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Survey of nuclear pasta in the intermediate-density regime:
Structure functions for neutrino scattering
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Background: Nuclear pasta matter, emerging due to the competition between the long-range Coulomb force and
the short-range strong force, is believed to be present in astrophysical scenarios, such as neutron stars and core-
collapse supernovae. Its structure can have a high impact, e.g., on neutrino transport or the tidal deformability of
neutron stars.
Purpose: We investigate the impact of nuclear pasta on neutrino interactions and compare the results to uniform
matter.
Method: We calculate the elastic and inelastic static structure factors for nuclear pasta matter, using density
functional theory (DFT), which contain the main nuclear input for neutrino scattering.
Results: Each pasta structure leaves a unique imprint in the elastic structure factor and it is largely enhanced.
The inelastic structure factors are very similar for all configurations.
Conclusion: Nuclear pasta has a noticeable impact on neutrino neutral-current scattering opacities. While for
inelastic reactions the cross section is reduced, the elastic coherent scattering increases dramatically. The effect
can be of importance for the cooling of neutron stars as well as for core-collapse supernova models.
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I. INTRODUCTION

Bulk matter with densities of about nuclear densities (ρ0 =
0.16 fm−3) is realized only in astrophysical objects, such
as neutron stars or in supernova explosions. These sites are
valuable laboratories, because nuclear matter properties, such
as the nuclear equation of state, greatly impact such astrophys-
ical scenarios.

Nuclear matter around saturation density is well described
as uniform matter. However, at subsaturation densities nuclear
matter clusters into a variety of intriguing shapes, commonly
referred to as nuclear pasta. Nuclear pasta has been the
topic of research for some decades [1,2] and has been much
studied with classical [3,4] and quantum methods [5–17]. The
impact of pasta matter on astrophysical objects is manifold:
the viscosity of pasta matter can dampen the oscillations of
neutron stars, its thermal conductivity is important for the
neutron star cooling [18], it can explain the limitation of spin
periods of pulsars [19], and its neutrino opacity has an impact
on the early stage of cooling of the neutron star and the
explodability of supernovae [20–25]. In this paper, we focus
on neutrino scattering and the impact of pasta structures on
neutrino opacities.

For neutrino scattering on uniform matter a large variety
of studies can be found in the literature (e.g., [26–34]).
They are mostly based on density functional theory or effec-
tive interactions and include in-medium particle correlations.
These can have a significant impact on the opacities and
thus on the astrophysical scenarios. For explicit nuclear pasta
configurations the neutrino opacity has only been studied
using the molecular dynamics (MD) framework [20–22,25].

MD has the advantage that it includes real particle-particle
correlations between nucleons. However, the Pauli principle is
only approximately realized by a phenomenological potential.
These studies show an enhancement of neutrino scattering
opacities due to coherent neutrino scattering.

In this work, we will employ nuclear density functional
theory to calculate the structure factors of nuclear pasta,
the main ingredients for the neutrino cross section. We will
focus on the pasta configurations which appear at intermediate
densities (ρ0/4–ρ0/2) which have been discussed in an earlier
work [35]. In Sec. II, we introduce the pasta configurations
and explain briefly the computation of neutrino scattering
opacities and structure factors. In Sec. III, we present the re-
sults for the various nuclear pasta configurations and compare
them to uniform matter.

II. NUCLEAR PASTA AND NEUTRINO SCATTERING

A. Minimal surfaces pasta configurations

In this work, we consider pasta configurations in the mid-
density range, between 0.04 and 0.08 fm−3. All configurations
are related to minimal surfaces, which are the primitive (P),
the gyroid (G), and diamond (D) surfaces [13,15,36]. Fur-
thermore we also consider the flat or slab surface, which we
label with (S). All these surfaces minimize the surface area
locally and have a vanishing mean curvature. They can be
characterized by the nodal approximations

φS = cos X, (1a)

φP = cos X + cosY + cos Z, (1b)
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FIG. 1. One unit cell of minimal surfaces indicating the dividing
surface between matter and vacuum: (a) slab, (b) P surface, (c) G
surface, (d) D surface.

