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Massive neutron stars with a color superconducting quark matter core
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We construct the equation of state for high-density neutron star matter at zero temperature using the two-flavor
Nambu–Jona-Lasinio (NJL) model as an effective theory of QCD. We build nuclear matter, quark matter, and
the mixed phases from the same NJL Lagrangian, which has been used to model free and in-medium hadrons as
well as nuclear systems. A focus here is to determine if the same coupling constants in the scalar diquark and
vector meson channels, which give a good description of nucleon structure and nuclear matter, can also be used
for the color superconducting high-density quark matter phase. We find that this is possible for the scalar diquark
(pairing) interaction, but the vector meson interaction has to be reduced so that superconducting quark matter
becomes the stable phase at high densities. We compare our equation of state with recent phenomenological
parametrizations based on generic stability conditions for neutron stars. We find that the maximum mass of
a hybrid star, with a color superconducting quark matter core, exceeds 2.01 ± 0.04 M�, which is the value of
the recently observed massive neutron star PSR J0348+0432. The mass-radius relation is also consistent with
gravitational wave observations (GW170817).
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I. INTRODUCTION

The study of strongly interacting cold matter at high baryon
densities—neutron star matter—has been a very important
and active area of research for several decades [1–6]. This
field has attracted increased attention recently, however, be-
cause of the observation of massive neutron stars exceeding
two solar masses [7,8] and gravitational wave measurements
of a binary neutron star merger event [9–11]. Among the
many theoretical tools used to study dense hadronic matter are
nonrelativistic potential models [12,13], effective field theo-
ries [14,15], and relativistic theories based on a mean-field de-
scription of nucleons interacting via meson exchange [16,17].
The role of hyperons in dense hadronic matter has also been of
interest [18,19]. On the other hand, studies based on effective
quark theories of QCD—often using the framework provided
by the Nambu–Jona-Lasinio (NJL) model [20–23]—have fo-
cused on the existence of a possible quark matter phase at
high densities [24–27] and the role of color superconductiv-
ity [28–30]. In these approaches the transition between the
hadronic and quark matter phases has been described by using
either the Maxwell or Gibbs constructions [31,32], or by inter-
polation methods based on hadron-quark continuity [33–35].
Finite-size effects in the mixed phase caused by the surface
tension of various geometrical shapes, Coulomb interactions,
and charge screening have also been studied [36–38].

The aim of this paper is to present results for the equation
of state of high-density matter and the properties of neutron
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stars, using effective quark degrees of freedom for the descrip-
tion of the hadronic as well as the quark phase. Most of the
calculations done so far on hybrid star matter—hadronic mat-
ter that converts into quark matter at high baryon densities—
combined a relativistic hadronic mean-field theory for nuclear
matter with some version of the NJL model for quark matter,
see for example Refs. [6,39–41]. More phenomenological
approaches used a parametrization of the nuclear and quark
matter phases in terms of polytropes [42] or relativistic density
functionals [43]. In Ref. [44] an interesting attempt was made
to describe a mixture of elementary hadrons and quarks by
using the same Lagrangian, the mixture being determined
by a scalar field, which increases the hadron masses and
decreases the quark masses as the baryon density increases.
An application of this approach to neutron stars can be found
in Ref. [45].

The purpose of our present work differs from the above-
mentioned approaches in the following respect: We wish to
investigate whether a single effective quark theory of QCD,
which can describe the quark structure of free hadrons [46–50]
as well the role of quarks in bound nucleons and nuclear
systems [51–53], can also produce reasonable scenarios for
the hadron-quark phase transition and the properties of neu-
tron stars. Our work is based on the NJL model with the
proper-time regularization scheme [54], which incorporates
important aspects of confinement in hadronic systems [55].
The crucial point that leads to saturation of the nuclear matter
binding energy in the mean-field approximation is the scalar
polarizability of the in-medium nucleons [55], i.e., the nonlin-
ear dependence of the nucleon mass on the constituent quark
mass, which arises naturally in the Faddeev approach based
on the quark-quark correlations in the scalar and axial-vector
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diquark channels [48]. A key question that we will address in
this work is whether the same strength of the scalar diquark
interaction, which is required to reproduce the nucleon mass
and other quark-quark correlation effects in baryons, can also
be used as the pairing interaction in color superconducting
quark matter.

