, in
which the tensor force in the ph residual interactions can bring
downwards the main peaks by about 4.1 MeV [46].

Further if the tensor force is excluded on both RHF mean-
field and RPA levels, namely, the “00” results in Fig. 3, the
main peak given by PKA1 still remains unchanged, while
being shifted upwards by about 0.3 MeV and 0.6 MeV for
PKO1 and PKO3, respectively, and moving downwards by
about 0.4 MeV for PKO2. It is not quite difficult to understand
such situation, according to the analysis of the tensor-force
effects in Ref. [85]. As already mentioned before, the effective
Lagrangian PKA1 contains all the meson-nucleon couplings
involved in Eq. (1), i.e., σ -S, ω-V, ρ-V, π -PV, ρ-VT, and
ρ-T couplings, whereas the ρ-VT and ρ-T are not contained
in PKOi (i = 1, 2, 3). Moreover, PKO2 does not contain the
π -PV coupling, either. The sign of the tensor force in each

coupling channel is shown in Table I, and more details of
their individual effects on the single-particle levels in several
isotopic and isotonic chains are referred to Ref. [85]. Thus,
for PKO2, only the ω-V and ρ-V couplings contribute to
the tensor force components, both of which present opposite
effects to the ones carried by the π -PV coupling. For PKO1
and PKO3, the tensor force in π -PV coupling dominates
over those from the ω-V and ρ-V couplings to give the net
contributions. That is why the tensor-force effects in PKO1
and PKO3 are opposite to those in PKO2. It is also known
that the coupling strengths of π -PV is larger in PKO3 than
in PKO1, mainly because of its relatively weaker density
dependence in the former [60,62]. Consequently, the tensor
force in PKO3 affects the properties GTR more profoundly
as compared with the case of PKO1. While for PKA1, the
tensor-force effects carried by the π -PV coupling are further
canceled by the ones carried by the ρ-T and ρ-VT couplings,
and hence the net remaining is trivial, leading to unchanged
main peak for PKA1. For the nonrelativistic SHF + RPA
calculations [46], the main peak is shifted upwards about
0.8 MeV if only neglecting the tensor force in the SHF mean
field, qualitatively consistent with the trend of the “00” results
given by PKO1 and PKO3.

As discussed above, the tensor force components, intro-
duced naturally via the Fock terms, play different role on
the GTR in the RHF + RPA from those in the nonrelativistic
SHF + RPA. Specifically for the RHF + RPA, the tensor-
force effects on the GTR are manifested mainly via the RHF
mean field instead of the ph residual interactions. In contrast
to that, for the SHF + RPA [46] the tensor-force effects on
the GTR are distinctive via both the SHF mean field and the
ph residual interactions, and the latter is dominant. Within the
RHF, the tensor-force effects carried by the π -PV couplings
are opposite to the ones carried by all the other channels,
namely the space components of ω-V, ρ-V, ρ-VT, and ρ-T
couplings [85]. For PKA1, the cancellations between the men-
tioned channels lead to rather weak tensor-force effects, and
such cancellations become much less in PKO1 and PKO3, and
in PKO2 only opposite tensor-force effects to the ones carried
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by the π -PV coupling remain. Thus, one can understand
well the discrepancy of the tensor-force effects on the GTR
between the RHF Lagrangians.

As a supplement illustration of the tensor-force effects on
the GTR, we show in Fig. 4 the neutron and proton single-
particle spectra calculated by the RHF Lagrangians PKO2
(left panel) and PKO3 (right panel), in comparison with the
self-consistent calculations which exclude the tensor force
components introduced via Fock terms. Here, we focus on
the occupied neutron orbit ν1i13/2 and unoccupied proton
one π1i11/2, which dominate the particle-hole configuration
of the main peak of the GTR in 208Pb. As seen from the
left panel of Fig. 4, the energy difference given by PKO2
between these two particle-hole partners is �ε = 15.04 MeV,
which is reduced about 0.4 MeV when dropping the tensor
force components. In contrast to PKO2, the �ε value given
by PKO3 is enlarged about 0.7 MeV when the tensor force
components are excluded, seeing the right panel of Fig. 4.
Notice that the changes of the energy difference between
the particle-hole partners (ν1i13/2, π1i11/2) are consistent with
the tensor force components introduced in PKO2 and PKO3
as mentioned before. It is also interesting to see that such
modifications are coincident qualitatively with the changes
of the position of the main peak for both PKO2 and PKO3,
seeing Figs. 3(c) and 3(d).

IV. SUMMARY

In this work, we extend the framework of the random-phase
approximation (RPA) based on the relativistic Hartree-Fock
(RHF) theory by implementing the degree of freedom associ-
ated with the ρ-tensor (ρ-T) coupling, as well as the ρ-vector-
tensor (ρ-VT) one. Using the RHF Lagrangian PKA1, good
self-consistency of the extended RHF + RPA framework has
been illustrated by taking the isobaric analog states (IAS) in
48Ca, 90Zr, and 208Pb as examples. It is found that the ρ-T
and ρ-VT couplings play rather important role in keeping the
self-consistency of the RHF + RPA calculations, which may
indicate substantial contributions from these two channels to
the particle-hole (ph) residual interactions.