φG = cos X sin Y + cosY sin Z + cos Z sin X, (1c)

φD = cos X cosY cos Z + cos X sin Y sin Z

+ sin X cosY cos Z + sin X sin Y cos Z, (1d)

where X = 2πx/L and likewise for the other directions. L
is the unit cell size. The condition φi = 0 defines the sur-
faces which divide the space into two half spaces. They
are illustrated in Fig. 1. One side is colored in red (light),
the other in blue (dark). The division produces exactly two
connected pieces. If one (e.g., φi > 0) is filled with nuclear
matter and the other remains (almost) void, then this is called
a single configuration because the space filled with matter is
singly connected. For the case of the gyroid, we also consider
double configurations. Here either both half spaces are filled
partly with nuclear matter (|φi| > t) with a volume around the
gyroid surface void. t > 0 is a filling parameter. We call this
case the double gyroid networklike (dGn) configuration. The
inverted case, where nuclear matter is located in the vicinity of
the surface (|φi| < t) is called the double Gyroid surfacelike
configuration (dGs).

Simple models for the densities can be generated using the
idealized dividing surfaces, Eq. (1), with

ρ (soft)(r) = ρ
(soft)
0 [φi(r) − φi,min], (2a)

ρ (hard)(r) = ρ
(hard)
0 [θ (φi(r)) − φ0] (2b)

with i ∈ {S, P, G, D, dGn, dGs}, θ (x) is the Heaviside theta
function, and φi,min the minimum value of φi(r). We adjust ρ0

such that the desired mean density is reached. For the double
surfaces we take the functions

φdGn = +|φG|, (3a)

φdGs = −|φG|. (3b)

TABLE I. Coupling constants taken from [27]. We take the
values sin2 θW = 0.23 and gA = 1.26.

Reaction cV cA

νp → νp 1/2 − 2 sin2 θW gA/2
νn → νn −1/2 −gA/2

For the single structures we take φ0 = 0 and for the double
gyroids we adjust φ0 such that for half the box volume the
density in nonzero.

The functions discussed above can be used as guiding
potentials for nuclear ground state density functional theory
(DFT) calculations in the Hartree-Fock framework using the
Skyrme functional TOV-min which was developed to repro-
duce properties of nuclei and neutron stars [37]. Calculations
were done in a periodic box on an equidistant grid using
the SKY3D code from refs. [38,39]. All configurations were
studied for proton fractions XP = 1/2, 1/3, and 1/10 and
mean densities between ρ = 0.04 and 0.08 fm−3 in steps of
0.01 fm−3. The lengths of the unit cells for the different
shapes have been optimized to minimize the binding energy.
Details of the ground state calculations can be found in [35].

B. Neutrino opacities

In this subsection, we briefly summarize the formalism
of neutrino scattering on nuclear matter. More complete and
detailed descriptions can be found, e.g., in [27,32,33].

In a neutron star environment neutrinos can be scattered
elastically and inelastically on the nuclear matter. The opacity
or cross section per volume for neutral-current scattering on a
nonrelativistic gas of neutrons or protons is

1

V

d2σ (Eν )

d (cos θ ) dq0
= G2

F

4π2
n(Eν − q0)2[c2

V (1 + cos θ )SV (q0, q)

+ c2
A(3 − cos θ )SA(q0, q)

]
, (4)

where GF is the Fermi coupling constant, Eν is the incoming
neutrino energy, q0 is the energy transfer, q is the momentum
transfer, and θ is the scattering angle. n is the mean neutron
or proton number density. The vector and axial coupling
constants cV and cA are listed in Table I.