In the course of our investigation, we will formulate a
few conditions for a reasonable scenario of the hadron-quark
phase transition and the resulting properties of neutron stars,
and we will show how these conditions can be satisfied in
our model. An important question that we wish to address
is whether the resulting picture is consistent with the generic
stability conditions for a hybrid star, formulated in Ref. [56]
and generalized in Ref. [57]. Closely related to this is the
role of the repulsive effects in quark matter, which arise from
the interaction in the vector meson channels. The importance
of the isoscalar-vector repulsion in producing a sufficiently
stiff quark matter equation of state has been pointed out in
several recent papers [6,58,59], and here we will also include
the isovector-vector repulsion, which is very important in
nuclei [60,61]. We will compare the required strengths to
those adjusted to the saturation density and symmetry energy
of nuclear matter.

In order to gain insight into these and other related ques-
tions, we will confine ourselves to two light quark flavors
in both the nuclear matter and the quark matter phases, and
neglect finite-size effects in the hadron-quark mixed phase.
It is believed on rather general grounds that at very high
baryon densities a three-flavor color superconducting phase
of quark matter is realized [26], but whether nuclear matter
directly jumps to this phase or to an intermediate two-flavor
color superconducting quark phase depends on model details
such as the in-medium strange quark mass and the strength of
the interaction in the relevant diquark channels [24,62–64].
In any case, the role of strangeness should be investigated
consistently both in the hadronic phase, based, for example,
on the quark-diquark description of the baryon octet as given
in Ref. [65], as well as in the quark phase, and we wish to
leave such extensions to a future work. Concerning finite-size
effects, it has been argued in several papers [66–70] that
surface tension and charge screening tend to work against
spatially extended mixed phases, regaining qualitatively the
simple picture of a Maxwellian first-order phase transition.
We will come back to this point in later sections.

The outline of the paper is as follows: Sec. II discusses
the NJL model and the parameters that enter the calculations;
Sec. III introduces the equations of state for nuclear matter and
quark matter; Sec. IV presents a discussion of our results and a
comparison with data and other related work; and a summary
is given in Sec. V.

II. LAGRANGIAN AND MODEL PARAMETERS

The two-flavor NJL Lagrangian relevant for this study
reads [22,23]:

L = ψ̄ (i/∂ − m)ψ + Gπ [(ψ̄ψ )2 − (ψ̄γ5�τψ )2]

− Gω(ψ̄γ μψ )2 − Gρ (ψ̄γ μ�τψ )2

+ GS (ψ̄γ5Cτ2λ
Aψ̄T )(ψT C−1γ5τ2λ

Aψ ), (1)

where ψ is the quark field, m is the current quark mass,
C is the charge conjugation matrix, λA (A = 2, 5, 7) are
the antisymmetric color Gell-Mann matrices, and τ are the
Pauli isospin matrices. The four-fermion coupling constants
in the scalar q̄q channel, the isoscalar and isovector vector
q̄q channels, and the scalar qq channel are denoted by Gπ ,
Gω, Gρ , and GS , respectively.1 The other model parameters
are the four-fermion coupling constant in the axial-vector
qq channel [48], and the infrared (IR) and ultraviolet (UV)
regularization parameters, which are used with the proper-
time regularization scheme [54,55].2

We stress that in this work we use the same model pa-
rameters as in several previous calculations, which focused
on the structure of nuclear matter systems [52,60,61]. That
is, the parameters of the model are determined in the vacuum,
the single hadron sector, and nuclear matter sector as follows:
We fix the IR cutoff 
IR = 0.24 GeV, and choose the UV
cutoff 
UV, m, and Gπ so as to give a constituent quark
mass in vacuum of M0 = 0.4 GeV, the pion decay constant
fπ = 0.93 GeV, and the pion mass mπ = 0.14 GeV using
the standard methods based on the gap and Bethe-Salpeter
equations [48]. The scalar diquark coupling GS and its axial-
vector counterpart GA are then determined in the Faddeev
equation approach to reproduce the vacuum values of the nu-
cleon mass (MN0 = 0.94 GeV) and the nucleon axial coupling
(gA0 = 1.267) [51]. Finally, by using the model description for
nuclear matter explained in Sec. III, the vector couplings Gω

and Gρ are determined from the binding energy per nucleon
in symmetric nuclear matter (EB = −15.7 MeV) and the sym-
metry energy (a4 = 32.0 MeV) at the saturation density [60].
We note that in this framework the saturation density of sym-
metric nuclear matter becomes ρ0 = 0.16 fm−3. The resulting
values for the model parameters are given in Table I.3 Using
the nuclear matter equation of state presented in Sec. III, and