Further taking 48Ca, 90Zr, and 208Pb as examples, the
properties of Gamow-Teller resonances (GTR) are studied
by the extended RHF + RPA method, and particular efforts
are devoted on the role of the ρ-T coupling and the tensor-
force effects. It is shown that appropriate agreements with the
available GTR experimental data are achieved by the self-
consistent RHF + RPA calculations with PKA1 and PKOi
(i = 1, 2, 3). As compared to the PKOi results, the contri-
butions to the ph residual interactions from the isovector
channels are notably enhanced by the ρ-T and ρ-VT couplings
in PKA1. Moreover, it is found that the tensor-force effects on
the GTR, which are introduced naturally by the Fock terms of
the relevant channels, are manifested via the RHF mean field
instead of the ph residual interaction, which is rather different
from the nonrelativistic calculations. In particular, due to the
cancellations between the π -PV channel and the others which
contain the tensor force components, rather weak tensor-force
effects on the GTR are presented by PKA1. In fact, as revealed
from the rather different roles played by the tensor force on the
GTR between the relativistic and nonrelativistic calculations,
it still remains as an important open questions, which may
deserve further systematic studies in the future. In addition, it
is worthwhile to mention that the individual effects of tensor
force from all the relevant couplings can provide valuable
guidance for the constraint of the tensor force in a delicate
way. Thus, systematic investigation of tensor-force effects on
various of spin-isospin excitations is of great interests and
significance, which is now in progress.
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APPENDIX A: TWO-BODY INTERACTIONS IN THE RHF THEORY

In this Appendix, the expressions of the two-body interactions V̂φ in Eq. (4), corresponding to the meson-nucleon couplings
σ -S, ω-V, ρ-V, π -PV, ρ-T, and ρ-VT, are shown explicitly:

V̂σ -S(1, 2) = gσ (1)gσ (2)Iσ -S(1, 2) = −[gσ γ0]1[gσ γ0]2Dσ (1, 2), (A1a)

V̂ω-V(1, 2) = gω(1)gω(2)Iω-V(1, 2) = [gωγ0γ
μ]1[gωγ0γμ]2Dω(1, 2), (A1b)

V̂ρ-V(1, 2) = gρ (1)gρ (2)Iρ-V(1, 2) = [gργ0γ
μ�τ ]1 · [gργ0γμ�τ ]2Dρ (1, 2), (A1c)

V̂π-PV(1, 2) = fπ (1)

mπ

fπ (2)

mπ

Iπ-PV(1, 2) = −
[

fπ
mπ

γ0γ5�τγ k∂k

]
1

·
[

fπ
mπ

γ0γ5�τγ l∂l

]
2

Dπ (1, 2), (A1d)

V̂ρ-T(1, 2) = fρ (1)

2M

fρ (2)

2M
Iρ-T(1, 2) =

[
fρ

2M
γ0σνk �τ∂k

]
1

·
[

fρ
2M

γ0σ
νl �τ∂l

]
2

Dρ (1, 2), (A1e)

V̂ρ-VT(1, 2) = gρ (1)
fρ (2)

2M
Iρ-VT(1, 2) + fρ (1)

2M
gρ (2)Iρ-TV(1, 2)

= −[gργ0γν �τ ]1 ·
[

fρ
2M

γ0σ
νl∂l �τ

]
2

Dρ (1, 2) −
[

fρ
2M

γ0σ
νl �τ∂l

]
1

· [gργ0γν �τ ]2Dρ (1, 2). (A1f)
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The Dφ (1, 2) above is the propagators of each coupling, which is of the standard Yukawa form [59]. In addition, to cancel the
contact term coming from the π -PV and ρ-T couplings, the zero-range counterterms are included, which read, respectively,

V̂ δ
π-PV(1, 2) = fπ (1)

mπ

fπ (2)

mπ

Iδ
ρ-V(1, 2) = −1

3

[
fπ

mπ
�τγ0γ5γ

i

]
1

·
[

fπ
mπ

�τγ0γ5γi

]
2

δ(r1 − r2), (A2a)

V̂ δ
ρ-T(1, 2) = fρ (1)

2M

fρ (2)

2M
Iδ
ρ-T(1, 2) = 1

12M2
[ fργ0σνi�τ ]1 · [ fργ0σ

νi�τ ]2δ(r1 − r2). (A2b)

APPENDIX B: RPA EQUATION IN GENERAL FORM

Within the density-dependent relativistic Hartee-Fock theory, the single-particle HF equation reads

ĥ0[ϕ]ϕi(1) = T ϕi(1) +
∫

dr2

⎧⎨
⎩
∑
φ,a

ϕ†
a (2)gφ (1)gφ (2)Iφ (1, 2)(1 − Pia)ϕa(2)

⎫⎬
⎭ϕi(1)

+
∫

dr2

⎧⎨
⎩
∑
φ,ab

ϕ†
a (1)ϕ†

b (2)

[
∂gφ (1)

∂ρb(1)
gφ (2)Iφ (1, 2)(1 − Pab)

]
ϕb(2)ϕa(1)

⎫⎬
⎭ϕi(1), (B1)

where ρb represents the baryon density, and the operator Pi j exchanges the indices i and j. Subjecting the system to a time-
dependent external field W (t ), which reads

W (t ) = W (r)e−iωt + W †(r)eiωt , (B2)

the single-particle wave functions and the single-particle Hartree-Fock Hamiltonian then change as follows:

ϕa → ψa = ϕa +
∑

A

βAa(t )ϕA, (B3a)

ĥ0[ϕ] → ĥ0[ψ] + W (t ). (B3b)

Note that the summation over A should run over not only the particle states in the Fermi sea but also those in the Dirac sea. Thus,
the time-dependent Hartree-Fock (TDHF) equation becomes

i
∂

∂t
ψa = (ĥ0[ψ] + W (t ) − εa)ψa. (B4)

With the small amplitude limit, one can take only the linear response to the external field into account, i.e., only the linear
terms of βAa are kept. Supposing that the expansion coefficients βAa have the same time-dependent behavior as W (t ), they can
be expressed as

βAa = XAae−iωt − Y ∗
Aaeiωt . (B5)

Acting a particle state on the TDHF equation [Eq. (B4)] from the left, one can obtain

l.h.s. = 〈ϕA|i ∂

∂t
|ψa〉 = iβ̇Aa = ω(XAae−iωt + Y ∗

Aaeiωt ) (B6)

and

r.h.s. = 〈ϕA|ĥ0[ψ] + W (t ) − εa|ϕa +
∑

A′
βA′a(t )ϕA′ 〉. (B7)