The only terms in Eq. (4) which depend on nuclear struc-
ture are the dynamic structure factors [32,33]

SV (q0, q) = 1

2πn

∫
dt eiq0t 〈�0|ρ̂(t, q)ρ̂(0,−q)|�0〉, (5a)

SA(q0, q) = 2

3πn

∫
dt eiq0t 〈�0|ŝ(t, q)ŝ(0,−q)|�0〉. (5b)

|�0〉 is the ground state wave function and

ρ̂(0, q) = 1

V

N∑
i=1

e−iq·ri , (6a)

ŝ(0, q) = 1

V

N∑
i=1

ŝie
−iq·ri (6b)
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are the Fourier transforms of density and spin-density oper-
ators, where ŝi the spin operator acting on the i neutron or
proton. The time dependence of the operators is generated
by propagating the operators (rather than the wave function)
with the time-evolution operator of the DFT mean field. The
structure factors are normalized such that S(q → ∞) = 1.

The computation of the dynamic structure factors Eq. (5)
requires either a fully time-dependent simulation or to resolve
the full excitation spectrum of the system. However, for
neutrino energies larger than the typical nuclear excitation
energies of a few MeV, one can integrate out the dependence
on q0 in Eq. (4), yielding [33]

1

V

dσ (Eν )

d (cos θ )
= G2

F

4π2
nE2

ν

[
c2

V (1 + cos θ )SV (q)

+ c2
A(3 − cos θ )SA(q)

]
, (7)

where

SV/A(q) =
∫

dq0 SV/A(q0, q) (8)

are the static structure factors. The gain is that the SV/A(q)
can be determined solely from the ground state configuration,
which is easier to compute.

The transport opacity is given by

χT = σT

V
=

∫
d (cos θ )

dσ

V d (cos θ )
(1 − cos θ ). (9)

If we also average the cross section, Eq. (7), over the orienta-
tion of the incoming neutrino angle with respect to the pasta
structure, we obtain

χT (Eν ) = 2G2
F E2

ν

3π
n
[
c2

V 〈SV (Eν )〉 + 5c2
A〈SA(Eν )〉] (10)

with

〈SV (Eν )〉 = 3

4

∫ 1

−1
dx (1 − x2)SV (q), (11a)

〈SA(Eν )〉 = 3

20

∫ 1

−1
dx (1 − x)(3 − x)SA(q), (11b)

q =
√

2E2
ν (1 − x), (11c)

where x = cos θ . The normalization ensures that the averaged
structure factors are comparable. The factors in Eq. (10)
emphasize that the axial part is about five times as strong
as the vector part. SV/A(q) stand for the angular aver-
aged structure factors. The total transport opacity is finally
given as

χ tot
T = 1

λT
= χT,p + χT,n, (12)

where n and p label neutrons and protons. The mean neutrino
opacity is defined by averaging over the neutrino spectrum:

〈
χ tot

T

〉 = 〈1/λT 〉 =
∫

χ (Eν ) fν (Eν, T ) E2
ν dEν, (13)

where fν (Eν, T ) is the neutrino distribution function for
which we take a normalized Boltzmann distribution. In the

above discussion we have considered neutral-current scatter-
ing but can be easily generalized to consider charged-current
(anti)neutrino absorption reactions.

C. Static structure factors

As we have seen in the Sec. II B, the structure factors are
the nuclear input to the scattering cross sections. The static
structure factor of Eq. (8) can be expressed as [20]

S(q) = 1

N

∑
n

|〈�n|F̂ (q)|�0〉|2, (14)

with the sum running over excited states |�n〉. F̂ (q) is the
form factor operator that in isospin formalism can be ex-
pressed as

F̂tt′ (q) =
N∑

i=1

eiq·ri T̂tt′ , (15a)

with the isospin selectors

T̂nn = T̂n = 1 + τ̂0

2
, T̂pp = T̂p = 1 − τ̂0

2
,

T̂np = τ̂+, T̂pn = τ̂−, (15b)

where the τ are standard isospin matrices. The form factor
operators are not Hermitian, but obey the relation F̂ †

tt′ (q) =
F̂t′t (−q). We will abbreviate the diagonal part often as F̂tt =
F̂t .

