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Large-Nc analysis of magnetic and axial two-nucleon currents in pionless effective field theory

Thomas R. Richardson * and Matthias R. Schindler†

Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA

(Received 7 February 2020; revised manuscript received 29 March 2020; accepted 11 May 2020;
published 22 May 2020)

We analyze magnetic and axial two-nucleon contact terms in a combined large-Nc and pionless effective field
theory expansion. These terms play important roles in correctly describing, e.g., the low-energy cross section of
radiative neutron capture and the deuteron magnetic moment. We show that the large-Nc expansion hints towards
a hierarchy between the two leading-order magnetic terms that matches that found in phenomenological fits. We
also comment on the issue of naturalness in different Lagrangian bases.
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I. INTRODUCTION

Electroweak probes of nuclear systems play an important
role in testing our understanding of nucleon interactions; see,
e.g., Refs. [1,2] for recent reviews and references therein.
Effective field theories (EFTs) have emerged as an important
technique for studying nucleon-nucleon (NN) interactions.
Here we consider pionless EFT (EFTπ/), valid for energies and
momenta well below the pion mass, in which only nucleons
and external fields are considered as dynamical degrees of
freedom. For reviews see, e.g., Refs. [3–7] and references
therein. In EFTπ/, NN interactions are described by contact
operators that contain an increasing number of derivatives for
increased precision. Electroweak fields are treated as external
fields, to which nucleon operators couple based on symmetry
properties. Two classes of contributions appear: the first class
comes from minimal coupling, i.e., gauging derivatives acting
on the nucleons. The second class corresponds to operators
that do not originate in minimal coupling, but that are still
allowed by the underlying symmetries. In the following, we
focus on the latter, but a brief discussion of the former is
included in an Appendix. Each independent operator is multi-
plied by a low-energy coupling (LEC) that encodes the short-
distance details of the underlying theory. For terms that couple
to external fields through minimal coupling, the LECs are
the same as for the corresponding terms without any external
fields, and constraints on these couplings can be obtained,
e.g., from scattering and bound state data. On the other hand,
each independent operator in the second class introduces a
new LEC, which needs to be determined from either the
underlying theory (if possible, e.g., via a lattice simulation)
or by comparison to experimental results where available. A
prominent example for the second class of interactions can
be found in the radiative neutron capture on protons at very
low energies. A magnetic NN contact operator is required by
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power counting, and its inclusion agrees with the experimental
result [3]. Another example is the coupling of two nucleons to
an isovector axial field with an LEC L1,A, which contributes
to several important weak processes, e.g., neutrino-induced
deuteron breakup, tritium β decay, and proton-proton fusion.1

In principle, the LECs should be calculable from the
underlying standard model, which requires a nonperturba-
tive quantum chromodynamics (QCD) calculation. Recently,
the Nuclear Physics with Lattice Quantum Chromodynamics
(NPLQCD) Collaboration performed a first determination of
L1,A [10], though at an unphysical value of the pion mass.
While this result holds great promise that additional calcula-
tions of LECs will be available in the future, in the meantime
other theoretical constraints will be valuable, especially in
cases where data may be sparse or have large uncertainties.
Here we will continue previous efforts [11–13] to obtain such
constraints by combining EFTπ/ with the large-Nc expansion
[14,15], where Nc is the number of colors in QCD. These
constraints arise from additional symmetries that emerge in
QCD in the large-Nc limit [16–20]. Previous work focused
on NN interactions, both in the parity-conserving [11,13]
and parity-violating [12] sectors, as well as in time-reversal-
invariance-violating interactions [21]. In this paper we extend
the application of this technique to magnetic and axial two-
body currents, which, as discussed above, play important
phenomenological roles. We find that isoscalar magnetic and
axial contact terms are Nc suppressed relative to their isovector
counterparts. For the magnetic case, this agrees with available
fits to data. In the axial case, no determination of the isoscalar
term has been performed, and our results suggest that it is
smaller than might be naively expected. The large-Nc scaling
of some minimal coupling terms was also considered in
Ref. [22].

