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Ambiguity of applying the Wildermuth-Tang rule to estimate the quasibound states
of α particles in α emitters
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The Wildermuth-Tang (WT) prescription is used to verify the Bohr-Sommerfeld (BS) quantization condition
in the α-decay problem. It gives the global quantum number that relates the number of nodes of the quasibound
radial wave function of the α-daughter system to the shell model and Pauli exclusion principle. Here we examine
the applicability of the WT rule in the α-decay microscopic calculations that start with solving the stationary
Schrödinger wave equation for different types of the interaction potentials. We found that applying the BS
quantization condition along with the WT prescription for the potentials that have no internal pocket yields a
large number of nodes in the radial wave function compared to the potentials characterized with an automatic
physical internal pocket, which likely produce nodeless or at most a two-node interior wave function. This gives
confidence in the latter type of the potentials that efficaciously simulates the Pauli principle by considering
the change in the intrinsic kinetic energy. However, it is possible to reproduce the observed half-life data
using the potentials that have no automatic internal pocket with applying the BS quantization condition with
quantum numbers which are significantly less than that obtained from the WT rule, upon properly normalizing
the potential.
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I. INTRODUCTION

The radioactive emission of an α particle is deemed to be
one of the underlying decay channels for heavy and super-
heavy nuclei [1–6]. The interpretation of this decay mode is a
fruitful way to provide substantial information about several
crucial problems in modern nuclear structure and nuclear
astrophysics such as neutron skin thickness [7,8], shell and
pairing effects [9–11], identification of shape staggering [12],
stellar nucleosynthesis [13], and synthesis and decay of super-
heavy elements [3–6,14,15].

Based on fundamental quantum mechanical principles,
Gamow [16] and, independently, Gurney and Condon [17]
described the α-decay process as a preformed α particle
undergoing quantum mechanical tunneling from the decaying
nucleus through an impenetrable barrier. Associated with the
rapid development of experimental facilities, in the past few
decades, α-decay spectra have been measured with improved
accuracy [5,18]. The revival of interest in the α decay is
attributed to the simplicity of its experimental identification
and the wealth of spectroscopic information it provides, which
greatly expands our knowledge on several nuclear structure
properties [4,19]. The challenge is basically to understand
and interpret these experimental data and efficiently formulate
correlations between different observables.
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Several phenomenological and microscopic models have
been developed to describe the α-decay [20] process. These
models fall into three broad categories: empirical formu-
lations [21–25], semiclassical approximations [26–28], and
microscopic models [29–33]. In the adopted framework of the
preformed cluster model, our consideration for the α-decay
process is consistent with the last group which involves the
numerical solution of Schrödinger equation for quasibound
states [30]. The α cluster is assumed to be formed in the parent
nucleus with a definite preformation probability. Once it is
formed, it keeps on assaulting the Coulomb barrier to tunnel
from the nucleus with a certain penetration probability [34].
The penetration probability through the α-daughter potential
barrier can be nicely obtained by calculating the ratio of the
squared transmitted to the squared incident amplitudes of
the wave function [35,36], based on the numerical solution
of the time-independent Schrödinger wave equation in the
relative separation coordinate.

The present study is based on the exact solution of the
relative motion Schrödinger wave equation of the α-daughter
system with the implementation of the Bohr-Sommerfeld
quantization rule, which requires that the action integral to the
system must equal a half-integer times Planck’s constant. It
guarantees that the obtained quasibound state is correct for
the quantization of the energy of a periodic system [27,37].
The eigencharacteristics of the α-cluster quasibound state
can be approximately defined by the Wildermuth-Tang (WT)
prescription [38], which relates an α cluster to the shell
model and accounts for the Pauli exclusion principle [39]. A
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quasibound state of the α cluster orbiting the core is character-
ized by a global quantum number G, whose values are chosen
to ensure that the clusterization of α cluster occurs outside the
shell occupied by the core nucleus [30,39]. The value of the
global quantum number can be determined in terms of WT
rule [30,39].

When the Wildermuth-Tang (WT) rule is applied to verify
the Bohr-Sommerfeld quantization condition in the α-decay
problem, we face ambiguity when different types of interac-
tion potentials are considered. The WT rule is used to find the
global quantum number G, which is related to the number of
nodes (n) of the quasibound radial wave function of the α-
daughter system [27]. This in turn relates n to the shell model
and Pauli exclusion principle [39]. A relatively large number
of nodes n > 2AC was estimated for the calculations based on
the nuclear potentials of no repulsive core, such as the folding
potential based on the M3Y-type NN forces [26,30,40,41], the
proximity potential [42], and the phenomenological Woods-
Saxon [37], “cosh” [43], and “universal” [44] forms of the
potential, and also the potential barriers extracted from the
generalized liquid-drop model [45].

In contrast, when potentials of a repulsive core are con-
sidered, the decaying state would be a zero-node (n = 0)
eigenstate [36,46,47]. This has been interpreted microscopi-
cally and semimicroscopically in many decay studies in terms
of interaction potentials based on the Skyrme energy-density
functional [46], which is specified by a deep internal pocket.
The same situation is also microscopically obtained based
on folding potential in terms of M3Y NN force, which is
improved by a repulsive core due to the change of intrinsic
kinetic energy [36] or using a phenomenological repulsive
core [47,48]. In this study, we try to find the genuine source
of this ambiguity of the value of the quantum number needed
to describe the motion of the emitted α particle around the
internal pocket of the α-daughter potential.