In the r.h.s. above there appear six individual terms in total. Among them, the first term reads

〈ϕA|h0[ψ]|ϕa〉 = 〈ϕA|h0[ϕ] + δh0|ϕa〉. (B8)

Because of the orthogonality of the single-particle states, the zero-order term of Eq. (B8), i.e., 〈ϕA|ĥ0[ϕ]|ϕa〉, vanishes, and its
first-order term reads

〈ϕA|δĥ0|ϕa〉 =
∑
φ,Bb

{
β∗

Bb〈AB|V̂ res
φ (1, 2)|ab〉 + βBb〈Ab|V̂ res

φ (1, 2)|aB〉}, (B9)

where the operator V̂ res
φ (1, 2) corresponds to the residual particle-hole interaction in the self-consistent RPA ap-

proach. As an example, we present the explicit expression of the V̂ res
φ (1, 2) in the first term of Eq. (B9) as
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follows:

V̂ res
φ (1, 2) = gφ (1)gφ (2)Iφ (1, 2)(1 − Pab) +

∫
dr3

∑
d

ϕ
†
d (3)

∂gφ (1)

∂ρb(1)
gφ (3)Iφ (1, 3)(1 − Pad )ϕd (3)δ(r1 − r2)

+
∑

d

ϕ
†
d (2)gφ (1)

∂gφ (2)

∂ρb(2)
Iφ (1, 2)(1 − Pad )ϕd (2)

+
∫

dr3

∑
d

ϕ
†
d (3)

[
∂gφ (1)

∂ρb(1)
gφ (3)Iφ (1, 3)(1 − Pbd )

]
ϕd (3)δ(r1 − r2)

+
∑

d

ϕ
†
d (1)

[
∂gφ (1)

∂ρb(1)
gφ (2)Iφ (1, 2)(1 − Pbd )

]
ϕd (1)

+
∫

dr3

∑
cd

ϕ†
c (1)ϕ†

d (3)
∂2gφ (1)

∂ρ2
b (1)

gφ (3)Iφ (1, 3)(1 − Pcd )ϕd (3)ϕc(1)δ(r1 − r2)

+
∑
cd

ϕ†
c (1)ϕ†

d (2)
∂gφ (1)

∂ρb(1)

∂gφ (2)

∂ρb(2)
Iφ (1, 2)(1 − Pcd )ϕd (2)ϕc(1), (B10)

of which the first term is the regular term and the others are the rearrangement terms, which arise from the density dependence
of the coupling strength. For the second term of Eq. (B9), the operator Pbd should be replaced by PBd . Here, Iφ is defined in
Eqs. (A1) and (A2). In addition, we emphasize that the derivative of the coupling strength with respect to the density should be
evaluated at the ground-state density.

Among the other five terms appearing in the r.h.s., the nonvanishing terms are given as follows:

〈ϕA|W|ϕa〉 = 〈ϕA|W (r)e−iωt + W †(r)eiωt |ϕa〉, (B11a)

〈ϕA|ĥ0[ψ]

∣∣∣∣∣
∑

A′
βA′a(t )ϕA′

〉
= εAβAa, (B11b)

〈ϕA|(−εa)

∣∣∣∣∣
∑

A′
βA′a(t )ϕA′

〉
= −εaβAa. (B11c)

Merging the nonvanishing coefficients of eiωt and e−iωt , respectively, and using the equality of l.h.s. and r.h.s., one can get the
following equations:

−〈A|W |a〉 = [(εA − εa) − ω]XAa +
∑
φ,Bb

[〈Ab|V̂ res
φ (1, 2)|aB〉XBb − 〈AB|V̂ res

φ (1, 2)|ab〉YBb
]
, (B12a)

−〈A|W †|a〉∗ = [−(εA − εa) − ω]YAa +
∑
φ,Bb

[〈AB|V̂ res
φ (1, 2)|ab〉XBb − 〈Ab|V̂ res

φ (1, 2)|aB〉YBb
]
. (B12b)

The equations above are the RPA equations of X and Y .
With the following compact notation of the ph interaction elements,

A12,34 = (ε1 − ε2)δ12,34 +
∑

φ

〈14|V̂ res
φ |23〉, (B13a)

B12,34 = −
∑

φ

〈13|V̂ res
φ |24〉, (B13b)

where δ12,34 requires |1〉 = |3〉, |2〉 = |4〉. The RPA equation above can be rewritten in the matrix form( AAa,Bb BAa,Bb

−BAa,Bb −AAa,Bb

)(
XBb

YBb

)
− ω

(
XAa

YAa

)
= −

( 〈A|W |a〉
〈A|W †|a〉∗

)
. (B14)

The repeated indices B and b indicate the summation over them. Due to the small amplitude limit, the terms on the r.h.s., which
is related to the external filed, will be dropped. Thus, one gets the RPA eigenequation( AAa,Bb BAa,Bb

−BAa,Bb −AAa,Bb

)(
XBb

YBb

)
= ω

(
XAa

YAa

)
. (B15)
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APPENDIX C: RPA MATRIX ELEMENTS

From Eq. (B10) one can see that each matrix element 〈14|V̂ res
φ |23〉 contains totally 14 terms, among which the direct terms

read as

H1(1234) =
∑

φ

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

4 (2)gφ (1)gφ (2)Iφ (1, 2)ϕ3(2)ϕ2(1), (C1a)

H2(1234) =
∑
φ,d

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

d (2)g′
φ (1)ϕ†

4 (1)ϕ3(1)gφ (2)I (1, 2)ϕd (2)ϕ2(1), (C1b)