1The coupling constant GS of Eq. (1) is the same as GD used in most
works on the NJL model for high-density quark matter. It is related
to Gs used in our previous works on the NJL model (see for example
Eq. (7) of Ref. [60]) by GS = 3

2 Gs.
2The interaction Lagrangian in the axial-vector diquark channel

has the form GA(ψ̄γμCτiτ2λ
Aψ̄T )(ψT C−1γ μτ2τiλ

Aψ ), where GA is
related to Ga of our previous works (see for example Eq. (7) of
Ref. [60]) by GA = 3

2 Ga. Because we do not consider spin triplet
pairing here, this interaction is used only in the quark-diquark
bound state equation. We also mention that chiral symmetry of the
interaction Lagrangian requires additional terms in the vector qq and
the axial-vector q̄q channels, which however are not directly related
to our calculation.

3Note that Gπ obtained in the present proper-time regularization
scheme is almost three times larger than the value obtained in the
three-momentum cutoff scheme (see for example Ref. [24]). As a
consequence, for the same vacuum value M0 = 0.4 GeV, our vac-
uum chiral condensate is roughly three times smaller in magnitude
than in the three-momentum cutoff scheme. Nevertheless, our value
〈ψ̄ψ〉1/3

0 = −0.216 GeV is still close to the upper limit of the range
[−0.33, −0.24] derived from QCD sum rules at a renormalization
scale of 1 GeV [71]. By choosing smaller values for the input M0 the
magnitude of the chiral condensate increases [72].
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TABLE I. Values for the model parameters, which are determined in the vacuum, single hadron, and nuclear matter sectors. The
regularization parameters and the current quark mass are given in units of GeV, and the coupling constants in units of GeV−2.


IR 
UV Gπ GS GA Gω Gρ m

0.240 0.645 19.04 11.24 4.20 6.03 14.17 0.016

the parameters of Table I, gives an effective nucleon mass of
MN = 0.744 GeV at nuclear matter saturation density, and an
incompressibility of K = 0.370 GeV.

In the quark matter phase there should be no effects from
color confinement so we set 
IR = 0 in this phase. For the
parameters 
UV, m, and Gπ , which follow from the properties
of the vacuum and the pion, we use the same values as in
nuclear matter (see Table I). As discussed in Sec. I, we wish
to address the question whether the same coupling constants
GS , Gω, and Gρ as determined by the free nucleon mass and
the properties of nuclear matter can also be used to describe
the phase transition to color superconducting quark matter and
neutron stars. We therefore introduce two scaling parameters
cs and cv such that in the quark matter phase GS → cs GS ,
Gω → cv Gω, and Gρ → cv Gρ . (We use a common scaling
factor for the vector-isoscalar and vector-isovector interaction
in order to reduce the number of parameters.) The dependence
of our results on the scaling parameters (cs, cv ) will be inves-
tigated in detail in Sec. IV.

III. NUCLEAR MATTER AND QUARK MATTER

In this section we present expressions for the effective
potential (V ) of nuclear matter (NM) and quark matter (QM)
in the mean-field approximation of the two-flavor NJL model
for given values of the two independent chemical potentials
μB and μI for baryon number and isospin. The corresponding
chemical potentials for nucleons and quarks are4

μp = μB + μI , μn = μB − μI , (2)

μu = 1
3 μB + μI , μd = 1

3 μB − μI . (3)

The electron Fermi gas terms are also included, with the
chemical potential μe = −2μI determined by β equilibrium.
Muon contributions will not be included for simplicity. Below
we summarize the unregularized expressions, and refer to
Ref. [55] for a detailed discussion on the proper-time regu-
larization scheme.

4In principle a further chemical potential (μ8) is needed in QM to
guarantee that the mean value of the color is zero, but it turns out to be
very small for the two-flavor case [24,73] and we neglect it here for
simplicity. We also note that in many works the chemical potentials
of u, d quarks are expressed as μq = μ + Qq μQ (q = u, d), where
Qq is the electric charge. While this choice has the merit of easier
physical interpretation, physical quantities as functions of baryon and
charge density of course do not change with different definitions of
the two independent chemical potentials.