In this regard, we perform a systematic study of the α-
decay process for the ground-state to ground-state favored
decay modes of three isotopic chains, namely the even(Z )–
even (N ) and even-odd radioactive isotopes of tellurium and
polonium, and the odd-even and odd-odd isotopes of asta-
tine. We adopt a few potentials of two different types for
the α-daughter system. These potentials are normalized by
applying the Bohr-Sommerfeld quantization condition, with
and without the Wildermuth-Tang (WT) rule. In general, the
adopted potentials either have no repulsive core, such as
the density-independent M3Y-Paris NN interaction and its
density-dependent CDM3Y-230 form, or have a repulsive
core, such as the improved folding potential [36] and the
potential based on the Skyrme energy-density functional.
The potentials with a repulsive core are more realistic than the
potentials without a repulsive core. For the potential models
with no repulsive core, the effects of the Pauli exclusion
principle and the structure forbiddenness on the preforma-
tion of the α cluster in the parent nucleus are taken into
account by Wildermuth-Tang rule. It is based on the oscillator
shell model, which allows the low-energy nucleons to move
relatively undisturbed throughout the nuclear volume. Based
on the numerical solution of the relative motion Schrödinger
wave equation of the α-core system, we extract the eigen

wave function for each α-decay process characterized with
the Q-value energy. In terms of the calculated penetration
probability P, assaulting frequency ν, and the experimental
half-life (T exp

1/2 ), we extract the preformation probability factor
Sα . The preformation probability has a clear dependence on
the internal part of the potential, due to the effect of Pauli
blocking from the saturated core density that influences the
wave function of the quasibound state for the α-core system.
Through this study, we clarify the ambiguity of applying the
WT rule to describe the α-decay process using the above-
mentioned types of potentials for the α-daughter system.

The paper is organized as follows. Section II gives the rel-
evant details of the theoretical framework used to compute the
interaction potential, the penetration probability, assaulting
frequency, and the preformation probability factor. Section III
is devoted to the numerical results and discussions. The con-
clusions drawn from the present study are given in Sec. IV.

II. THEORETICAL FRAMEWORK

We begin by considering an α cluster interacting with
a core nucleus inside the decaying nucleus, through a mi-
croscopic potential. The radial u�(r) wave function [ψ =
Y�m(θ, φ)u�(r)/r] can be obtained by solving the radial
Schrödinger equation for the dinuclear system,

− h̄2

2μ

d2

dr2
u�(r) +

[
VN (r) + VC (r) + �(� + 1)h̄2

2μr2

]
u�(r)

= E u�(r). (1)

The total α-daughter interaction potential, as the sum of the
attractive potential (VN ) and the repulsive Coulomb potential
(VC) plus the centrifugal part, is written as [49]

VT (r) = λVN (r) + VC (r) + h̄2

2μ

� (� + 1)

r2
. (2)

The Langer modified form of the centrifugal potential, V� =
h̄2

2μ

(�+ 1
2 )

2

r2 , can be safely used with the potentials that have
no repulsive core. In solving the Schrödinger wave equation
for quasibound states of the α-core system, a normalization
factor λ is introduced to the nuclear potential with its direct
and exchange parts to reproduce the quasibound state wave
function characterized by the experimental Q value. This
factor λ is determined through an approximate rule for the
quantization of the energy of a periodic system. This rule
is well known as the Bohr-Sommerfeld (BS) quantization
condition [37], which fulfills the periodicity of particle motion
and ensures that the action integral of the system must equal a
half-integer times Planck’s constant,∫ r2

r1

k(r) dr = (2n + 1)
π

2
. (3)

The wave number is given in terms of the Q value of the
decay as k(r) =

√
2 μ |VT (r) − Q|/h̄2. n defines the number

of nodes of the radial quasibound wave function in its internal
region [27,30]. ri=1,2,3(fm) are the three turning points given
by VT (ri ) = Q, i.e., when the total potential is equal to the Q
value of the decay.
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According to the Pauli exclusion principle, two nucle-
ons cannot occupy the same quantum state, and therefore
the nucleons that make up the α cluster have to be placed
above the Fermi surface of the core nucleons. That is, the α

cluster is formed on the surface of the parent nucleus. This
can be approximately satisfied through the Wildermuth-Tang
rule [38], which restricts the quantum numbers n (i.e., number
of internal nodes) of relative motion to values compatible with
an α cluster consisting of nucleons in shell-model orbitals
above those already occupied by the core nucleons [30,39].
This condition is given in terms of the global quantum number
(G), which relates the number of internal nodes n in the radial
wave function and the orbital angular momentum � of the
relative motion, as

G = 2n + � =
nc∑

i=1

(2ni + �i ) − ḡ. (4)

Here nc gives the number of nucleons forming the cluster. The
values of ni and �i correspond to the filling the shell-model
orbitals above the closed core, and ḡ is the number of quanta
taken up by the cluster internal motion. This condition is valid
for systems in which the core and cluster nucleons move in
oscillator potentials with a common oscillator length.

One can find the penetration probability as the ratio be-
tween the squared amplitude of transmitted wave function
and that of the incident wave function at the beginning of the
Coulomb barrier [35],

P = |A(u�(r � r3))|2
|A(u�(r2))|2 . (5)

This expression offers an accurate microscopic method to
find the penetration probability directly from the obtained
normalized wave function. The amplitude of the transmitted
wave function, Eq. (5), is calculated at a large distance from
the end of the Coulomb barrier [35]. We carefully investigated
the transmitted wave functions up to very large separation
distances and found that the amplitude of the transmitted wave
function reaches its fixed value at distances larger than 900
fm. In the present work, the penetration probability is obtained
in terms of the amplitude of the transmitted wave function at
sufficiently large distance from the end of the Coulomb barrier
(r > 1000 fm), at which the amplitude becomes certainly
constant.

Also, the knocking frequency can be defined as the inverse
time for the light cluster to traverse the distance between r1

and r2, back and forth [27],

ν = T −1 =
[∫ r2

r1

2 μ

h̄ k(r)
dr

]−1

. (6)

The preformation factor Sα could be estimated from the
experimental α-decay half-life time T exp

α , and the calculated
decay width (
 = h̄ ν P) as

Sα = h̄ ln 2


 T exp
α

. (7)

The α-daughter interaction potential is vital in the reliable
calculation of the α-decay width. In our calculations, we com-
pute the nuclear potential microscopically by two methods.