The static structure factors SV/A(q) can be decomposed into
two parts: elastic and inelastic structure factors.

1. Elastic structure factor

The elastic vector structure factor includes only the contri-
bution of the ground state in Eq. (14), and for a single unit cell
it reads

S(0)
el,t (q) = 1

Nt
|〈�0|F̂t (q)|�0〉|2. (16)

Since our calculations respect time-reversal symmetry, the
spin density is zero for the ground-state and hence the axial
elastic structure factor is zero. Because our calculations are
done for one elementary cell, we need to take the limit to
infinite volume of the expression above. As the form factor
scales with Nt , the number of particles of type t in the ele-
mentary cell, the heights of the elastic structure factor peaks
still scale with Nt ; however, the peaks become more narrow
with increasing number of particles. Special attention has to
be paid when performing the limit for an infinite system when
the unit cell of the pasta configuration is repeated periodically.
We consider here configurations which are perfectly periodic
in all three space dimensions. Thus the form factor is only
nonzero at the k-space points kμ = 2πμ/L, with μ ∈ Z3.
Then the elastic structure factor becomes

Sel,t (q) = (2π )3nt

∑
μ

δ3(q − kμ)
1

Nt
S(0)

el,t (kμ), (17)

where kμ are the reciprocal lattice vectors and S(0)
el,t is the

structure factor, Eq. (16), for one elementary cell. In the
infinite limit, the elastic structure factor does not scale with
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particle number, as in a finite system, but with the mean
number density nt .

The angular averaged structure factor, which is used to
determine the neutrino opacity, becomes then

Sel,t (q) = 2π2nt

∑
μ

δ(q − kμ)

q2

1

N2
t
|〈�0|F̂t (kμ)|�0〉|2. (18)

2. Inelastic structure factor

The inelastic structure factor for a unit cell is determined
as the elastic one in Eq. (16), but including excitations from
the ground state to an excited state �n:

S(0)
inel,tt ′ (q) = 1

Nt

∑
n>0

〈�0|F̂tt ′ (−q)|�n〉〈�n|F̂t ′t (q)|�0〉. (19)

For the cell sizes and particle numbers considered here, finite
size effects on the inelastic structure factor are small and
our calculations represent already a very good approximation
to the infinite system inelastic structure factor by taking
Sinel,tt ′ (q) = S(0)

inel,tt ′ (q).
If the spin-orbit interaction and thus the spin-mixing is

small, the axial inelastic part can be approximated through
the vector inelastic part. We have checked that this is a good
approximation in our calculations and it will be used in the
following. In summary, we have

SV,el,t = Sel,t , SV,inel,tt ′ = Sinel,tt ′ ,

SA,el,t = 0, SA,inel,tt ′ ≈ Sinel,tt ′ . (20)

3. Generalization to finite temperature

Both definitions of the structure factors, Eqs. (17) and (19),
apply to zero temperature. At finite temperature, the system
is described by a density operator |�0〉〈�0| → D̂0 for the
thermal ground state. For a Slater determinant state |�0〉, D̂0

can be expressed as

D̂0 =
∏
α

exp(−â†
α âαεα/T )

1 + e−εα/T
, (21)

where T is the temperature and α runs over a complete
set of single-particle states α. These are eigenstates of the
mean-field Hamiltonian with single-particle energy εα . The
detailed expressions for expectation values with D̂0 in terms of
single-particle wave functions ϕα can be evaluated with stan-
dard methods of many-body theory [40]. The static structure
factors at finite T for a unit cell in Eq. (17) become

S(0)
el,t (q) = 1

Nt
tr{F̂t (−q)D̂0F̂t (q)D̂0}

= 1

Nt

∣∣∣∣∣
∑

α

wα〈ϕα|eiq·rT̂t|ϕα〉
∣∣∣∣∣
2

, (22a)