The effective potential of NM for fixed chemical potentials
μB, μI is given by [74,75]

V (NM)(M, ω0, ρ0) = Vvac + VN − ω2
0

4 Gω

− ρ2
0

4 Gρ

− μ4
e

12π2
,

(4)

where M is the (in-medium) constituent quark mass and ω0

and ρ0 are the isoscalar- and isovector-vector mean fields,
which must be determined by minimization of the effective
potential. Those minimization conditions are equivalent to
the following definitions in terms of the in-medium quark
condensates:

M = m − 2 Gπ 〈ψ̄ψ〉 , (5)

ω0 = 2 Gω〈ψ†ψ〉, ρ0 = 2 Gρ〈ψ†τ3ψ〉 . (6)

The vacuum (Mexican-hat-shaped) contribution is

Vvac = 12 i
∫

d4k

(2π )4
ln

k2 − M2

k2 − M2
0

+ (M − m)2

4 Gπ

− (M0 − m)2

4 Gπ

.

(7)

The Fermi motion of nucleons in the scalar and vector mean
fields is described by the term

VN = −2
∑

α=p,n

∫
d3k

(2π )3
[μ∗

α − EN (k)] [μ∗
α − EN (k)], (8)

where the effective chemical potential for protons and neu-
trons is given by

μ∗
α = μα − 3ω0 ∓ ρ0 (α = p, n), (9)

and EN (k) =
√

k2 + M2
N . The nucleon mass MN (M ) is deter-

mined as a function of the constituent quark mass M from
the relativistic Faddeev equation for the nucleon, which is ap-
proximated as a quark-diquark bound state [48]. As mentioned
in Sec. I, the function MN (M ) develops a (positive) curvature
with decreasing M, which is crucial for the saturation of the
NM binding energy [55].

The effective potential for QM for fixed chemical poten-
tials μB and μI is given by [74,75]

V (QM)(M,�, ω0, ρ0)

= Vvac + VQ + V� − ω2
0

4 Gω

− ρ2
0

4 Gρ

− μ4
e

12π2
, (10)

where the constituent quark mass M and the mean vector
fields ω0 and ρ0 in QM are given in terms of quark conden-
sates as in Eqs. (5) and (6), while the energy gap � arising
from the pairing in the scalar diquark channel is related to the
BCS-type quark condensate (order parameter of the broken
color symmetry) by

� = −2 GS 〈ψT Cγ5τ2λ2ψ〉 . (11)
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It is well known [25,26] that this type of two-flavor pairing
leaves chiral symmetry intact, and in the limit m = 0 color
superconducting quark matter may therefore exist in the chiral
symmetric phase (M = 0). All four quantities M,�, ω0, ρ0

are determined by minimization of the effective potential for
fixed chemical potentials.

The vacuum part Vvac in Eq. (10) is the same as given in
Eq. (7). The difference between its value at M calculated in
QM and its value at M calculated in NM corresponds to the
bag constant in the NJL model. The term VQ describes the
Fermi motion of quarks moving in the scalar and vector mean
fields:

VQ = −6
∑

α=u,d

∫
d3k

(2π )3
[μ∗

α − E (k)] [μ∗
α − E (k)]. (12)

Here E (k) =
√

k2 + M2 and the effective up and down quark
chemical potentials are defined by

μ∗
α = μα − ω0 ∓ ρ0 (α = u, d ). (13)

The term V� in Eq. (10) arises from the pairing in the scalar
diquark channel, and is given by (see the papers on color
superconductivity cited in Sec. I and also Refs. [76,77])

V� = 2i
∫

d4k

(2π )4

∑
α=+,−

[
ln

k2
0 − (εα + μ∗

I )2

k2
0 − (Eα + μ∗

I )2

+ ln
k2

0 − (εα − μ∗
I )2

k2
0 − (Eα − μ∗

I )2

]
+ �2

4 GS
, (14)

where ε± =
√

[E (k) ± μ∗
B/3]2 + �2 is the quark dispersion

relation5 and E± = |E (k) ± μ∗
B/3|. The effective chemical

potentials for baryon number and isospin are

μ∗
B = μB − 3 ω0, μ∗

I = μI − ρ0. (15)

Using the above forms for the effective potentials, the pressure
(P), baryon and isospin densities (ρB, ρI ), and the energy
density (E) are obtained by

P = −V, ρα = − ∂V

∂μα

(α = B, I ), (16)

E = V +
∑

α=B,I

μαρα. (17)

The charge neutrality condition ρC = (ρB + ρI )/2 = 0 then
implies a relation between the two chemical potentials μB and
μI . The charge neutral equation of state is then a function of
only one variable, which we take to be the baryon density ρB.