Namely, we consider the generalized double-folding model
based on the realistic density-dependent M3Y-Paris nucleon-
nucleon (NN) interaction [36] with a finite-range exchange
part, and the Skyrme energy density formalism using the
Skyrme-SLy4 effective NN interaction [9]. These trustworthy
potentials are well known for their successful applications
to structure and reaction studies of heavy and superheavy
nuclei. The generalized double-folding nuclear potential with
an explicit treatment of the isospin dependence reads

VN (r) = V D
0 + V Ex

0 + V D
1 + V Ex

1 . (8)

The isoscalar and isovector components of the direct (D)
and exchange (Ex) parts of the nucleus-nucleus potential are
given by [50]

V D
0 (r, E ) =

∫
d�r1

∫
d�r2 ρ1(�r1) υD

00(ρ, E , s) ρ2(�r2),

V Ex
0 (r, E ) =

∫
d�r1

∫
d�r2 ρ1(�r1, �r1 + �s) ρ2(�r2, �r2 − �s)

× υEx
00 (ρ, E , s) exp

[
i �k(r) · �s

M

]
,

V D
1 (r, E ) =

∫
d�r1

∫
d�r2 [ρn1(�r1) − ρp1(�r1)]

× [ρn2(�r2) − ρp2(�r2)]υD
01(ρ, E , s),

V Ex
1 (r, E ) =

∫
d�r1

∫
d�r2 υEx

01 (ρ, E , s) exp

[
i �k(r) · �s

M

]

× [ρn1(�r1, �r1 + �s) − ρp1(�r1, �r1 + �s)]

×[
ρn2(�r2, �r2 − �s) − ρp2(�r2, �r2 − �s)

]
. (9)

While ρ(i=p,n)( j=1,2)(�x, �x′) are the neutron and proton
density distributions of the two interacting nuclei, the
NN separation vector is �s = �r2 − �r1 + �r. Also, we
have ρ1(2) = ρn1(2) + ρp1(2) and M = A1 A2/(A1 + A2).
The relative-motion momentum k is given by k2(r) =
2 μ [Ec.m. − VN (r) − VC (r)]/h̄2. μ defines the reduced mass
of the interacting nuclei. Ec.m. represents the center-of-mass
energy.

The energy- and density-dependent M3Y-Paris NN inter-
action is given in its CDM3Y form as [50]

υ
D(EX)
00(01) (ρ, E , s) = υ

D(EX)
00(01) (s)C0(1) [1 − 0.003 E/A]

× [1 + α exp (−βρ) + γ ρ]. (10)

The radial strengths of the central isoscalar (vD(EX)
00 ) and

isovector (vD(EX)
01 ) direct (D) and exchange (Ex) components

of the M3Y-Paris effective NN interaction were extracted
from the G-matrix elements of the Paris potential [51,52].
The values of the different parameters C0(1), α, β, and γ are
related to the equation of state of nuclear matter that described
by the effective NN interaction [49]. The parameters for the
density-independent M3Y-Paris NN interaction are C0(1) =
1.0, α = β = γ = 0. For the density-dependent CDM3Y-230
Paris NN interaction, we have C = 0.2961, α = 3.4171, β =
2.2333 fm3, and γ = 2.1501 fm3. C1 is usually scaled to C0 by
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a scaling factor [53]. E/A represents the incident energy per
nucleon.

The folding Coulomb potential can be calculated in terms
of the pp Coulomb interaction (υC = e2/s) [54],

VC (r) =
∫∫

ρpα (�r1)
1

|�r + �r2 − �r1| ρpd (�r2)d�r1d�r2. (11)

The proton distributions of the α-particle (ρpα) and the daugh-
ter nucleus (ρpd ) are normalized to 2 e and Zd e, respectively.

Another realistic method we will consider here to calculate
the potential is that based on the Skyrme energy density
functional [9,55,56]. In this method, the nuclear interaction
potential is defined as the difference between the energy
expectation value E of the whole system calculated at a finite
separation distance r and that calculated at infinity,

VN (r) = E (r) − E (∞)

=
∫

H(r)dr −
[∫

H1(r1)dr1 +
∫

H2(r2)dr2

]
.

(12)

Here, E (∞) represents the binding energy of the nucleus
and H(r) is the energy density functional of the Skyrme
interaction [57]. In this work, we use the Skyrme force with
the SLy4 parametrization [58]. The Skyrme-SLy4 NN inter-
action effectively describes the nuclear matter and nuclear
structure properties [59–63]. It is broadly used in studying
nuclear reactions of heavy nuclei [55,64–66] and their de-
cays [9,56,67,68], as well as in investigating core-collapse
supernova [69,70].

We recently improved the folding potential [36] by con-
sidering a physical internal repulsive core due to the change
in the intrinsic kinetic energy of the interacting nuclei. This
enhances the use of the double-folding potential in describing
the reactions and decays involving large density overlap. After
adding the kinetic energy term to the nuclear, Coulomb, and
centrifugal parts of the interaction potential, the total potential
becomes

V K
T (r) = λ EK (r) + VN (r) + VC (r) + �(� + 1)h̄2

2μr2
. (13)

The folding potential improved by considering a repulsive
core of different forms has been successfully used to study
the fusion reactions, electromagnetic transitions, and decays
of heavy nuclei [36,47,48,71–73]. More details regarding the
method of calculating the interaction potential in the frame-
work of the double-folding model and the Skyrme energy
density functional can be found in Refs. [9,36,50,54,74].

III. RESULTS AND DISCUSSION

To achieve a successful description of α decay, it is
necessary to use an appropriate potential model for the
α-core interaction. We consider the α-decay process
for the even (Z)–even (N) and even-odd 105–109Te
and 186,190,191,194–199,200−202,204–208,210,212–216,218,219Po
radioactive nuclei, and for the odd-even and odd-odd
204,207,209,211,213–219At isotopes. The half-life calculations
are microscopically performed in terms of the obtained wave

function of the binary α-core system. Two types of realistic
potentials are considered. The first type is characterized
by a shallow core where no internal pocket is formed,
while the second type possesses an internal pocket in its
internal region. We investigate the method of applying the
Bohr-Sommerfeld (BS) quantization condition to normalize
the different considered potentials, either with or without
using the WT rule.