S(0)
inel,tt ′ (q) = 1

Nt
tr{F̂tt ′ (−q)(1 − D̂0)F̂t ′t (q)D̂0}

= 1 − 1

Nt

∑
α,β

wαwβ |〈ϕα|eiq·rT̂tt′ |ϕβ〉|2, (22b)

wα = 1

1 + e−εα/T
, (22c)
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S
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FIG. 2. First components of the elastic structure function in the
x-y plane. The μx and μy label the Fourier bins in x and y directions.
The upper row shows slab, middle gyroid, and lower double gyroid
networklike configurations. The first column displays the smooth
model (2a), the second column is the hard model (2b), and the
third column is the actual pasta configuration (neutrons) from DFT
calculations with proton fraction XP = 1/2 and average density ρ̄ =
0.08 fm−3.

where wα is the thermal occupation probability of the single-
particle state ϕα .

III. RESULTS

A. Elastic structure factor

The elastic structure factor is proportional to the normal-
ized absolute square of the Fourier transform of the particle
density. The model structures (1) indicate that the different
geometries should be distinguished by marked difference in
the distribution of these Fourier components. This surely
holds for three-dimensional (3D) distributions before angular
averaging. This is shown in Fig. 2, which shows the first six
Fourier coefficients of the first quadrant in the μx-μy plane of
the elastic structure function for S, G, and dGn geometries.
In the left column the densities are modeled after the “soft”
approximation (2a) and the second column shows the result
for the “hard” approximation (2b). Finally, the third column
shows results from realistic, self-consistent 3D simulations of
the pasta configurations at T = 0.

The soft approximation shows already the leading peaks
of the elastic structure function. In fact, the distribution and
predominance of Fourier components can be read off from
the analytical structures in Eqs. (1). This is straightforward
for the single configurations and a bit more involved for the
double configurations because they contain the absolute value
[Eqs. (3)]. Complementing Fig. 2, we list in Table II the first
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TABLE II. First dominant peak(s) in the elastic structure factor
Sel for the different pasta configurations.

Sshape |μ| μ

S 1 (±1,0,0)
P 1 (±1,0,0) and permutations
G

√
2 (±1, ±1,0) and permutations

D
√

3 (±1, ±1, ±1)
dG

√
6 (±2, ±1, ±1) and permutations√
8 (±2, ±2,0) and permutations

dominant peaks for all configurations considered in this work,
and here for all three directions in k space.

The hard distribution, middle column in Fig. 2, shows
already secondary peaks, because the steep transition at the
surface enhances higher Fourier components. Note that the
single configurations in this model occupy only peaks with
odd μi (except for μ = 0) while double configurations can
occupy all μ. The self-consistent DFT pasta configurations
(right panels) occupy all Fourier coefficients. For the slab
shape, S, almost exclusively the coefficients in x direction
are occupied, because the configuration is homogeneous in
the other two directions. One can spot only very small distur-
bances into other directions due to spatial fluctuations in the
calculations. The gyroid as well as the double gyroid are very
close to the hard configurations.

Pasta matter in the stellar environment will appear as an
isotropic distribution of finite fragments of nuclear matter.
This suggests that we are now looking at angular averaged dis-
tributions which are radial distributions in momentum space.
In the following, we concentrate on the structure functions for
density ρ = 0.04 fm−3 and proton fraction XP = 1/3, which
already contain all features found at other densities and/or
proton fractions. For completeness, we provide results for a
higher value of the density, ρ = 0.08 fm−3, and for proton
fraction XP = 1/2 in the Supplemental Material [41].

Figure 3 shows the elastic structure factor as function
of the momentum transfer q for ρ = 0.04 fm−3 and proton
fraction XP = 1/3. It is striking that the first peak appears
for all different configurations at about the same value, q =
0.31 fm−1, although the peaks are at very different bins in
Fourier space (compare to Fig. 2 and Table II). For compar-
ison we also show the first few possible q bins according to
the box lengths qbin = 2π

L |μ|. It seems that the peak number
in Fourier space is counterweighted by the cell size of the
geometry, delivering eventually all first maxima at about the
same q value. However, the further evolution of peaks with
their fine structure is sensitive to the exact pasta configuration.