1In the theory with pions, chiral symmetry relates this operator to a
two-nucleon-one-pion term, which also contributes to three-nucleon
interactions [8,9].
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One of the assumptions of the EFT formalism is that
LECs are expected to be “natural,” i.e., that the dimension-
less numerical coefficients, once the appropriate scales have
been factored out, should be of order 1.2 While this is a
rather vague concept and not a rigorous expectation, it has
recently been used in Bayesian parameter estimations from
data through the introduction of prior probability density
functions (PDFs) [23–27]. However, the naturalness of LECs
is only a working assumption, and short-distance details of
the underlying interactions could lead to apparently unnatural
values for some LECs. In addition, the form of the operators
entering a Lagrangian at a given order is not unique, and
different functional forms can be related through, e.g., field
redefinitions or Fierz identities. While observables must be
independent of the formulation, large-Nc counting is applied
to LECs and hence sensitive to the formulation. We refer to
a given set of operators defining a Lagrangian as a basis and
will show in an example below that naturalness in one basis
can be hidden in a different basis that is physically equivalent.

In Sec. II we present aspects of EFTπ/ and the large-Nc

expansion relevant for our analysis. Magnetic two-nucleon
contact terms are considered in Sec. III and the generaliza-
tion to axial currents is described in Sec. IV. The large-Nc

scaling of terms originating from minimal coupling in the
two-derivative Lagrangian is discussed in the Appendix.

II. PIONLESS EFFECTIVE FIELD THEORY
AND THE LARGE-Nc EXPANSION

Pionless EFT describes the interactions of nucleons with
each other and with external fields through a series of contact
operators. Each operator is accompanied by a low-energy
coupling (LEC) that encodes all short-distance/high-energy
physics. Since the pion has been integrated out as an active
degree of freedom, EFTπ/ is valid only at energies well below
the pion mass. Observables are expanded in terms of the small
ratio Q/�π/, with Q the energy/momentum transfer, while
�π/ ∼ mπ is the breakdown scale of the theory.

The determination of the relative importance of terms in an
EFT Lagrangian is called power counting. Power counting in
EFTπ/ is not simply based on the number of derivatives acting
on an operator [28–31]. A consistent power counting can be
achieved by use of the power divergent subtraction (PDS)
scheme [30], which introduces an additional scale into the
theory through the renormalization scale μ. The scale μ needs
to be on the order of the scale Q defined above for the power
counting to be valid. While physical quantities do not depend
on the renormalization scale, LECs are not observables and in
general are μ dependent.

In the following we combine EFTπ/ with the large-Nc

expansion. The basic ingredient in applying the large-Nc

analysis in the context of two-nucleon interactions is the
observation that the baryon matrix elements of different com-
binations of spin-isospin operators have different large-Nc

scalings [11,18]. This is the approach used in the analyses of

2Unfortunately, the term naturalness can have other meanings in
different contexts.

two-nucleon forces in Refs. [11,32], and Ref. [33] contains
a review of this method and an extension to three-nucleon
forces. In the context of EFTπ/, it has been shown [11–13] that
in the large-Nc limit additional constraints on the relative size
of various LECs contributing to nucleon-nucleon scattering
can be derived. Here, we extend the analysis to two-nucleon
contact terms that couple to a magnetic, and more generally
an axial, external field. The relevant quantity to consider is the
matrix element of the Hamiltonian between states that contain
two nucleons and, for the case considered below, an additional
external field A in one of the states,

〈Nγ NδA|H |NαNβ〉, (1)

where α, β, γ , δ denote combined spin and isospin quantum
numbers, and the external field can also carry spin and isospin
quantum numbers. For our purposes, the nucleon momenta
will be irrelevant and they are kept implicit in this notation.
We assume that, as in the case without an external field, the
baryonic part of the Hamiltonian takes a Hartree form and can
be expanded as [15,32]

Hbaryon = Nc

∑
n

∑
s,t

vstn

(
Ŝi

Nc

)s(
Î a

Nc

)t(
Ĝia

Nc

)n−s−t

, (2)

in terms of the operators

Ŝi = q† σ i

2
q, Î a = q† τ a

2
q, Ĝia = q† σ iτ a

4
q, (3)

where the q are colorless bosonic quark fields. The Nc quarks
in the ground state nucleon are totally antisymmetric in their
color indices. Therefore, because the quarks are fermions, the
quark fields must be completely symmetric in the spin-flavor
indices [18]. This permits the omission of the q color index
and treating the quark operator as a bosonic operator. The
coefficients vstn are chosen to match the required symmetry
properties and in general can depend on the nucleon momenta.
This Hamiltonian is then combined with the external field
A such that spin and/or isospin indices are appropriately
contracted.