We start with the α-decay process of the 105–109Te isotopes.
Such nuclei with N ≈ Z are usually used to study the neutron-
proton correlation [75,76]. Shown in Fig. 1(a) is the total in-
teraction potential for the (α, 101Sn) system, which is involved
in the α decay of the 105Te isotope (Qα = 5.069 MeV). In
Fig. 1(a), the nuclear potential part is calculated based on
the density-independent M3Y-Paris force and on its density-
dependent CDM3Y-230 form. Figure 1(a) shows that the
M3Y-Paris NN interaction yields deeper total potential in the
internal interaction region, compared with the CDM3Y-230
form. Also, the density-dependent CDM3Y-230 interaction
slightly lowers the Coulomb barrier height. Without adding
the modified centrifugal potential, this kind of potential will
not show an internal pocket. So, the correct description of the
BS quantization condition to a quasibound state will not be
reached. We added in Fig. 1(a) the normalized potentials after
adding V� (Langer) and using the BS condition along with
WT rule (G = 16, n = 8). Artificial internal pockets are then
appeared for the normalized potentials in Fig. 1(a). Figure 1(b)
shows the α + 101Sn total interaction potential based on the
Skyrme-SLy4 interaction, with and without normalization.
Added in the same figure is the folding potential based on
the density-dependent CDM3Y-230 Paris interaction, which
is improved by considering the repulsive intrinsic kinetic
energy. The Skyrme nuclear part of the potential and the
kinetic energy part of the improved folding potential are both
normalized using the BS quantization condition. These two
potentials are characterized by a repulsive core and a physical
internal deep pocket.

Once we obtain the normalized total potential for the
α-core system, we implement it in the Schrödinger wave
equation. We apply the BS quantization condition once more
to obtain the correct wave function for the α-core system.
Figures 2(a) and 2(b) show the solution of the real part of the
radial wave function for the (α, 101Sn) system, based on the
normalized M3Y-Paris potential and on its density-dependent
CDM3Y-230 form, respectively. The normalized potentials
are shown in the corresponding panels. For these types of
potentials that have no physical internal pocket, the effect
of the Pauli exclusion principle is taken into account by the
WT rule [38]. Because we used the same normalization (λ)
obtained in terms of the quantum numbers from the WT rule
(G = 16, n = 8), the interior real part of the obtained wave
functions exhibits eight nodes for the (α, 101Sn) system, as
shown in Figs. 2(a) and 2(b). The experimental half-life of
105Te [77] along with the assault frequency and the penetration
probability, obtained using the wave functions based on the
M3Y-Paris and CDM3Y-230 potentials, yield spectroscopic
factors Sα [Eq. (7)] of 0.016 and 0.005, respectively. The
estimated value of Sα(M3Y) is larger than Sα (CDM3Y-230)
in most cases. This is expected since the obtained Coulomb
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(a) (b)

FIG. 1. The separation distance variation of the α + 101Sn total interaction potential in the framework of (a) the double-folding
model, based on the density-independent M3Y-Paris NN interaction and its CDM3Y-230-Paris density-dependent form, with and without
normalization using the BS + WT quantization conditions after adding Langer centrifugal part, and (b) the total potential based on the improved
double-folding potential based on the CDM3Y-230-Paris interaction with the repulsive intrinsic kinetic energy that is normalized using the
BS quantization, and the potential based on the Skyrme-SLy4 force in the framework of the energy density formalism, with and without BS
normalization.

barrier based on the M3Y-Paris interaction is wider and
has larger height than that based on the density-dependent
CDM3Y-230 one. On the other hand, the internal pocket ob-
tained based on the former interaction is deeper and a bit nar-
rower. This decreases the penetration probability and slightly
increases the assault frequency based on the M3Y interaction.
In most cases, this yields larger spectroscopic factor compared
with that based on the density-dependent CDM3Y-230 force.
For the total interaction potential based on the Skyrme energy-
density formalism, which is distinguished by a physical inter-
nal pocket even without normalization, we obtained nodeless
interior wave function for the (α, 101Sn) system, as shown
in Fig. 2(c). In a similar way, the calculations based on the
improved folding potential [Fig. 1(b)] also produced nodeless
wave function, as depicted in Fig. 2(d). The BS quantization
condition with n = 0 has been used to normalize both the
nuclear Skyrme potential and the kinetic energy part of the
improved folding potential. The calculations performed using
the wave functions based on the Skyrme-SLy4 potential and
on the improved folding potential yielded spectroscopic factor
values of 0.022 and 0.004, respectively.

However, when we apply the BS quantization condition for
the potentials that have no internal pocket, we obtain a large
number of nodes compared with the potentials characterized
with a physical internal pocket. This is because the depth
of the first type of potentials has to be adjusted through
a convenient large quantum number for the lowest relative
motion state to satisfy the Pauli exclusion principle. This takes
place using the WT recipe that links the harmonic-oscillator
cluster model and the harmonic oscillator shell model [38,78].
On the other hand, the repulsive part due to considering
the change of the intrinsic kinetic energy for the potentials
that characterized by an internal pocket effectively simulates
the Pauli principle. This automatically takes into account the

structure forbiddenness impacts [79] on the formed α cluster,
not to move toward the center of the core nucleus. In this case,
satisfying the Pauli principle using a large quantum number
based on the WT prescription is obviously an improper repeti-
tion. Using the WT rule in this case yields extreme unphysical
values of the normalization factor, to repeal the kinetic energy
part.

For the ground-state to ground-state α decays of the
105–109Te isotopes, we display in Fig. 3 the spectroscopic
preformation factor Sα as extracted using Eq. (7). The BS
quantization condition is applied to normalize the different
considered potentials, with different global quantum numbers.
The wave functions obtained upon the different normaliza-
tions of the considered potentials possess numbers of nodes
ranging from n = 3 to n = 11, which is greater than the
number given by the WT prescription (G = 16, n = 8). We
show in Figs. 3(a) and 3(b) the calculations based on the M3Y-
Paris NN interaction and on its density-dependent CDM3Y-
230 form, respectively. The calculations performed using
the Skyrme-SLy4 potential and using the improved folding
potential are displayed in Figs. 3(c) and 3(d), respectively.