Proton and neutron peak structures are very similar, also
for a proton fraction of XP = 1/10. The most important dif-
ference is that the proton distribution decays more slowly with
large q, because the protons are more localized for XP < 1/2
while the neutrons form a neutron skin, sometimes even a
finite background gas.

We have also checked the impact of proton content XP and
of temperature T . It turns out that the trends are very similar
in all geometries. Thus we restrict the analysis here to the

100

10−2

Neutrons
S

100

10−2

P

100

10−2

S
el
(q

)

G

100

10−2

D

100

10−2

dGs

0.0 0.5
q (fm−1)

100

10−2

dGn

100

10−2

Protons

100

10−2

100

10−2

100

10−2

100

10−2

0.0 0.5
q (fm−1)

100

10−2

FIG. 3. Angular averaged elastic structure factor for all studied
pasta configurations for ρ = 0.04 fm−3 and XP = 1/3. Left panels:
neutrons; right panels: protons. Additionally, the first possible bins,
up to μ2 = 10, are shown.

slab geometry. Figure 4 shows the elastic structure factors for
the slab shape at different temperatures and proton fractions.
The position of the first peak moves with increasing proton
fraction and temperature. Its trend is closely related to box
size: the smaller the box the higher the q of the peak. The
preferred box lengths for the slabs were studied in a previous
paper [35]. They become larger for smaller proton fractions.
The box lengths increase for T = 2 MeV and decrease for
higher temperatures.

The slab shape is homogeneous in two directions and
has only nonzero contributions in one direction. The peak
structure is relatively simple, being equidistant in q. The only
exception is the slab at T = 0 and XP = 1/3, where small
additional peaks show up, which happens because there are
some fluctuations into the other two directions.

The single peaks are decreasing in magnitude for larger q
values, which is typical for form factors. This trend becomes
stronger for smaller proton fraction and higher temperature.
This is due to stronger smoothing of the surfaces and it is espe-
cially visible for neutrons, which form a neutron background
gas for high temperatures or small proton fractions.

B. Inelastic structure factor

In contrast to the elastic structure factor, the inelastic struc-
ture factor is a smooth function also for strictly periodic sys-
tems, because it is sensitive to the detailed wave functions and
these wave functions are only quasiperiodic (Bloch states).
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FIG. 4. Elastic structure factor for the slab shape at ρ =
0.04 fm−3 for different temperatures and proton fractions.

Figure 5 shows the inelastic proton and neutron structure
factors for all studied pasta configurations for XP = 1/3 and
ρ = 0.04 fm−3 compared with the one for uniform matter.
First, it turns out that the structure factors are identical for all
pasta configurations, except for a small deviation stemming
from finite-size effects. However, compared to uniform matter
at the same mean density (heavy black line labeled U), the
inelastic structure factors are reduced. However, consider-
ing uniform matter having the density ρsat which is found
inside the high density pasta phase [small red line denoted
U(ρsat)], we find practically the same pattern as for the pasta
structures. There is a one-to-one correspondence to satura-
tion density ρsat. The reason is that the inelastic structure
factor in DFT only reflects the Pauli correlation in the filled
volumes of the pasta configurations. Higher correlations are
not included. Real two-particle correlations can be resolved
by other methods like molecular dynamics (MD) [20,21,25].
However, in MD simulations the Pauli exclusion principle
is not strictly reproduced, as a phenomenological poten-
tial is implemented to simulate the effect. To include both
Pauli effects as well as higher many-particle correlations,
it would be necessary to perform random phase approxi-
mation (RPA) calculations [30,31,33] or use Monte Carlo
methods [32].
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S
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FIG. 5. Inelastic structure factor for all pasta configurations
(dashed lines) and uniform matter with the same mean density (thick
solid line) as well as uniform matter with saturation density in the
pasta solid phase (thin solid line). Upper panel: neutrons; lower
panel: protons.