The baryonic matrix elements of Eq. (2) factorize in the
large-Nc limit [11],

〈Nγ Nδ|O1O2|NαNβ〉 Nc→∞−−−→ 〈Nγ |O1|Nα〉〈Nδ|O2|Nβ〉
+ crossed, (4)

and the large-Nc scaling of single-baryon matrix elements is
given by [11,17,18,32]

〈Nγ |O
(n)
I,S

Nn
c

|Nα〉 � 1

N |I−S|
c

, (5)

for an n-body operator O(n)
I,S with spin S and isospin I . In

particular,

〈Nγ | 1

Nc
|Nα〉 ∼ 〈Nγ |Gia

Nc
|Nα〉 � 1,

〈Nγ | Si

Nc
|Nα〉 ∼ 〈Nγ | Ia

Nc
|Nα〉 � 1

Nc
. (6)
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The matrix elements of the Hartree Hamiltonian are then
related to the corresponding matrix elements in EFTπ/ by
matching the spin-isospin structure of the nucleon operators
to that in the quark operator expansion, and the scaling is
mapped onto a large-Nc scaling of the EFTπ/ LECs. For
example, the EFTπ/ operator N†σ iτ aN has the same struc-
ture as Gia in the quark operator expansion, so we consider
〈Nγ |N†σ iτ aN |Nα〉 ∼ O(Nc).

As in some previous work in the two-nucleon sector
[11–13,32], the effects of virtual 
 degrees of freedom in
the matrix elements are ignored. The 
 becomes degenerate
with the nucleon in the large-Nc limit and is known to play an
important role in the meson-exchange picture of two-nucleon
interactions [34]. It is an open question how to properly treat

 degrees of freedom in the combined EFTπ/ and large-Nc

expansion, but previous work [11,13,32] indicates that not
considering their effects explicitly can still lead to results that
agree with experimental information. 
 intermediate states in
NN scattering were discussed in Ref. [35].

III. MAGNETIC TWO-NUCLEON CONTACT TERMS

At leading order (LO) in the EFTπ/ expansion, there are
two independent two-nucleon contact terms coupling to the
magnetic field B. In the partial-wave basis, these can be
written as [3]

L = eBi[
π/L1(NT PiN )†(NT P̄3N )

− iεi jk π/L2(NT PjN )†(NT PkN )] + H.c., (7)

where Pi = 1√
8
σ2σiτ2 and P̄a = 1√

8
σ2τ2τa are the projection

operators onto the 3S1 and 1S0 partial waves, respectively,
with σi (τa) the Pauli matrices acting in spin (isospin) space.
Alternatively, the Lagrangian can be expressed in a different
basis, in which the large-Nc counting rules can be made
manifest. In this basis, a minimal form is given by [36]

L = eBi{C′
15(N†σiN )(N†N ) + C′

16[(N†σ iτ 3N )(N†N )

− (N†σ iN )(N†τ 3N )]}. (8)

The minimal form of the Lagrangian is not unique; it is
obtained by applying Fierz transformations to relate various
terms that are consistent with the required symmetry prop-
erties [36], but there is freedom in choosing which terms
to retain. An important consideration in making this choice
is that the application of Fierz transformations can hide the
correct large-Nc scaling of operators [12].

To address this issue, we first consider the most general
set of two-nucleon operators coupled to an external magnetic
field, analyze the large-Nc scaling of each term, and then retain
that scaling while using Fierz transformations to construct a
minimal operator set. Power counting and parity invariance
dictate that at LO in the EFTπ/ only operators without deriva-
tives acting on the nucleon fields are present. The two-nucleon
operators must be U (1) gauge invariant and Hermitian, and
must transform as a vector under rotations. This interaction is
not restricted to isoscalars, and may include nontrivial isospin

structure. The Lagrangian can be written as

L = eBi
[
C̃(M )

1 (N†σ iN )(N†N ) + C̃(M )
2 (N†σ iτ aN )(N†τ aN )

+ C̃(M )
3 εi jkε3ab(N†σ jτ aN )(N†σ kτ bN )

+ C̃(M )
4 (N†σ iτ 3N )(N†N )

+ C̃(M )
5 (N†σ iN )(N†τ 3N )

]
. (9)

The large-Nc counting rules of Eq. (6) lead to the following
scaling of the LECs:

C̃(M )
1 ∼ O

(
N0

c

)
, (10)