Figures 3(a) and 3(b) show that the calculations based
on the M3Y force and on its density-dependent form, with
applying the BS quantization along with the WT rule, yield
Sα of the order of 10−1 to 10−3. Applying the BS quantization
with different quantum number values starting from n = 3 and
up to n > nW T yield Sα of the same orders. nW T is the nodes
number obtained from the WT rule. For these potentials, λ

approaches unity for the large number of nodes (n ≈ 11)
and decreases with decreasing n. Increasing λ increases the
attractive nuclear part of the potential. Thus, the penetration
probability increases with increasing both λ and the num-
ber of nodes, upon decreasing the width of the Coulomb
barrier (r3 − r2) and lowering its height. Also, the assault
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(a) (b)

(c) (d)

FIG. 2. The internal and external (magnified by 106) real part of the quasibound wave function ul = 0 as obtained by solving the time-
independent Schrödinger equation of the 105Te (α + 101Sn, E = Qα = 5.069 MeV [87]) system in its ground state based on (a) the density-
independent M3Y-Paris and (b) the density-dependent CDM3Y-230-Paris, which are normalized using the BS + WT quantization conditions,
and (c) the Skyrme-SLy4 force and (d) the improved folding potential in terms of the CDM3Y-230-Paris interaction plus normalized intrinsic
kinetic energy (EK ), which are normalized using the BS quantization condition. The potentials are shown by the red lines.

frequency slightly increases due to increasing the depth of
the internal pocket, even with increasing its width (r2 − r1).
Consequently, the estimated spectroscopic factor [Eq. (7)]
decreases with increasing number of nodes, upon increasing
the decay width. This systematic behavior of Sα (M3Y) and Sα

(CDM3Y-230) with n is clearly appear in Figs. 3(a) and 3(b),
respectively. A precaution which should be mentioned here
is that calculating the amplitude of the transmitted wave
function at a shorter distance from the third turning point and
before reaching its constant value may lead to a deviation of
some estimated values of Sα from its anticipated systematic
behavior with n. This is because the obtained transmitted wave
function and its amplitude are correlated with the internal
wave function, where they are normalized together. Hence, not
only the characteristic properties of the Coulomb barrier but
also the depth and width of the internal pocket of the potential
influence the transmitted wave function and its amplitude,

which is used to find the penetration probability. However,
the different extracted values of Sα (n = 3 to nW T ) are in
good agreement with those obtained in other studies based
on different models [75,76,80,81], as shown in Figs. 3(a)
and 3(b). The calculations based on n > nW T indicate some-
what smaller values of Sα . On the other hand, the calculations
based on the M3Y-Paris and the CDM3Y-230 potentials with
n � 2 yield unrealistic values of Sα > 1, due to the disturbing
reduction of the nuclear part of the potential with λ � 0.22.
It is then possible to calculate precisely the decay half-life
using the potentials that have no automatic internal pocket
by applying the BS quantization even with smaller quantum
numbers than that obtained from the WT rule.

Regarding the nuclear potentials characterized with an
automatic internal pocket, the calculations based on such
potentials yield convenient values of Sα , upon applying the
BS quantization with n � 3 for the Skyrme-SLy4 potential
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(a) (b)

(c) (d)

(e)

FIG. 3. The spectroscopic preformation factor of the ground-state to ground-state α decays of the 105–109Te isotopes, on a logarithmic scale,
as estimated using Eq. (7) from the experimental half-life [77], and the assault frequency and penetration probability that microscopically
calculated in terms of the wave functions obtained using the normalized α-daughter interaction potential based on (a) the density-independent
M3Y-Paris, (b) the density-dependent CDM3Y-230-Paris, (c) the Skyrme-SLy4 force, and (d) the improved folding potential in terms of the
CDM3Y-230-Paris interaction plus intrinsic kinetic energy, against the mass number of parent nuclei. Different numbers of nodes (n) are
considered to normalize each examined potential using the BS quantization condition. Results from previous studies, Seif 2017 [75], Wang
2014 [76], Mohr 2007 [80], and Sun 2017 [81], based on different models, are added for comparison. (e) Sα based on the different potentials
considered in panels (a)–(d), with the minimum and maximum numbers of nodes considered for these potentials as well as with n = nW T for
the M3Y and CDM3Y-230 potentials, but the penetration probability is calculated using the WKB approximation.
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(a) (b)

(c) (d)

FIG. 4. Same as Fig. 3, but for the even-even and even-odd 186,190,191,194–199,200–202,204–208,210,212–216,218,219Po α emitters. Results from previous
studies, Seif 2013 [56], Pei 2007 [82], Ismail 2013 [83], Deng 2017 [84], and Deng 2018 [85], based on different models, are added for
comparison.

[Fig. 3(c)] and with n � 2 for the improved folding potential
[Figs. 3(d)]. For n = 0, the normalization factor is ranged
between 0.888 and 0.943 for the potential based on the
Skyrme-SLy4 interaction. λ increases upon increasing n. The
larger values of n imply extremely large values of λ > 2.
With such large values of λ, the bottom of the internal pocket
becomes above the Qα value, and then no first turning point
is obtained. For the calculations based on the Skyrme-SLy4
(EK+CDM3Y-230 Paris) potential, the calculations based
on n = 0 (n = 2) wave functions yield the most consistent
values of Sα , compared with that obtained in previous stud-
ies [75,76,80,81].

To confirm our conclusions from Figs. 3(a)–3(d), we show
in Fig. 3(e) the calculations based on the different poten-
tials considered in Figs. 3(a)–3(d), but with the penetration
probability is calculated using the Wentzel-Kramers-Brillouin
(WKB) method [27,28,67] instead of using the ratio between
the squared amplitudes [Eq. (5)]. In Fig. 3(e), we show the
calculation based on the minimum and maximum number of
nodes considered in the calculations displayed in Figs. 3(a)–
3(d), for each potential. Also the calculations based on n =
nW T for the M3Y and CDM3Y-230 potentials are presented in
Fig. 3(e). Comparing Fig. 3(e) with the corresponding curves

in Figs. 3(a)–3(d), one sees that the estimated preformation
factors based on the two methods used to calculate penetration
probability manifest typical orders of magnitude and display
similar behavior patterns with n. This confirms that we can
successfully reproduce the observed half-lives via applying
the BS quantization condition with significantly smaller quan-
tum numbers than that obtained from the WT prescription,
even based on the potentials of no automatic internal pocket.