Figure 6 shows the neutral-current, inelastic structure fac-
tors for varying temperatures and proton fractions. The simu-
lated results shows occasionally small wiggles in the proton
structure factors at zero temperature. These are caused by
fluctuations from finite particle numbers in the box which
are unimportant for our discussion. The T = 0 results are the
same as those shown before where, again, the slab results
are smaller than the trend from homogeneous matter (when
compared at same average density). This difference decreases
with increasing temperature, because the simulated slab ac-
quires an increasingly softer surface and slowly approaches
homogeneous matter. For XP = 1/10 the structure factor of
neutrons for the slab is already very close to uniform matter
due to the large neutron background density. In contrast, the
proton structure factors for slabs and uniform matter differ
significantly. The trend of the inelastic structure factors at q =
0 with temperature deserves a comment. The value Sinel,tt (0)
starts at zero for T = 0, which expresses the Pauli principle
between two like nucleons. The value increases with temper-
ature, because higher momenta in phase space are becoming
occupied and lower momenta in phase space are becoming
unoccupied such that the Pauli blocking is reduced. The effect
is independent of the spatial profile of matter.

Figure 7 shows the charged-current structure factors. We
see that the differences of the slab to uniform matter are
comparable to those for the neutral-current structure factors.
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FIG. 6. Inelastic structure factor for the slab shape (dashed lines)
for ρ = 0.04 fm−3 at different temperatures and proton fractions in
comparison to uniform matter (solid lines).

Though, the overall behavior is a bit different. While for
XP < 1/2 for p → n reactions the structure factor starts to
increase for higher values of q, the structure factor for n → p
starts at q = 0 with a nonzero value and increases with a lower
slope. At low temperatures, again, the difference between
homogeneous matter and pasta is more pronounced.

C. Impact on neutrino opacity

Finally, we are going to estimate the impact of nuclear
pasta matter on the neutrino opacity. To that end we only
consider neutral-current reactions, because, as we have seen
in the previous sections, pasta matter has only a marginal
influence on charged-current reactions, because there is no
elastic scattering channel.

The upper panel of Fig. 8 shows the averaged static vector
structure factors for neutrons for ρ = 0.04 fm−3 and XP =
1/3. This structure factor has the most impact on opacity,
because it contains the elastic part. The vector static struc-
ture factors for protons also contain an elastic contribution;
however, it is strongly suppressed through the small coupling
constant cV,p. The different pasta configurations all show
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FIG. 7. Charged-current inelastic structure factors for the slab
shape (dashed lines) for ρ = 0.04 fm−3, at different temperatures
and different proton fractions, in comparison to uniform matter (solid
lines).

peaks at approximately the same position and same heights.
Only the double gyroid configurations deviate slightly.

The lower panel of Fig. 8 shows the resulting opacity.
While for low neutrino energies pasta matter slightly reduces
the opacity, it enhances it for neutrino energies larger than 25
to 30 MeV. Note that the impact seems to be lower than in
Ref. [20], because we also take into account the contribution
from the axial current.

Figure 9 shows the same quantities as Fig. 8 but only for
the slab, as representative of all pasta configurations, and for
uniform matter, both for a series of different temperatures.
We expect that the other geometries show behavior similar
to the slab configuration, since we have seen already at zero
temperature that all geometries behave very similarly. Finite
temperature should even reduce the difference between the
different pasta shapes, because the density profiles are washed
out. Slab configurations show a pronounced peak in the
structure factor and subsequently a significant enhancement
in opacity between 30 and 50 MeV. The effect is largest at
zero temperature. Figure 10 compares the mean opacity for
slab and uniform matter as functon of temperature for a series
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FIG. 8. Averaged vector static structure factors for neutrons (up-
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1/3 for different pasta configurations and uniform matter.