The equation of state for the globally charge neutral mixed
phase is then calculated by using the Gibbs construction [31]
as follows: If there is a line in the (μB, μI ) plane between
two points (called X and Y) along which the NM and QM
phases have equal effective potentials (denoted as V (mixed))

5As can be seen from our results in Sec. IV, we always have
� > |μ∗

I |, i.e., the gapless modes [25] (poles at zero frequency for
finite �) are not realized in our calculation, which is consistent with
the findings of other works [62] for intermediate or strong pairing
strength.

and opposite charges, then along this line we have trivially
V (mixed) = x1 V (NM) + (1 − x1)V (QM) for any number x1. We
can calculate the densities and the energy density along this
line by differentiation of V (mixed) according to Eq. (16), not-
ing that ∂V (mixed)/∂x1 = 0. The requirement that the charge
density along this line vanishes, i.e., ρC = x1ρ

(NM)
C + (1 −

x1)ρ (QM)
C = 0, determines x1(μB, μI ) as the volume fraction

of NM in the mixed phase as

x1(μB, μI ) = ρ
(QM)
C

ρ
(QM)
C − ρ

(NM)
C

. (18)

If we approach the point X along a charge neutral line of the
NM phase, then x1 = 1 at point X, and if we leave point Y
towards a charge neutral line of the QM phase, then x1 = 0
at point Y, i.e., x1 decreases from 1 to 0 along the line X →
Y. The baryon density in the mixed phase is then given by
ρ

(mixed)
B = x1ρ

(NM)
B + (1 − x1)ρ (QM)

B , and a similar expression
holds also for the energy density.

IV. RESULTS AND DISCUSSION

Before presenting our results, we would like to explain how
they qualitatively depend on the choice of parameters. The
equation of state in the QM phase is largely controlled by
three parameters in our model: the strength of the attractive
isoscalar-scalar pairing interaction (GS) and the strengths of
the repulsive isoscalar- and isovector-vector interactions Gω,
Gρ . If we increase the pairing attraction, the baryon density ρtr

where the transition NM → QM occurs decreases, resulting in
an overall softening of the equation of state and lower masses
of neutron stars. If the pairing interaction is increased beyond
a certain limit, QM becomes the stable phase of the system
also at low densities, which we regard as unphysical. On the
other hand, if we increase the vector repulsion the transition
density ρtr increases, then the equation of state becomes stiffer
and the masses of the neutron stars increase. If the vector
repulsion is increased beyond a certain limit, NM becomes the
stable phase also for high densities, which we again regard as
unphysical.

As explained at the end of Sec. II, in order to show these
dependencies quantitatively we scale the value of GS given
in Table I by a factor cs, and the values of Gω and Gρ by
a common factor cv , in the calculation of the QM sector. To
characterize the results obtained for different values of cs and
cv we define a physically reasonable scenario by the following
three conditions: (i) The phase transition NM → QM occurs
in the range 2 ρ0 � ρtr � 4 ρ0;6 (ii) the maximum mass of the
star satisfies M (max)

star � 1.97 M� to be compatible with recent
observations [7,8]; and (iii) the hybrid star with a supercon-
ducting QM core is stable against density fluctuations, i.e.,
dMstar/dρB(r = 0) > 0 where ρB(r = 0) is the central baryon
density, in a region of densities above the transition density.

We find that all three conditions can be satisfied in the
rather narrow parameter region marked by yellow in Fig. 1.

6There is no fundamental reason for this choice of limits and our
qualitative results do not change much if this condition is relaxed.
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FIG. 1. Scaling factors cs and cv for the interactions in the scalar
diquark and vector meson channels, used in the QM sector of the
calculation. The conditions (1), (2), and (3) specified in the text
are satisfied in the yellow region, which contains the straight line
cs = cv + 0.3 connecting the points A, B, and C. In the blue region,
containing the reference points R, at least one of the conditions (2) or
(3) is not satisfied. In the white region marked as “NM only” either
the transition density is too high or only the NM phase is realized,
while in the white region marked as “QM only” either the transition
density is too low or only the QM phase is realized.