H3(1234) =
∑
φ,d

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

d (2)gφ (1)g′
φ (2)ϕ†

4 (2)ϕ3(2)I (1, 2)ϕd (2)ϕ2(1), (C1c)

H4(1234) =
∑
φ,d

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

4 (1)ϕ†
d (2)g′

φ (1)gφ (2)I (1, 2)ϕd (2)ϕ3(1)ϕ2(1), (C1d)

H5(1234) =
∑
φ,d

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

d (1)ϕ†
4 (2)g′

φ (1)gφ (2)I (1, 2)ϕ3(2)ϕd (1)ϕ2(1), (C1e)

H6(1234) =
∑
φ,cd

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

c (1)ϕ†
d (2)g′′

φ (1)ϕ†
4 (1)ϕ3(1)gφ (2)I (1, 2)ϕd (2)ϕc(1)ϕ2(1), (C1f)

H7(1234) =
∑
φ,cd

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

c (1)ϕ†
d (2)g′

φ (1)g′
φ (2)ϕ†

4 (2)ϕ3(2)I (1, 2)ϕd (2)ϕc(1)ϕ2(1), (C1g)

and the exchange terms read as

H8(1234) = −
∑

φ

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

4 (2)gφ (1)gφ (2)Iφ (1, 2)ϕ2(2)ϕ3(1), (C2a)

H9(1234) = −
∑
φ,d

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

d (2)g′
φ (1)ϕ†

4 (1)ϕ3(1)gφ (2)I (1, 2)ϕ2(2)ϕd (1), (C2b)

H10(1234) = −
∑
φ,d

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

d (2)gφ (1)g′
φ (2)ϕ†

4 (2)ϕ3(2)I (1, 2)ϕ2(2)ϕd (1), (C2c)

H11(1234) = −
∑
φ,d

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

4 (1)ϕ†
d (2)g′

φ (1)gφ (2)I (1, 2)ϕ3(2)ϕd (1)ϕ2(1), (C2d)

H12(1234) = −
∑
φ,d

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

d (1)ϕ†
4 (2)g′

φ (1)gφ (2)I (1, 2)ϕd (2)ϕ3(1)ϕ2(1), (C2e)

H13(1234) = −
∑
φ,cd

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

c (1)ϕ†
d (2)g′′

φ (1)ϕ†
4 (1)ϕ3(1)gφ (2)I (1, 2)ϕc(2)ϕd (1)ϕ2(1), (C2f)

H14(1234) = −
∑
φ,cd

∫∫
dr1 dr2 ϕ

†
1 (1)ϕ†

c (1)ϕ†
d (2)g′

φ (1)g′
φ (2)ϕ†

4 (2)ϕ3(2)I (1, 2)ϕc(2)ϕd (1)ϕ2(1). (C2g)

Notice that H1(1234) and H8(1234) belong to the regular terms, whereas the others are the accompanying rearrangement terms.
It is notable that, since the effective interactions used in this work only depend on the isoscalar density, the rearrangement terms
all vanish in the charge-exchange channels.

In terms of the matrix elements of the direct and exchange terms shown above, the matrix elements AJ
12,34 in the angular

momentum coupled form defined in Eq. (8a) can be expressed as

AJ
12,34 = (ε1 − ε2)δ12,34 +

14∑
i=1

HJ
i (1234), (C3)

where

HJ
i (1234) =

∑
mM

(−1) j2−m1+ j4−m3
1

Ĵ2
CJM

j1m1 j2−m2
CJM

j3m3 j4−m4
Hi(1234). (C4)
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Meanwhile, the matrix elements BJ
12,34 in the angular momentum coupled form read

BJ
12,34 = (−1) j3+ j4

14∑
i=1

Hi(1243). (C5)

Moreover, HJ
i (1234) satisfies the following relationship:

HJ
4 (1234) = HJ

2 (3412), (C6a)

HJ
5 (1234) = HJ

3 (3412), (C6b)

HJ
8 (1234) = (−1) j2+ j3+J+1

∑
J ′

(−1)J ′
Ĵ ′2
{

j2 j1 J
j3 j4 J ′

}
HJ ′

1 (1324), (C6c)

HJ
10(1234) = (−1) j1+ j2+1HJ

9 (2134), (C6d)

HJ
11(1234) = (−1) j3+ j4+1HJ

9 (4312), (C6e)

HJ
12(1234) = HJ

9 (3412). (C6f)

Thus, all the RPA matrix elements to be calculated explicitly are

HJ
1 , HJ

2 , HJ
3 , HJ

6 , HJ
7 , HJ

9 , HJ
13, HJ

14. (C7)

The RHF interactions used in this paper include PKOi (i = 1, 2, 3) and PKA1, in which the meson-nucleon couplings σ -S,
ω-V, ρ-V, π -PV, ρ-T, and ρ-VT are taken into account. Note that the ρ-VT coupling arises simultaneously when ρ-T coupling
is included in the Lagrangian. Since this work is focused on the charge-exchange excitations, we prefer to present merely
the expressions of the regular term HJ

1 (1234) explicitly. The HJ
8 (1234) can be derived easily with the relationship shown in

Eq. (C6c).
The matrix elements HJ

1 (1234) for each meson-nucleon channel, denoted as HJφ

1 (1234), can be eventually expressed as

HJσ -S
1 (1234) = −I Ĵ−2〈1‖YL‖2〉〈3‖YL‖4〉

∫∫
dr1 dr2 RJJ (mσ ; r1, r2)[gσ (G1G2 − F1F2)]r1 [gσ (G3G4 − F3F4)]r2 , (C8a)

H̄Jω-V
1 (1234) = −I Ĵ−2〈1‖YL‖2〉〈3‖YL‖4〉

∫∫
dr1 dr2 RJJ (mω; r1, r2)[gω(G1G2 + F1F2)]r1 [gω(G3G4 + F3F4)]r2 , (C8b)