C̃(M )
2 ∼ O

(
N0

c

)
, (11)

C̃(M )
3 ∼ O(Nc), (12)

C̃(M )
4 ∼ O(Nc), (13)

C̃(M )
5 ∼ O

(
N−1

c

)
. (14)

While it seems that there are two operators that are of LO in
the large-Nc counting (LO-in-Nc), the operators in Eq. (9) are
not independent, and the application of Fierz transformations
reduces the Lagrangian to two independent operators. While
in principle any minimal set of independent operators is
equivalent, we choose to retain the terms with the manifestly
dominant large-Nc scaling in each isospin sector. This yields
an isovector term that differs from that used in Ref. [36], and
the Lagrangian takes the form

L = eBi
[
C(M )

s (N†σ iN )(N†N )

+ C(M )
v εi jkε3ab(N†σ jτ aN )(N†σ kτ bN )

]
, (15)

where

C(M )
s = C̃(M )

1 − 3C̃(M )
2 ∼ O

(
N0

c

)
, (16)

C(M )
v = C̃(M )

3 + 1
4

(
C̃(M )

4 − C̃(M )
5

) ∼ O(Nc). (17)

We thus find that there is only a single independent LO-in-Nc

term, with the isovector coupling to the magnetic field
∼O(Nc), while the isoscalar coupling is suppressed and
∼O(N0

c ).
A different set of Fierz transformations relates these LECs

to those in the partial-wave basis of Eq. (7),

π/L1 = 8C(M )
v , π/L2 = −C(M )

s , (18)

which means that π/L2 is suppressed by 1/Nc compared to π/L1.
This suppression is mentioned in Ref. [37] for operators in the
dibaryon formalism.

The LECs appearing in the effective Lagrangian are, absent
any additional constraints, often assumed to be natural, i.e.,
of O(1) after extracting appropriate dimensionful parameters.
While the definition of what this means is not exact, it implies
that two LECs appearing at the same order should be approx-
imately of the same size. π/L1 can be obtained from a fit to the
experimental cross section for the radiative capture np → dγ ,
while π/L2 can be determined from the deuteron magnetic
moment. The values of these LECs are renormalization-scale
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dependent, and at the scale μ = mπ are given by [3]

π/L1 = 7.24 fm4, π/L2 = −0.149 fm4. (19)

It is argued in Ref. [38] that the value of π/L2 “is significantly
smaller than the naively estimated size of ≈1 fm4.” The ratio
of the two fitted LECs at μ = mπ is

∣∣∣∣
π/L2
π/L1

∣∣∣∣
exp

≈ 0.021, (20)

which clearly shows that it is challenging to consider both π/L1

and π/L2 to be simultaneously natural at μ = mπ .
The large-Nc analysis above shows that the isoscalar contri-

bution is suppressed compared to the isovector one by a factor
of Nc, with Nc = 3 in the real world. While this provides a
hint for why the isoscalar contribution is smaller, it cannot
account for the factor of 50. However, the transition through
Fierz transformations from the large-Nc basis to the partial-
wave basis in which π/L1 and π/L2 are defined introduces an
additional suppression factor of 1/8. Thus, if instead of π/L1

and π/L2 we assume that C(M )
s and C(M )

v are of the same size
aside from the large-Nc suppression, i.e., |C(M )

v | ∼ Nc|C(M )
s |,

then the predicted ratio at the physical value Nc = 3 is
given by

∣∣∣∣
π/L2
π/L1

∣∣∣∣
Nc

≈ 1

8Nc
≈ 0.042. (21)

Using Eq. (18) and the values for π/L1 and π/L2 of Eq. (19) gives
(at μ = mπ )

C(M )
s = 0.149 fm4, C(M )

v = 0.905 fm4, (22)

i.e., C(M )
v is larger than C(M )

s by a factor of ≈ 6. Taking into
account the large-Nc suppression, the remaining difference
in the two values is about a factor of 2, which is easily
accommodated within naturalness. In other words, aside from
the large-Nc suppression, C(M )

s and C(M )
v can be considered

of the same size, i.e., |C(M )
v | ∼ Nc|C(M )

s |. Since the large-Nc

constraints are really upper bounds on the LECs, it appears
that the large-Nc constraint is not in disagreement with the
values of the coefficients obtained in Ref. [3].