Regarding the favorite ground-state to ground-state
α decays of the heavy even-even and even-odd
186,190,191,194–199,200–202,204–208,210,212–216,218,219Po isotopes,
Fig. 4 shows the spectroscopic factor estimated from
the experimental half-lives along with the calculations
based on the different considered potentials. The extracted
Sα for the odd-even and odd-odd 204,207,209,211,213–219At
isotopes are displayed in Fig. 5. While the WT prescription
estimates G = 20 (n = 10) for the α cluster inside the
186–210Po and 204–211At nuclei, it estimates G = 22 (n =
11) for the heavier isotopes of Po and At. As shown in
Figs. 4(a), 4(b), 5(a), and 5(b), the calculations based on the
M3Y force and on its density-dependent form and applying
the BS quantization with n = nW T down to n = 5 yield Sα of
the order of 10−1 to 10−3. All these calculations reproduce
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(a) (b)

(c) (d)

FIG. 5. Same as Fig. 3, but for the odd-even and odd-odd 204,207,209,211,213–219At α emitters. Results from previous studies, Seif 2015 [9],
Deng 2018 [85], and Sun 2016 [86], based on different models, are added for comparison.

the experimental half-lives, for the two isotopic chains of
Po and At, with comparable values of Sα . However, the
estimated values of Sα (n = 5–9) show the best agreement
with the values obtained in previous studies for the decays
of Po [56,82–85] and At [9,85,86] nuclei, based on various
models. For the density-independent M3Y-Paris interaction,
the normalization factor λ for the calculations presented in
Figs. 3(a), 4(a), and 5(a) upon applying the BS condition
along with WT rule lies in the range of λ = 0.693–0.983.
After adding the density-dependence (CDM3Y-230-Paris)
in Figs. 3(b), 4(b), and 5(b), λ increases to be in the range
from 0.780 to 1.098. This means that the density-dependent
force expresses the NN interaction more appropriately than
its density-independent form. In both cases, λ decreases with
decreasing n, down to λ(n = 3) = 0.25 for the calculations
presented in Figs. 3(a) and 3(b) and to λ(n = 5) = 0.33 for
the calculations presented in Figs. 4(a), 4(b), 5(a), and 5(b).
Such small values of λ weaken the role of the nuclear
potential in favor of the Coulomb potential. Any further
reduction of the nuclear part with smaller λ values yields
unrealistic values of Sα > 1. The conclusion that can be
drawn from Figs. 3(a), 3(b), 4(a), 4(b), 5(a), and 5(b) is that
we can explain the decay process using potentials with no
physical internal pocket by applying the BS quantization even

with quantum numbers less than those obtained from the WT
prescription, down to nW T − 5.

On the other hand, the calculations based on the Skyrme-
SLy4 interaction and on the improved folding potentials give
reasonable values of Sα for the considered nuclei [40,56,82–
86] with n � 2, as seen in Figs. 4(c), 4(d), 5(c), and 5(d).
Like the results obtained above for the Te isotopes, the
calculations performed in terms of n = 0 and n = 2 wave
functions based on the Skyrme-SLy4 and EK+CDM3Y230
Paris potentials, respectively, yield the most consistent val-
ues of Sα , when compared with that extracted in previous
studies [9,56,82–86]. Concerning the Skyme-SLy4 potentials,
the normalization factor λ for the calculations presented in
Figs. 3(c), 4(c), and 5(c) obtained by applying the BS con-
dition lies in the ranges of λ(n = 0) = 0.888–1.092, λ(n =
1) = 1.305–1.506, λ(n = 2) = 1.707–1.949, and λ(n = 3) =
2.053–2.538. Here, the smaller values of λ are more credible
where the large values are relatively greater than the uncer-
tainty expected [55] in calculating the potentials based on the
Skyrme interactions. The larger values of n > 2 (n > 3 for the
medium-mass nuclei) require larger values of λ. This in turn
rises the lowest point of the internal pocket above Qα , and
then we get no internal (first) turning point. For the improved
folding potentials with the added intrinsic EK , λ(EK ) exhibits
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the values range of λ(n = 0, 1, 2) = 1.480–1.876, for the
calculations displayed in Figs. 3(d), 4(d), and 5(d).

IV. SUMMARY AND CONCLUSIONS

We have investigated the implementation of the Bohr-
Sommerfeld quantization condition with and without the
Wildermuth-Tang prescription in the microscopic α-decay
calculations based on different interaction potentials. The
favored ground-state to ground-state α decays of the even (Z)–
even (N) and even-odd isotopes of tellurium and polonium,
and the odd-even and odd-odd astatine isotopes are consid-
ered. Two types of realistic potentials for the α-daughter
system have been considered, according to if they are charac-
terized by a repulsive core or not. The adopted potentials have
been normalized by applying the BS quantization condition,
with and without the WT rule, and then implemented in the
stationary Schrödinger equation to determine the internal and
transmitted wave functions of the α-daughter system. We
investigated the sensitivity of the calculated half-lives to the
used potential type and to the number of nodes of the obtained
wave function and its corresponding quantum numbers. We
found that when we apply the BS quantization condition for

the potentials that have no internal pocket we obtain interior
wave function with a large number of nodes compared to the
potentials characterized with an automatic internal pocket.
The latter likely yield nodeless interior wave function, or of
single or double nodes. This is because the former type of the
potentials are normalized so as to give a depth that is chosen
by appropriately large node numbers of the lowest relative
motion state complying with the Pauli exclusion principle.
This is given by relating the harmonic-oscillator cluster model
with the harmonic-oscillator shell model through the WT
rule. On the other hand, the repulsive core due to the change
of the intrinsic kinetic energy in the potentials depicted by
an automatic physical pocket effectively deems the Pauli
principle and the structure forbiddenness influences against
the movement of the formed α-cluster toward the saturated-
density core. For such potentials, verifying the Pauli principle
through the WT recipe is a matter of erroneous repetition.
Even so, upon a proper normalization of the potential that do
not exhibit subjective internal pocket, we can microscopically
verify the observed half-lives by applying the BS quantization
condition with significantly smaller quantum numbers than
those obtained from the WT rule.