¯̄HJω-V
1 (1234) = −I Ĵ−2

∑
L

∫∫
dr1 dr2 RLL(mω, r1, r2)

× [gω(G1F2〈1‖TJL‖2′〉 − F1G2〈1′‖TJL‖2〉)]r1 [gω(G3F4〈3‖TJL‖4′〉 − F3G4〈3′‖TJL‖4〉)]r2 , (C8c)

HJπ-PV
1 (1234) = −I Ĵ−2

∫∫
dr1 dr2

J±1∑
L1L2

(−1)L1+L2CL10
J010C

L20
J010V

L1L2
J (mπ ; r1, r2)

[
fπ
(
G1G2〈1‖TJL1‖2〉 + F1F2〈1′‖TJL1‖2′〉)]r1

× [ fπ
(
G3G4〈3‖TJL2‖4〉 + F3F4〈3′‖TJL2‖4′〉)]r2

, (C8d)

HJπ-PV,δ
1 (1234) = I 1

3m2
π

Ĵ−2
∑

L

∫
dr

f 2
π

r2
[G1G2〈1‖TJL‖2〉 + F1F2〈1′‖TJL‖2′〉][G3G4〈3|TJL|4〉 + F3F4〈3′‖TJL‖4′〉], (C8e)

H̄Jρ-T
1 (1234) = I Ĵ−2

m2
ρ

4M2

∫∫
dr1 dr2

J±1∑
L1L2

(−1)L1+L2CL10
J010C

L20
J010V

L1L2
J (mρ ; r1, r2)

[
fρ
(
F1G2〈1′‖TJL1‖2〉 + G1F2〈1‖TJL1‖2′〉)]r1

× [ fρ
(
G3F4〈3‖TJL2‖4′〉 + F3G4〈3′‖TJL2‖4〉)]r2

, (C8f)

H̄Jρ-T,δ
1 (1234) = −I 1

12M2
Ĵ−2

∑
L

∫
dr

f 2
ρ

r2
[G1F2〈1‖TJL‖2′〉 + F1G2〈1′‖TJL‖2〉][G3F4〈3‖TJL‖4′〉 + F3G4〈3′‖TJL‖4〉], (C8g)

¯̄HJρ-T
1 (1234) = −I6Ĵ−2

m2
ρ

4M2

∫∫
dr1 dr2

∑
L

L̂2
L±1∑
L1L2

(−1)L1+L2CL10
L010C

L20
L010V

L1L2
L (mρ ; r1, r2)

{
1 L1 L
J 1 1

}{
1 L2 L
J 1 1

}

× [ fρ
(
G1G2〈1‖TJL1‖2〉 − F1F2〈1′‖TJL1‖2′〉)]

r1

[
fρ
(
G3G4〈3‖TJL2‖4〉 − F3F4〈3′‖TJL2‖4′〉)]

r2
, (C8h)

¯̄HJρ-T,δ
1 (1234) = I 1

6M2
Ĵ−2

∑
L

∫
dr

f 2
ρ

r2
[G1G2〈1‖TJL‖2〉 − F1F2〈1′‖TJL‖2′〉][G3G4〈3‖TJL‖4〉 − F3F4〈3′‖TJL‖4′〉], (C8i)
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H̄Jρ-VT
1 (1234) = I (−1)J+1Ĵ−2 mρ

2M

J±1∑
L1

(−1)L1CL10
J010

∫∫
dr1 dr2 SL1J (mρ ; r1, r2)

× [gρ〈1‖YJ‖2〉(G1G2 + F1F2)]r1

[
fρ
(
G3F4〈3‖TJL1‖4′〉 + F3G4〈3′‖TJL1‖4〉)]r2

+ I (−1)J Ĵ−2 mρ

2M

J±1∑
L1

(−1)L1CL10
J010

∫∫
dr1 dr2 SJL1 (mρ ; r1, r2)

× [ fρ
(
F1G2〈1′‖TJL1‖2〉 + G1F2〈1‖TJL1‖2′〉)]

r1
[gρ〈3‖YJ‖4〉(G3G4 + F3F4)]r2 , (C8j)

¯̄HJρ-VT
1 (1234) = I (−1)J+1

√
6mρ

2M
Ĵ−2

∑
L

L±1∑
L1

L̂
∫∫

dr1 dr2 SL1L(mρ ; r1, r2)(−1)L1CL10
L010

{
1 L1 L
J 1 1

}

× [gρ (G1F2〈1‖TJL‖2′〉 − F1G2〈1′‖TJL‖2〉)]r1

[
fρ
(
G3G4〈3‖TJL1‖4〉 − F3F4〈3′‖TJL1‖4′〉)]r2

+ I (−1)J

√
6mρ

2M
Ĵ−2

∑
L

L±1∑
L1

L̂
∫∫

dr1 dr2 SLL1 (mρ ; r1, r2)(−1)L1CL10
L010

{
1 L1 L
J 1 1

}

× [ fρ
(
G1G2〈1‖TJL1‖2〉 − F1F2〈1′‖TJL1‖2′〉)]r1

[gρ (G3F4〈3‖TJL‖4′〉 − F3G4〈3′‖TJL‖4〉)]r2 . (C8k)

The isospin factor I in the expressions above has been defined in Eq. (27). The HJρ-V
1 (1234) is not shown explicitly, since it can

be obtained from HJω-V
1 (1234) by replacing the corresponding meson mass, coupling constants, and isospin factor. The reduced

matrix element of the spherical harmonic operator presented above reads

〈a‖YL‖b〉 = (−1) jb+ 1
2

ĵa ĵb√
4π

CL0
ja− 1

2 jb
1
2 10, (C9)

provided that la + lb + L is even, and zero otherwise. The reduced matrix element of the vector spherical harmonic operator
is given in Eq. (26). Besides, one should notice that the spherical harmonic spinors |a〉 and |a′〉 have the same total angular
momentum ja, but different orbital ones la and la′ which satisfy the relationship la + la′ = 2 ja.
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[54] T. Nikšić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66,

519 (2011).
[55] H. Z. Liang, J. Meng, and S. G. Zhou, Phys. Rep. 570, 1

(2015).
[56] J. Meng, ed., Relativistic Density Functional for Nuclear

Structure, International Review of Nuclear Physics, Vol. 10
(World Scientific, Singapore, 2016).