of proton fractions XP. While for symmetric nuclear matter
(XP = 1/2) the impact of slab structure is rather small, it
becomes larger for smaller proton fractions. This is because
for smaller proton fractions the elastic peak is shifted to lower
neutrino energies (cf. Fig. 4) and thus has a larger overlap with
the neutrino energy distribution already at lower temperatures.
For XP = 1/10 the impact of pasta matter is significant and
enhances the opacity by a factor of about 3 at a temperature of
4 MeV.
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2 4 6 8 10

T (MeV)

10−2

10−1

100

101

102

1/
λ

t
(k

m
−1

)

XP =1/10, U

XP =1/10, S

XP =1/3, U

XP =1/3, S

XP =1/2, U

XP =1/2, S

FIG. 10. Neutrino opacities for the pasta slab configuration and
uniform matter with respect to the temperature for ρ = 0.04 fm−3 at
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In Ref. [22], a similar analysis has been performed in
the framework of molecular dynamics (MD). The results
are qualitatively similar, especially regarding the position of
the onset of the peak in the structure factor. The heights of
the peaks are in the same order, also for the cases where
completely different configurations were considered.

IV. CONCLUSIONS

We calculated the elastic and inelastic parts of the structure
factor for nuclear pasta configurations and for uniform matter.
This was done at a fully quantum mechanical level using
nuclear density-functional theory (DFT). All considered pasta
configurations appear in a cubic, periodic lattice with lattice
spacing (box length) depending on the structure. The analy-
sis was complemented by a simple analytical model of the
minimal surfaces corresponding to the most important pasta
structures: slab (S), primitive (P), gyroid (G), and diamond
(D). Unlike uniform matter, the different pasta configurations
produce an elastic structure factor with a rich and distinctive
pattern.

The elastic structure factor is a function of transferred mo-
mentum. Periodic lattice structure produces distinctive peaks
at the reciprocal vector of the lattice. The pasta configuration
determines box lengths (length of the elementary cell) and
distributions of strength over the peaks. The emerging pattern
depends sensitively on the pasta configuration. Nonetheless,
the first dominant peak shows up at roughly the same mo-
mentum transfer for all configurations. Changes in box length,
thus lowest momentum bin, are compensated by the fact that
the first dominant peak appears at different bin number for
different configurations. The similarity of dominant trans-
ferred momentum means that the overall trend for the elastic
structure is similar for all configurations. Only details change
with the changing configuration.
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There are unique trends with changing proton fraction
and temperature. Lower proton content shifts the peaks to
lower momentum transfer q. High temperatures T > 4 MeV
shift the peaks to higher momentum transfer q and the peaks
decrease then more rapidly with higher q because the matter
is smoothed and approaches uniform matter.

The inelastic structure factor is found to be independent
of the actual pasta configuration and it is the same as uniform
matter at a density which corresponds to the saturation density
in the filled regions of pasta structures. It is only this saturation
density which counts. This happens because in DFT the
inelastic structure factor only reflects the Pauli correlations,
as one can also see from the fact that the structure factors
at temperature zero are exactly zero, while finite temperature
which overrides gradually the Pauli blocking allows for a
nonvanishing inelastic structure factor at q = 0.

Finally, we computed the neutrino opacities for the given
structures as a function of temperature and proton fraction.
The results do not depend much on the actual structure, but

differ significantly from uniform matter, particularly at low
temperature and low proton fraction. Pasta structures enhance
the neutral-current opacity up to a factor of 4. For charged-
current opacity the effect of pasta is minor.

In summary, nuclear pasta has a noticeable impact on the
structure factors and thus on inelastic and elastic neutrino
scattering. While for inelastic reactions the cross section is
reduced, the elastic coherent scattering increases dramatically.
The effect can be of importance for the cooling of neutron
stars as well as for core-collapse supernova models.
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