In the blue region of Fig. 1, which continues towards smaller
values of (cs, cv ) not included in the figure, at least one of
the conditions (ii) or (iii) is not satisfied. Because the yellow
region extends up to cs = 0.98, we find that in practice it is
possible to use the same value of GS for the scalar pairing
strength in QM as for the scalar diquark interaction in the
single nucleon sector. On the other hand, if we would use
the same value of the vector couplings Gω, Gρ as determined
in the nuclear matter sector (see Table I), there would be no
phase transition to QM. In order to satisfy the three conditions
explained above, the vector coupling in QM must be smaller
than in NM by a factor of 0.45 � cv � 0.68.7 In the white
region marked as “NM only” either the transition density is
too high or only the NM phase is realized, while in the white
region marked as “QM only”, either the transition density is
too low or only the QM phase is realized.

In order to discuss our results for the phase structure, we
select point B of Fig. 1 as a representative example where
all three conditions are satisfied. Figure 2 shows the phase
diagrams in Fig. 2(a), the plane of chemical potentials, and
Fig. 2(b), the plane of densities, focusing on the region of
the phase transition for electrically neutral matter. In Fig. 2(a)
the stable phase (phase with the larger pressure) is marked as
NM or QM for each point in the (μB, μI ) plane, together with

7Interestingly, using the same NJL framework to explore possible
explanations of the EMC effect [78–81] in nuclear structure func-
tions, we found that the coupling of the vector mean field to the
struck quark must also be substantially reduced [52]. In this case the
reduction was associated with asymptotic freedom in QCD [82].

FIG. 2. Phase diagrams for the point B of Fig. 1 (cs = 0.9, cv =
0.6) in: (a) the plane of chemical potentials, and (b) in the plane of
densities. In the top panel (a) the “+” and “−” signs refer to the
electric charge state of nuclear matter (NM) or quark matter (QM).
The black dashed line marks electrically neutral matter, with the
arrows indicating the increase of baryon density. The segment X →
Y marks the mixed phase.

the sign of the electric charge density. The dashed line marks
electrically neutral matter. The baryon density increases as we
follow this line from the left end in the NM phase to the right
end in the QM phase. We see that in the section of the NM-QM
mixed phase—the line X → Y in Fig. 2(a)—μB stays almost
constant (within our numerical accuracy of ±1 MeV), while
|μI| increases by about 10 MeV.8

Figure 2(b) shows the phase diagram in the plane of
the densities (ρB, ρC ) in the vicinity of ρC = 0. The dashed

8Note, however, that the constancy (almost zero width) of μB

during the phase transition depends somewhat on the definitions of
the chemical potentials, see Footnote 4. With our present definitions,
we find very small widths (<3 MeV) for most of the parameters
(cs, cv ) in the colored regions of Fig. 1. Large widths occur only for
weak pairing strength and weak vector interaction (cs � 0.2, cv 
 0),
which is consistent with the results of Refs. [74,75], but in this region
the conditions (2) and (3) cannot be satisfied at the same time.
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FIG. 3. The dependence of physical quantities on the baryon
chemical potential in electrically neutral matter for the case of point
B in Fig. 1 (cs = 0.9, cv = 0.6). (a) shows the baryon density and
(b) shows the constituent quark mass M and the energy gap �.

line, which marks electrically neutral matter, passes through
the region of the mixed phase (shown in white). Figure 2
illustrates that along the phase transition line X → Y there is
only small change of the chemical potentials, while the change
in baryon density (about 0.1 fm−3) is appreciable but not too
large, so as to keep our resulting hybrid star gravitationally
stable as will be shown below. We found qualitatively very
similar results for the phase diagrams for all parameter sets
(cs, cv ) in the colored regions of Fig. 1.