[57] X. W. Xia, Y. Lim, P. W. Zhao, H. Z. Liang, X. Y. Qu, Y. Chen,
H. Liu, L. F. Zhang, S. Q. Zhang, Y. Kim, and J. Meng, At Data
Nucl Data Tables 121-122, 1 (2018).

[58] S. Shen, H. Liang, W. H. Long, J. Meng, and P. Ring, Prog.
Part. Nucl. Phys. 109, 103713 (2019).

[59] A. Bouyssy, J. F. Mathiot, N. Van Giai, and S. Marcos, Phys.
Rev. C 36, 380 (1987).

[60] W. H. Long, N. Van Giai, and J. Meng, Phys. Lett. B 640, 150
(2006).

[61] W. H. Long, H. Sagawa, N. V. Giai, and J. Meng, Phys. Rev.
C 76, 034314 (2007).

[62] W. H. Long, H. Sagawa, J. Meng, and N. Van Giai, Europhys.
Lett. 82, 12001 (2008).

[63] L. J. Wang, J. M. Dong, and W. H. Long, Phys. Rev. C 87,
047301 (2013).

[64] L. J. Jiang, S. Yang, J. M. Dong, and W. H. Long, Phys. Rev.
C 91, 025802 (2015).

[65] L. J. Jiang, S. Yang, B. Y. Sun, W. H. Long, and H. Q. Gu,
Phys. Rev. C 91, 034326 (2015).

[66] P. Bernardos, V. N. Fomenko, N. V. Giai, M. L. Quelle, S.
Marcos, R. Niembro, and L. N. Savushkin, Phys. Rev. C 48,
2665 (1993).

[67] S. Marcos, L. N. Savushkin, V. N. Fomenko, M. López-
Quelle, and R. Niembro, J. Phys. G: Nucl. Part. Phys. 30, 703
(2004).

[68] W. H. Long, P. Ring, N. Van Giai, and J. Meng, Phys. Rev. C
81, 024308 (2010).

[69] W. H. Long, T. Nakatsukasa, H. Sagawa, J. Meng, H. Nakada,
and Y. Zhang, Phys. Lett. B 680, 428 (2009).

[70] J. J. Li, J. Margueron, W. H. Long, and N. Van Giai, Phys. Lett.
B 753, 97 (2016).

[71] H. Z. Liang, N. Van Giai, and J. Meng, Phys. Rev. Lett. 101,
122502 (2008).

[72] H. Z. Liang, P. W. Zhao, and J. Meng, Phys. Rev. C 85, 064302
(2012).

[73] Z. M. Niu, Y. F. Niu, H. Z. Liang, W. H. Long, and J. Meng,
Phys. Rev. C 95, 044301 (2017).

[74] B. Y. Sun, W. H. Long, J. Meng, and U. Lombardo, Phys. Rev.
C 78, 065805 (2008).

[75] W. H. Long, B. Y. Sun, K. Hagino, and H. Sagawa, Phys. Rev.
C 85, 025806 (2012).

[76] Q. Zhao, B. Y. Sun, and W. H. Long, J. Phys. G: Nucl. Part.
Phys. 42, 095101 (2015).

[77] Z. W. Liu, Z. Qian, R. Y. Xing, J. R. Niu, and B. Y. Sun, Phys.
Rev. C 97, 025801 (2018).

[78] Z. W. Liu, Q. Zhao, and B. Y. Sun, arXiv:1809.03837.
[79] J. J. Li, W. H. Long, J. Margueron, and N. Van Giai, Phys. Lett.

B 788, 192 (2019).
[80] W. H. Long, H. Sagawa, J. Meng, and N. Van Giai, Phys. Lett.

B 639, 242 (2006).
[81] J. Geng, J. J. Li, W. H. Long, Y. F. Niu, and S. Y. Chang, Phys.

Rev. C 100, 051301(R) (2019).
[82] W. H. Long, P. Ring, J. Meng, N. Van Giai, and C. A.

Bertulani, Phys. Rev. C 81, 031302(R) (2010).
[83] H. Z. Liang, P. W. Zhao, P. Ring, X. Roca-Maza, and J. Meng,

Phys. Rev. C 86, 021302(R) (2012).
[84] R. Machleidt, Advances in Nuclear Physics, edited by J. W.

Negele and E. Vogt (Springer, Boston, MA, 1989), Vol. 19,
pp. 189–376.

[85] Z. Wang, Q. Zhao, H. Liang, and W. H. Long, Phys. Rev. C
98, 034313 (2018).

[86] H. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48
(1935).