As previously mentioned, the transition from the large-Nc

basis to the partial wave basis can introduce additional factors
of 8 due to the normalization of projection operators. These
factors could in principle be avoided by defining the projec-
tion operators differently. However, the projection operators
P(s) for a given partial wave s are defined to satisfy [39]

∑
pol. avg

Tr[P(s)P(s)†] = 1

2
. (23)

Since they also appear in other two-nucleon operators, e.g.,
those contributing to NN scattering, changing the normaliza-
tion in one case would introduce corresponding factors in the
LECs of other operators.

This result seems to indicate that the naturalness of LECs
might be hidden in one basis, while it is more apparent
in others. On the other hand, implementation of the PDS

( )

FIG. 1. The ratio |π/L2/
π/L1| as a function of the renormalization

scale μ. The solid line corresponds to solutions of the renormal-
ization group equations combined with the values of Eq. (19). The
dashed line corresponds to Eq. (21), while the dark (light) gray band
corresponds to 10% (30%) corrections.

renormalization scheme is more straightforward in the partial-
wave basis, making it more practical.3

Of course, this example does not allow us to draw any
general conclusions about how suitable a given basis is for
assuming natural LECs. However, it does indicate that special
care should be taken when trying to quantify naturalness, for
example when incorporating the naturalness assumption into
any functional form of prior PDFs on the LECs.

Both LECs π/L1 and π/L2 are renormalization scale depen-
dent and the values used so far correspond to μ = mπ in
the PDS scheme. As discussed in Refs. [11,13], the large-Nc

relationships can be hidden if a different choice is made for
the subtraction point μ. The results of Ref. [13] indicate
that μ ≈ mπ tends to be within the region where the large-
Nc constraints on the LECs do not contradict the data. For
completeness, Fig. 1 shows the running of the ratio |π/L2/

π/L1|
with μ. The ratio is relatively flat starting around 80 MeV and
no significant differences to the values at μ = mπ are seen.

IV. AXIAL TWO-NUCLEON CONTACT TERMS

The analysis of the previous section can be generalized to
the coupling of two-nucleon operators to an arbitrary external
axial-vector field. Again, the terms at LO in EFTπ/ contain no
derivatives. The isoscalar sector proceeds in complete analogy
to the magnetic case, with the magnetic LECs replaced by
axial ones, C̃(M )

1 → C̃(A)
1 , C̃(M )

2 → C̃(A)
2 . The same Fierz rela-

tionships hold and there is a single independent isoscalar term,
which we again choose to be

Ls
A = AiC(A)

s (N†σ iN )(N†N ), (24)

with

C(A)
s = C̃(A)

1 − 3C̃(A)
2 ∼ O

(
N0

c

)
. (25)

3For issues connected to Fierz transformations relating various
forms of short-range three-nucleon interactions, see Refs. [40–42].
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In the partial-wave basis, this operator again takes the form

Ls
A = −2iεi jkL2,AAi(NT PjN )†(NT PkN ), (26)

with L2,A = −C(A)
s .

For the coupling to an isovector axial-vector field Aia,
the nonminimal set again contains three operators as
in the magnetic case, with the only change the replacement
of the z component of isospin by a general isospin index
a and the change to axial LECs, C̃(M )

i → C̃(A)
i (i = 3, 4, 5).

Analogous Fierz identities hold and only one term is linearly
independent. We choose the manifestly large-Nc dominant
term

Lv
A = AiaC(A)

v εi jkεabc(N†σ jτ bN )(N†σ kτ cN ), (27)

with

C(A)
v = C̃(A)

3 + 1
4

(
C̃(A)

4 − C̃(A)
5

) ∼ O(Nc). (28)

The partial-wave expression for this Lagrangian is [43]

Lv
A = AiaL1,A(NT PiN )†(NT P̄aN ) + H.c. (29)

Application of Fierz transformations shows that

L1,A = 8C(A)
v , (30)

in complete analogy to the magnetic case. Therefore, the same
prediction for the ratio of LECs as for the magnetic LECs
holds, ∣∣∣∣L2,A

L1,A

∣∣∣∣
Nc

=
∣∣∣∣ C(A)

s

8C(A)
v

∣∣∣∣ ∼ 1

8Nc
, (31)

where for the last relation we again assume that the only
relative suppression between the isoscalar and isovector LECs
comes from the large-Nc scaling, i.e., |C(A)

v | ∼ Nc|C(A)
s |.