[1] N. T. Brewer, V. K. Utyonkov, K. P. Rykaczewski, Y. T.
Oganessian, F. S. Abdullin, R. A. Boll, D. J. Dean, S. N.
Dmitriev, J. G. Ezold, L. K. Felker et al., Phys. Rev. C 98,
024317 (2018).

[2] Y. T. Oganessian and K. P. Rykaczewski, Phys. Today 68(8), 32
(2015).

[3] Y. T. Oganessian and V. K. Utyonkov, Rep. Prog. Phys. 78,
036301 (2015).

[4] Y. T. Oganessian, F. S. Abdullin, P. D. Bailey, D. E. Benker,
M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R.
A. Henderson, M. G. Itkis et al., Phys. Rev. Lett. 104, 142502
(2010).

[5] S. Hofmann and G. Munzenberg, Rev. Mod. Phys. 72, 733
(2000).

[6] M. Ismail and A. Adel, J. Phys. G: Nucl. Part. Phys. 46, 075105
(2019).

[7] W. M. Seif, N. V. Antonenko, G. G. Adamian, and H. Anwer,
Phys. Rev. C 96, 054328 (2017).

[8] D. Ni and Z. Ren, Phys. Rev. C 92, 054322 (2015).
[9] W. M. Seif, Phys. Rev. C 91, 014322 (2015).

[10] M. Ismail, W. M. Seif, A. Adel, and A. Abdurrahman, Nucl.
Phys. A 958, 202 (2017).

[11] M. Ismail, A. Y. Ellithi, M. M. Botros, and A. Adel, Phys. Rev.
C 81, 024602 (2010).

[12] A. N. Andreyev, M. Huyse, P. Van Duppen, J. F. C. Cocks,
K. Helariutta, H. Kettunen, P. Kuusiniemi, M. Leino, W. H.
Trzaska, K. Eskola, and R. Wyss, Phys. Rev. Lett. 82, 1819
(1999).

[13] H. O. U. Fynbo, C. A. Diget, U. C. Bergmann, M. J. G.
Borge, J. Cederkäll, P. Dendooven, L. M. Fraile, S. Franchoo,
V. N. Fedosseev, B. R. Fulton et al., Nature (London) 433, 136
(2005).

[14] W. M. Seif, H. Anwer, and A. R. Abdulghany, Ann. Phys. 401,
149 (2019).

[15] M. Ismail and A. Adel, Phys. Rev. C 97, 044301 (2018).
[16] G. Gamow, Z. Physik 51, 204 (1928)
[17] R. W. Gurney and E. U. Condon, Nature (London) 122, 439

(1928).
[18] L. Ghys, A. N. Andreyev, M. Huyse, P. Van Duppen, S. Antalic,

A. Barzakh, L. Capponi, T. E. Cocolios, J. Cubiss, X. Derkx
et al., Phys. Rev. C 100, 054310 (2019).

[19] J. G. Cubiss, A. N. Andreyev, A. E. Barzakh, B. Andel, S.
Antalic, T. E. Cocolios, T. D. Goodacre, D. V. Fedorov, V. N.
Fedosseev, R. Ferrer et al., Phys. Rev. C 99, 064317 (2019).

[20] D. S. Delion, Theory of Particle and Cluster Emission (Springer-
Verlag, Berlin, 2010).

[21] V. E. Viola and G. T. Seaborg, J. Inorg. Nucl. Chem. 28, 741
(1966).

[22] G. Royer and H. F. Zhang, Phys. Rev. C 77, 037602 (2008).
[23] Y. Ren and Z. Ren, Phys. Rev. C 85, 044608 (2012).
[24] C. Qi, F. R. Xu, R. J. Liotta, R. Wyss, M. Y. Zhang, C.

Asawatangtrakuldee, and D. Hu, Phys. Rev. C 80, 044326
(2009).

[25] J. Dong, H. Zhang, Y. Wang, W. Zuo, and J. Li, Nucl. Phys. A
832, 198 (2010).

[26] C. Xu and Z. Ren, Phys. Rev. C 74, 014304 (2006).
[27] N. G. Kelkar and H. M. Castaneda, Phys. Rev. C 76, 064605

(2007).
[28] S. A. Gurvitz and G. Kalbermann, Phys. Rev. Lett. 59, 262

(1987).
[29] D. Ni and Z. Ren, Phys. Rev. C 81, 064318 (2010).
[30] Y. Qian, Z. Ren, and D. Ni, J. Phys. G: Nucl. Part. Phys. 38,

015102 (2011).
[31] M. Mirea, Phys. Rev. C 96, 064607 (2017).
[32] V. I. Furman, S. Holan, S. G. Kadmensky, and G. Stratan, Nucl.

Phys. A 226, 131 (1974).
[33] D. S. Delion, Z. Ren, A. Dumitrescu, and D. Ni, J. Phys. G:

Nucl. Part. Phys. 45, 053001 (2018).