064306-16

https://doi.org/10.1103/PhysRevLett.95.232502
https://doi.org/10.1103/PhysRevLett.95.232502
https://doi.org/10.1103/PhysRevLett.95.232502
https://doi.org/10.1103/PhysRevLett.95.232502
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevC.58.3761
https://doi.org/10.1103/PhysRevC.58.3761
https://doi.org/10.1103/PhysRevC.58.3761
https://doi.org/10.1103/PhysRevC.58.3761
https://doi.org/10.1103/PhysRevLett.92.162501
https://doi.org/10.1103/PhysRevLett.92.162501
https://doi.org/10.1103/PhysRevLett.92.162501
https://doi.org/10.1103/PhysRevLett.92.162501
https://doi.org/10.1103/PhysRevC.55.2909
https://doi.org/10.1103/PhysRevC.55.2909
https://doi.org/10.1103/PhysRevC.55.2909
https://doi.org/10.1103/PhysRevC.55.2909
https://doi.org/10.1103/PhysRevC.85.064606
https://doi.org/10.1103/PhysRevC.85.064606
https://doi.org/10.1103/PhysRevC.85.064606
https://doi.org/10.1103/PhysRevC.85.064606
https://doi.org/10.1103/PhysRevLett.121.242501
https://doi.org/10.1103/PhysRevLett.121.242501
https://doi.org/10.1103/PhysRevLett.121.242501
https://doi.org/10.1103/PhysRevLett.121.242501
https://doi.org/10.1016/j.ppnp.2014.01.006
https://doi.org/10.1016/j.ppnp.2014.01.006
https://doi.org/10.1016/j.ppnp.2014.01.006
https://doi.org/10.1016/j.ppnp.2014.01.006
https://doi.org/10.1103/RevModPhys.92.015002
https://doi.org/10.1103/RevModPhys.92.015002
https://doi.org/10.1103/RevModPhys.92.015002
https://doi.org/10.1103/RevModPhys.92.015002
https://doi.org/10.1103/PhysRevC.83.054316
https://doi.org/10.1103/PhysRevC.83.054316
https://doi.org/10.1103/PhysRevC.83.054316
https://doi.org/10.1103/PhysRevC.83.054316
https://doi.org/10.1103/PhysRevC.83.064306
https://doi.org/10.1103/PhysRevC.83.064306
https://doi.org/10.1103/PhysRevC.83.064306
https://doi.org/10.1103/PhysRevC.83.064306
https://doi.org/10.1016/j.physletb.2014.02.001
https://doi.org/10.1016/j.physletb.2014.02.001
https://doi.org/10.1016/j.physletb.2014.02.001
https://doi.org/10.1016/j.physletb.2014.02.001
https://doi.org/10.1103/PhysRevLett.105.072501
https://doi.org/10.1103/PhysRevLett.105.072501
https://doi.org/10.1103/PhysRevLett.105.072501
https://doi.org/10.1103/PhysRevLett.105.072501
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1016/j.physletb.2009.03.077
https://doi.org/10.1016/j.physletb.2009.03.077
https://doi.org/10.1016/j.physletb.2009.03.077
https://doi.org/10.1016/j.physletb.2009.03.077
https://doi.org/10.1103/PhysRevC.79.041301
https://doi.org/10.1103/PhysRevC.79.041301
https://doi.org/10.1103/PhysRevC.79.041301
https://doi.org/10.1103/PhysRevC.79.041301
https://doi.org/10.1103/PhysRevC.84.044329
https://doi.org/10.1103/PhysRevC.84.044329
https://doi.org/10.1103/PhysRevC.84.044329
https://doi.org/10.1103/PhysRevC.84.044329
https://doi.org/10.1103/PhysRevC.75.064311
https://doi.org/10.1103/PhysRevC.75.064311
https://doi.org/10.1103/PhysRevC.75.064311
https://doi.org/10.1103/PhysRevC.75.064311
https://doi.org/10.1016/j.physletb.2007.01.033
https://doi.org/10.1016/j.physletb.2007.01.033
https://doi.org/10.1016/j.physletb.2007.01.033
https://doi.org/10.1016/j.physletb.2007.01.033
https://doi.org/10.1103/PhysRevC.76.014312
https://doi.org/10.1103/PhysRevC.76.014312
https://doi.org/10.1103/PhysRevC.76.014312
https://doi.org/10.1103/PhysRevC.76.014312
https://doi.org/10.1103/PhysRevC.99.034322
https://doi.org/10.1103/PhysRevC.99.034322
https://doi.org/10.1103/PhysRevC.99.034322
https://doi.org/10.1103/PhysRevC.99.034322
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.physrep.2014.12.005
https://doi.org/10.1016/j.physrep.2014.12.005
https://doi.org/10.1016/j.physrep.2014.12.005
https://doi.org/10.1016/j.physrep.2014.12.005
https://doi.org/10.1016/j.adt.2017.09.001
https://doi.org/10.1016/j.adt.2017.09.001
https://doi.org/10.1016/j.adt.2017.09.001
https://doi.org/10.1016/j.adt.2017.09.001
https://doi.org/10.1016/j.ppnp.2019.103713
https://doi.org/10.1016/j.ppnp.2019.103713
https://doi.org/10.1016/j.ppnp.2019.103713
https://doi.org/10.1016/j.ppnp.2019.103713
https://doi.org/10.1103/PhysRevC.36.380
https://doi.org/10.1103/PhysRevC.36.380
https://doi.org/10.1103/PhysRevC.36.380
https://doi.org/10.1103/PhysRevC.36.380
https://doi.org/10.1016/j.physletb.2006.07.064
https://doi.org/10.1016/j.physletb.2006.07.064
https://doi.org/10.1016/j.physletb.2006.07.064
https://doi.org/10.1016/j.physletb.2006.07.064
https://doi.org/10.1103/PhysRevC.76.034314
https://doi.org/10.1103/PhysRevC.76.034314
https://doi.org/10.1103/PhysRevC.76.034314
https://doi.org/10.1103/PhysRevC.76.034314
https://doi.org/10.1209/0295-5075/82/12001