In Fig. 3(a) we show the baryon density of electrically
neutral matter as function of the baryon chemical potential
for the parameter set B. As can be anticipated from Fig. 2,
the change of the baryon density during the phase transition
appears as a jump, i.e., within our numerical accuracy (of
±1 MeV) it occurs at constant μB. In Fig. 3(b) we show the
constituent quark mass M and the energy gap � as functions
of μB for the same parameter set B. The values of M in the

QM phase are small compared to those in the vacuum or the
NM phase, which indicates that QM in the range of μB

above the phase transition is already reasonably close to a
phase where chiral symmetry is restored. Our values of � are
larger than in most of the previous works done in the three-
momentum cutoff scheme (see, for example, Refs. [24,76]),
which is mainly because of the larger coupling constant GS

in Eq. (11) for the proper-time regularization scheme, see
Table I for the reference value. [Our values for the BCS-type
condensate in Eq. (11) are very similar to the values obtained
with the three-momentum cutoff scheme.] Nevertheless, in the
region of μB just above the phase transition, we observe a
qualitative agreement of our results shown in Fig. 3(b) with
the results for the two-flavor quark phase shown in Fig. 33
of Ref. [6], or Fig. 6.8 (middle panel) of Ref. [24].9 We
found that all parameter sets (cs, cv ) shown by the yellow
region in Fig. 1 give results that are qualitatively very similar
to those shown in Fig. 3: The values of μB at the phase
transition are 
1220 ± 60 MeV, and the density jump during
the phase transition is 0.09 ± 0.03 fm−3, where the central
values correspond to point B of Fig. 1 and the upper (lower)
values to point A (C). For values of μB just above the phase
transition, we have (M,�) 
 (50 ± 10, 260 ± 20) MeV, with
the lower (upper) values corresponding to point A (C) of
Fig. 1.

In order to separately show the counteracting effects of
pairing and vector repulsion in the QM phase, we show in
Fig. 4(a) the pressure of electrically neutral matter as a func-
tion of the baryon density for the points A, B, and R in Fig. 1,
as well as the result for the pure NM case. Here the point R,
which satisfies the above conditions (i) and (iii) but not (ii), is
used as a reference point. Starting with case A, we see that by
increasing the pairing strength (A → R) the transition density
decreases substantially, resulting in an overall softer equation
of state. If the vector coupling is then increased (R → B) the
transition density increases again, but stays below case A. As
a result, there is a net decrease of the transition density and
a resulting softening of the equation of state as we go along
the solid line of Fig. 1 in the direction of increasing coupling
constants (A → B). This trend continues as we extend the
line cs = cv + 0.3 up to the point C, for which the results are
shown in Fig. 4(b). In this case cs = 0.98, i.e., the coupling
constant GS is practically the same as determined from the
free nucleon mass and the vector couplings Gω, Gρ are smaller
than the nuclear matter values by a factor of cv = 0.68. The
transition density is about 3 ρ0 for this case.

The results shown in Fig. 4 indicate that the phase tran-
sition, which we described here by the Gibbs construction,
is in fact very similar to the usual Maxwellian first-order
phase transition. This result, which for the case B can be

9More quantitatively, for the case of μB 
 1220 MeV, our Fig. 3(b)
shows values (M,�) 
 (50, 260) MeV, which are very similar to
those shown in Fig. 33 of Ref. [6], while Fig. 6.8 (middle panel) of
Ref. [24] shows (M,�) 
 (40, 130) MeV. As noted above, the large
difference between our value of � and the one of Ref. [24] comes
from our larger coupling constant GS in Eq.(11), i.e., the values of
the BCS-like condensates are very similar.
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FIG. 4. Pressure as function of the baryon density for electrically
neutral matter. (a) shows the results obtained for the points A and B
in comparison to point R of Fig. 1, and (b) shows the result obtained
for the point C. The black solid line is the result of the pure NM case.

anticipated from Figs. 2 and 3, holds for the whole yellow
region of parameters shown in Fig. 1. As a consequence,
the spatial extension of the mixed phase in a hybrid star
will be small compared to the overall size, i.e., if the central
density is sufficiently high the QM phase will begin to form
at the center of the star with an almost sharp boundary to
the surrounding NM phase, which is the scenario depicted
schematically in Fig. 25 of Ref. [4]. Our results for the phase
transition also suggest that the inclusion of finite-size effects
(surface tension of various geometrical shapes, Coulomb in-
teractions and charge screening) in the mixed phase will not
lead to qualitative changes of the overall physical picture:
As mentioned in Sec. I, these effects work against spatially
extended mixed phases, regaining qualitatively the simple
picture of a Maxwellian first-order phase transition [66–68].