064305-10

https://doi.org/10.1103/PhysRevC.98.024317
https://doi.org/10.1063/PT.3.2880
https://doi.org/10.1088/0034-4885/78/3/036301
https://doi.org/10.1103/PhysRevLett.104.142502
https://doi.org/10.1103/RevModPhys.72.733
https://doi.org/10.1088/1361-6471/ab1c28
https://doi.org/10.1103/PhysRevC.96.054328
https://doi.org/10.1103/PhysRevC.92.054322
https://doi.org/10.1103/PhysRevC.91.014322
https://doi.org/10.1016/j.nuclphysa.2016.11.010
https://doi.org/10.1103/PhysRevC.81.024602
https://doi.org/10.1103/PhysRevLett.82.1819
https://doi.org/10.1038/nature03219
https://doi.org/10.1016/j.aop.2018.12.002
https://doi.org/10.1103/PhysRevC.97.044301
https://doi.org/10.1007/BF01343196
https://doi.org/10.1038/122439a0
https://doi.org/10.1103/PhysRevC.100.054310
https://doi.org/10.1103/PhysRevC.99.064317
https://doi.org/10.1016/0022-1902(66)80412-8
https://doi.org/10.1103/PhysRevC.77.037602
https://doi.org/10.1103/PhysRevC.85.044608
https://doi.org/10.1103/PhysRevC.80.044326
https://doi.org/10.1016/j.nuclphysa.2009.10.082
https://doi.org/10.1103/PhysRevC.74.014304
https://doi.org/10.1103/PhysRevC.76.064605
https://doi.org/10.1103/PhysRevLett.59.262
https://doi.org/10.1103/PhysRevC.81.064318
https://doi.org/10.1088/0954-3899/38/1/015102
https://doi.org/10.1103/PhysRevC.96.064607
https://doi.org/10.1016/0375-9474(74)90604-6
https://doi.org/10.1088/1361-6471/aaac52


AMBIGUITY OF APPLYING THE WILDERMUTH-TANG … PHYSICAL REVIEW C 101, 064305 (2020)

[34] R.-Y. Wang, Y.-B. Qian, and Z. Ren, Chin. Phys. C 41, 064103
(2017).

[35] J. Dong, W. Zuo, and W. Scheid, Nucl. Phys. A 861, 1
(2011).

[36] W. M. Seif, A. M. H. Abdelhady, and A. Adel, J. Phys. G: Nucl.
Part. Phys. 45, 115101 (2018).

[37] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. Lett. 76,
380 (1996).

[38] K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus
(Academic Press, New York, 1977).

[39] D. Ni and Z. Ren, J. Phys. G: Nucl. Part. Phys. 37, 035104
(2010).

[40] W. M. Seif, M. Shalaby, and M. F. Alrakshy, Phys. Rev. C 84,
064608 (2011).

[41] M. Ismail and A. Adel, J. Phys. G: Nucl. Part. Phys. 44, 125106
(2017).

[42] J. Dong, W. Zuo, J. Gu, Y. Wang, and B. Peng, Phys. Rev. C 81,
064309 (2010).

[43] B. Buck, A. C. Merchant, S. M. Perez, and P. Tripe, Phys. Rev.
C 47, 1307 (1993).

[44] B. Buck, A. C. Merchant, M. J. Horner, and S. M. Perez, Nucl.
Phys. A 673, 157 (2000).

[45] H. F. Zhang, G. Royer, and J. Q. Li, Phys. Rev. C 84, 027303
(2011).

[46] W. Seif, M. Ismail, A. Rafaie, and L. H. Amer, J. Phys. G: Nucl.
Part. Phys. 43, 075101 (2016).

[47] S. Peltonen, D. S. Delion, and J. Suhonen, Phys. Rev. C 75,
054301 (2007).

[48] D. S. Delion, S. Peltonen, and J. Suhonen, Phys. Rev. C 73,
014315 (2006).

[49] W. M. Seif, J. Phys. G 38, 035102 (2011).
[50] D. T. Khoa, W. von Oertzen, and A. A. Ogloblin, Nucl. Phys. A

602, 98 (1996).
[51] N. Anantaraman, H. Toki, and G. F. Bertsch, Nucl. Phys. A 398,

269 (1983).
[52] G. Bertsch, J. Borysowicz, H. McManaus, and G. R. Satchler,

Nucl. Phys. A 284, 399 (1977).
[53] D. T. Khoa and H. S. Than, Phys. Rev. C 71, 044601 (2005).
[54] M. Ismail, W. M. Seif, and H. El-Gebaly, Phys. Lett. B 563, 53

(2003).
[55] W. M. Seif, Eur. Phys. J. A 38, 85 (2008).
[56] W. M. Seif, J. Phys. G: Nucl. Part. Phys. 40, 105102 (2013).
[57] D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).
[58] E. Chabanat, P. Bonche, E. Haensel, J. Meyer, and R. Schaeffer,

Nucl. Phys. A 635, 231 (1998).
[59] Y. Fu, H. Tong, X. F. Wang, H. Wang, D. Q. Wang, X. Y. Wang,

and J. M. Yao, Phys. Rev. C 97, 014311 (2018).
[60] A. P. Severyukhin, S. Åberg, N. N. Arsenyev, and R. G.

Nazmitdinov, Phys. Rev. C 95, 061305(R) (2017).

[61] W. M. Seif and H. Mansour, Internat. J. Modern Phys. E 24,
1550083 (2015).

[62] L. Bonneau, P. Quentin, and K. Sieja, Phys. Rev. C 76, 014304
(2007).

[63] A. S. Umar and V. E. Oberacker, Phys. Rev. C 76, 024316
(2007).

[64] R. Keser, A. S. Umar, and V. E. Oberacker, Phys. Rev. C 85,
044606 (2012).

[65] Z.-Q. Feng, G.-M. Jin, and F.-S. Zhang, Nucl. Phys. A 802, 91
(2008).

[66] A. S. Umar, V. E. Oberacker, and C. J. Horowitz, Phys. Rev. C
85, 055801 (2012).

[67] W. M. Seif, M. M. Botros, and A. I. Refaie, Phys. Rev. C 92,
044302 (2015); Indian J. Phys. 92, 393 (2018).

[68] D. E. Ward, B. G. Carlsson, and S. Åberg, Phys. Rev. C 88,
064316 (2013).

[69] H. Pais, W. G. Newton, and J. R. Stone, Phys. Rev. C 90, 065802
(2014).

[70] H. Pais and J. R. Stone, Phys. Rev. Lett. 109, 151101 (2012).
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