https://doi.org/10.1209/0295-5075/82/12001
https://doi.org/10.1209/0295-5075/82/12001
https://doi.org/10.1209/0295-5075/82/12001
https://doi.org/10.1103/PhysRevC.87.047301
https://doi.org/10.1103/PhysRevC.87.047301
https://doi.org/10.1103/PhysRevC.87.047301
https://doi.org/10.1103/PhysRevC.87.047301
https://doi.org/10.1103/PhysRevC.91.025802
https://doi.org/10.1103/PhysRevC.91.025802
https://doi.org/10.1103/PhysRevC.91.025802
https://doi.org/10.1103/PhysRevC.91.025802
https://doi.org/10.1103/PhysRevC.91.034326
https://doi.org/10.1103/PhysRevC.91.034326
https://doi.org/10.1103/PhysRevC.91.034326
https://doi.org/10.1103/PhysRevC.91.034326
https://doi.org/10.1103/PhysRevC.48.2665
https://doi.org/10.1103/PhysRevC.48.2665
https://doi.org/10.1103/PhysRevC.48.2665
https://doi.org/10.1103/PhysRevC.48.2665
https://doi.org/10.1088/0954-3899/30/6/002
https://doi.org/10.1088/0954-3899/30/6/002
https://doi.org/10.1088/0954-3899/30/6/002
https://doi.org/10.1088/0954-3899/30/6/002
https://doi.org/10.1103/PhysRevC.81.024308
https://doi.org/10.1103/PhysRevC.81.024308
https://doi.org/10.1103/PhysRevC.81.024308
https://doi.org/10.1103/PhysRevC.81.024308
https://doi.org/10.1016/j.physletb.2009.09.034
https://doi.org/10.1016/j.physletb.2009.09.034
https://doi.org/10.1016/j.physletb.2009.09.034
https://doi.org/10.1016/j.physletb.2009.09.034
https://doi.org/10.1016/j.physletb.2015.12.004
https://doi.org/10.1016/j.physletb.2015.12.004
https://doi.org/10.1016/j.physletb.2015.12.004
https://doi.org/10.1016/j.physletb.2015.12.004
https://doi.org/10.1103/PhysRevLett.101.122502
https://doi.org/10.1103/PhysRevLett.101.122502
https://doi.org/10.1103/PhysRevLett.101.122502
https://doi.org/10.1103/PhysRevLett.101.122502
https://doi.org/10.1103/PhysRevC.85.064302
https://doi.org/10.1103/PhysRevC.85.064302
https://doi.org/10.1103/PhysRevC.85.064302
https://doi.org/10.1103/PhysRevC.85.064302
https://doi.org/10.1103/PhysRevC.95.044301
https://doi.org/10.1103/PhysRevC.95.044301
https://doi.org/10.1103/PhysRevC.95.044301
https://doi.org/10.1103/PhysRevC.95.044301
https://doi.org/10.1103/PhysRevC.78.065805
https://doi.org/10.1103/PhysRevC.78.065805
https://doi.org/10.1103/PhysRevC.78.065805
https://doi.org/10.1103/PhysRevC.78.065805
https://doi.org/10.1103/PhysRevC.85.025806
https://doi.org/10.1103/PhysRevC.85.025806
https://doi.org/10.1103/PhysRevC.85.025806
https://doi.org/10.1103/PhysRevC.85.025806
https://doi.org/10.1088/0954-3899/42/9/095101
https://doi.org/10.1088/0954-3899/42/9/095101
https://doi.org/10.1088/0954-3899/42/9/095101
https://doi.org/10.1088/0954-3899/42/9/095101
https://doi.org/10.1103/PhysRevC.97.025801
https://doi.org/10.1103/PhysRevC.97.025801
https://doi.org/10.1103/PhysRevC.97.025801
https://doi.org/10.1103/PhysRevC.97.025801
http://arxiv.org/abs/arXiv:1809.03837
https://doi.org/10.1016/j.physletb.2018.11.034
https://doi.org/10.1016/j.physletb.2018.11.034
https://doi.org/10.1016/j.physletb.2018.11.034
https://doi.org/10.1016/j.physletb.2018.11.034
https://doi.org/10.1016/j.physletb.2006.05.065
https://doi.org/10.1016/j.physletb.2006.05.065
https://doi.org/10.1016/j.physletb.2006.05.065
https://doi.org/10.1016/j.physletb.2006.05.065
https://doi.org/10.1103/PhysRevC.100.051301
https://doi.org/10.1103/PhysRevC.100.051301
https://doi.org/10.1103/PhysRevC.100.051301
https://doi.org/10.1103/PhysRevC.100.051301
https://doi.org/10.1103/PhysRevC.81.031302
https://doi.org/10.1103/PhysRevC.81.031302
https://doi.org/10.1103/PhysRevC.81.031302
https://doi.org/10.1103/PhysRevC.81.031302
https://doi.org/10.1103/PhysRevC.86.021302
https://doi.org/10.1103/PhysRevC.86.021302
https://doi.org/10.1103/PhysRevC.86.021302
https://doi.org/10.1103/PhysRevC.86.021302
https://doi.org/10.1103/PhysRevC.98.034313
https://doi.org/10.1103/PhysRevC.98.034313
https://doi.org/10.1103/PhysRevC.98.034313
https://doi.org/10.1103/PhysRevC.98.034313
https://doi.org/10.11429/ppmsj1919.17.0_48
https://doi.org/10.11429/ppmsj1919.17.0_48
https://doi.org/10.11429/ppmsj1919.17.0_48
https://doi.org/10.11429/ppmsj1919.17.0_48


SELF-CONSISTENT RANDOM-PHASE APPROXIMATION … PHYSICAL REVIEW C 101, 064306 (2020)

[87] J. D. Walecka, Ann. Phys. 83, 491 (1974).
[88] W. H. Long, Ph.D. thesis, Peking University, China and Uni-

versité Paris Sud-Paris XI, France (2005).
[89] P. Ring, Z.-Y. Ma, N. Van Giai, D. Vretenar, A. Wandelt, and

L.-G. Cao, Nucl. Phys. A 694, 249 (2001).
[90] P. Ring and P. Schuck, The Nuclear Many-body Problem

(Springer, New York, NY, 1980).
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