From naive dimensional analysis (NDA), the values of
these LECs are estimated to be [43]

|L1,A| ∼ |L2,A| ∼ 4π

M

1

μ2
≈ 5 fm3, (32)

at μ = mπ , and in this approach are both expected to be of
the same size. There have been several efforts to constrain
the value of L1,A from proton-proton fusion, neutrino-deuteron
reactions, and tritium β decay [43–48]. The NPLQCD Collab-
oration recently performed a lattice QCD calculation of the
proton-proton fusion process at mlat

π = 806 MeV and used the
result to extract the LEC L1,A with μ at the physical pion mass,
obtaining [10]

LNPLQCD
1,A (μ = mπ ) = 3.9(0.2)(1.0)(0.4)(0.9) fm3, (33)

where the values in parentheses denote the statistical, system-
atic fitting and analysis, and systematic mass extrapolation un-
certainties, as well as an estimate of higher-order corrections
in the EFTπ/ power counting. Within uncertainties, this value is
in agreement with the extractions based on neutrino-deuteron
reactions and tritium β decay. These studies do not attempt
to determine the value of L2,A since its contribution to the
processes of interest is negligible.

While in NDA the magnitudes of L1,A and L2,A are expected
to be of the same size, the results for the magnetic LECs
suggest that it might be useful to assume naturalness in the

large-Nc basis combined with the large-Nc suppression of
the isoscalar coupling, i.e., assuming that |C(A)

v | ≈ Nc|C(A)
s |.

Using, for example, the NPLQCD value in the large-Nc rela-
tionship of Eq. (31) with Nc = 3 would result in

L2,A ≈ 0.1625 fm3, (34)

which would provide even stronger justification for neglecting
this contribution in the processes that have been considered.

V. CONCLUSIONS

We analyzed two-nucleon contact operators coupling to
magnetic and general axial external fields in a combined EFTπ/

and large-Nc expansion. These operators provide important
contributions to a variety of physical processes, such as low-
energy radiative neutron capture, tritium β decay, and proton-
proton fusion. In EFTπ/, the LECs accompanying the operators
are treated as parameters that are expected to be of natural
size. The large-Nc analysis, on the other hand, shows an
additional hierarchy, with the isoscalar coupling suppressed
by a factor of 1/Nc relative to the isovector coupling.

In the magnetic case, the isoscalar (π/L2) and isovector (π/L1)
LECs have been determined from fits to the deuteron mag-
netic moment and the np → dγ cross section, respectively.
Their ratio, evaluated at the renormalization scale μ = mπ , is
approximately 1/50, which is far outside the naive large-Nc

expectation of 1/3 and raises the concern whether or not both
LECs can be considered natural. However, an additional factor
of 8 enters the Fierz transformation from the operator basis in
which the large-Nc analysis is performed to the basis in which
π/L1 and π/L2 are defined. We showed that taking into account
the 1/Nc suppression, the residual values of the LECs in this
large-Nc basis can be of approximately the same size and still
be consistent with the small ratio in terms of the partial-wave
LECs. This may indicate that the naturalness of LECs can be
hidden in some choices for the set of operators describing the
same physics. Special care should thus be taken when trying
to quantify naturalness, e.g., in defining Bayesian priors.

Only the isovector axial LEC L1,A has been determined
so far. Assuming the validity of the analysis in the magnetic
case, the isoscalar axial LEC L2,A may be significantly smaller
than naively expected. However, it is important to not treat the
large-Nc scalings as exact predictions, but rather as indicators
of general trends.
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APPENDIX: MINIMAL COUPLING FOR
TWO-DERIVATIVE CONTACT INTERACTIONS

We make use of the usual prescription for the covariant
derivative with minimal coupling,

DiN = ∇ iN − ieAiQN, (A1)
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where Q is the charge matrix Q = 1
2 (1 + τ 3). The deriva-

tives for the two-derivative operators in Ref. [13] may be
replaced with the covariant derivative to produce gauge in-
variant interactions. This approach was first adopted for the
two-derivative contact terms in Ref. [49], but we choose a
different operator basis in the following. When the derivative
replacement is made, there will be two-nucleon–one-photon
and two-nucleon–two-photon interactions. Although they are
paramount to maintaining gauge invariance, the two-photon
interactions will not be considered. If the bilinears involved in
the interactions are of the form

D(N†O1N )D(N†O2N ), (A2)

where O1 and O2 only contain Pauli spin matrices, the opera-
tor does not couple to the electromagnetic field. Therefore, we
will not need to consider the terms proportional to C1·1, Cσ ·σ ,
and C′

σ ·σ in the notation of Ref. [13].
The current operators can be obtained through

Jμ = ∂ν

∂L
∂ (∂νAμ)

− ∂L
∂Aμ

(A3)

in a manner similar to Ref. [50]. At LO-in-Nc, the current
operators are

Ji
G·G = 2eCG·Gε3ab∇ i(N†σ jτ aN )(N†σ jτ bN ), (A4)

J
′i
G·G = 2eC′

G·Gε3ab∇ j (N†σ jτ aN )(N†σ iτ bN ), (A5)

while at next-to-next-to-leading order in the large-Nc scaling
(N2LO-in-Nc) they are

↔
J

i

1·1 = 4ie
↔
C1·1(N†

↔
∇

i

N )(N†QN ), (A6)

Ji
τ ·τ = 2eCτ ·τ ε3ab∇ i(N†τ aN )(N†τ bN ), (A7)

↔
J

i

G·G = 2ie
↔
CG·G

[(
N†σ jτ a

↔
∇

i

N
)
(N†σ jτ aN )

+ (
N†σ jτ 3

↔
∇

i

N
)
(N†σ jN )

]
, (A8)

↔
J

i

1·σ = e
↔
C1·σ εi jk[∇k (N†σ jN )(N†QN )

+∇k (N†N )(N†σ jQN )], (A9)
↔
J ′

i

G·G = 2ie
↔
C′

G·G
[(

N†
↔
∇

j

σ jτ aN
)
(N†σ iτ aN )

+ (
N†

↔
∇

j

σ jτ 3N
)
(N†σ iN )

]
, (A10)

↔
J

i

G·τ = e

2

↔
CG·τ εi jk{[∇k (N†σ jτ aN )(N†τ aN )

+∇k (N†τ aN )(N†σ jτ aN )

+∇k (N†σ jτ 3N )(N†N ) + ∇k (N†τ 3N )(N†σ jN )]

+ iε3ab[(N†σ jτ bN )(N†
↔
∇

k

τ aN )

+ (N†τ bN )(N†
↔
∇

k

σ jτ aN )]}. (A11)

Making use of Fierz transformations for the N2LO-in-Nc

terms reduces the set of operators to

Ji
LO-in-Nc

= 2eCG·Gε3ab∇ i(N†σ jτ aN )(N†σ jτ bN )
+ 2eC′

G·Gε3ab∇ j (N†σ jτ aN )(N†σ iτ bN ), (A12)

Ji
N2LO-in-Nc

= 2e
(
Cτ ·τ − 1

4

↔
C1·1 − 3

4

↔
CG·G + 1

4

↔
C′

G·G
)

× ε3ab∇ i(N†τ aN )(N†τ bN )

+ e(
↔
C1·σ + ↔

CG·τ )εi jk[∇k (N†σ jN )(N†QN )

+∇k (N†N )(N†σ jQN )], (A13)

where we are not showing subleading corrections in Ji
LO-in-Nc

that enter through the Fierz transformations. This is the same
result one would obtain from first finding the minimal set
of operators and then gauging them; i.e., once the dominant
large-Nc scaling has been determined, the order of gauging
and performing Fierz transformations is irrelevant.

The form of these operators can be matched to the minimal-
coupling contact currents in Ref. [51], which are equivalent
to those of Ref. [49]. This shows that the second and third
terms in Eq. (2.20) of Ref. [51] are LO-in-Nc, while the
first and fourth terms are N2LO-in-Nc. When matching the
LECs of Ref. [13] to those used in Ref. [51], C2, C4, and C7

receive LO-in-Nc contributions, which naively suggests three
LO-in-Nc terms. However, the LO-in-Nc contributions cancel
in the linear combination C2 + 3C4 + C7, leading to the first
term of Eq. (2.20) in Ref. [51] contributing at N2LO-in-Nc.

In Ref. [22], the two-nucleon isovector electromagnetic
current equivalent to the minimally coupled terms is de-
rived in terms of Fermi invariants, and the large-Nc scalings
are determined from the spin-flavor structure of the cur-
rent. The operators and scalings match those of Eqs. (A12)
and (A13).
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