FIG. 5. Equation of state (energy density vs. pressure) of charge
neutral matter for the case of parameter set B of Fig. 1. Ptrans and Etrans

are the pressure and energy density of the transition in the NM phase,
E0,QM is the energy density at the beginning of the QM phase, and
�E = E0,QM − Etrans. The squared speed of sound in the QM phase is
c2

QM = (dP/dE )QM.

In order to see whether our results are consistent with
phenomenological parametrizations based on generic stability
criteria for hybrid stars [56,57], we show our equation of
state (energy density vs. pressure) for case B in Fig. 5. We
immediately see that the physical picture is consistent with
those parametrizations: The increase of the energy density
during the phase transition (�E = 136.7 MeV/fm3) is smaller
than the critical value determined from Eq. (2) of Ref. [56]
(�Ecrit = 545.9 MeV/fm3 in our case), which means that
the pressure of QM can counteract the additional downward
gravitational pull—exerted by the additional energy in the
core—on the rest of the star. We can see also consistency with
the more general parametrizations based on a constant speed
of sound in QM [57], and our value c2

QM = 0.56 is sufficiently
high to get a heavy hybrid star [56].10

By using our equations of state as an input to solve the
Tolman-Oppenheimer-Volkoff (TOV) equations [83,84], we
can calculate the properties of neutron stars. The results for
the neutron star mass as a function of the central baryon
density are shown in Fig. 6(a) for the cases of points A,
B, and R of Fig. 1, and in Fig. 6(b) for case C. For case
A (high transition density) one can obtain the largest star
masses, but the range of stability against density fluctuations

10We note that this value c2
QM = 0.56 is large compared to the

weakly coupled value of 1
3 . The related stiffness of our QM core, and

our large values of � [see Fig. 3(b)], have their common reason in our
preference of large coupling constants. While this has the welcome
effect of stabilizing the QM core, it gives rise to conceptual problems
concerning the validity of a quark Fermi surface and the mean-
field approximation. Further work is needed for more quantitative
discussions on this point.
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FIG. 6. Neutron star masses as functions of the central baryon
density ρB(r = 0). (a) shows the results obtained for the points A
and B in comparison to point R of Fig. 1, and the (b) shows the result
obtained for the point C. The black solid line shows the pure NM
case.

[dMstar/dρB(r = 0) > 0] is narrow, i.e., the hybrid star tends
to be unstable. If we increase the pairing strength (A → R), the
overall equation of state becomes softer and the neutron star
masses become smaller, however, the stability of the hybrid
star against density fluctuations is substantially improved.
Increasing the vector coupling (R → B), we can obtain stars
that satisfy M (max)

star � 1.97 M� and show a reasonable range
of stability. Figure 6(b) shows the results obtained for the
point C in Fig. 1. Here the star mass near the onset of the
phase transition is smaller than for the cases A and B, which
expresses the softening of the equation of state near the phase
transition density along the line A → B → C (see Fig. 4),
but for very high central densities the QM equation of state is
stiff enough to support a heavy hybrid star within a reasonably
broad range of stability.

TABLE II. Transition densities ρtr and maximum star masses
Mmax

star for the cases A, B, and C, in comparison to the case R of Fig. 1.

Case cs cv ρtr [fm−3] Mmax
star [M�]

A 0.80 0.50 0.643 2.078
B 0.90 0.60 0.584 2.055
C 0.98 0.68 0.496 2.071

R 0.50 0.90 0.379 1.918

In Fig. 6 we also indicate the recently observed values of
neutron star masses. GW170817 denotes the neutron star co-
alescence event observed by the gravitational wave measure-
ments [9–11], where neutron stars with masses in the range
Mstar = 1.17–1.60 M� were observed and PSR J0348+0432
refers to the observation of massive neutron stars (pulsars) of
mass Mstar = 2.01 ± 0.04 M� [8]. The result of PSR can be
considered as a lower limit for calculations of the maximum
mass of neutron stars. We see that our parameter sets A, B,
and C satisfy this constraint, but the maximum star mass for
case R is too small. In Table II we list the transition densities
and maximum neutron star masses for the cases A, B, and C,
in comparison to the reference case R.

In Fig. 7(a) we show the relation between the neutron star
masses and radii for the cases A, B, and R of Fig. 1, and
Fig. 7(b) shows the results for the case C. The low-density part
of the NM curve (lower part of the solid line in Fig. 7) shows
the characteristics of a case where the pressure drops to zero
(or nearly to zero) at a finite value of the baryon density, as
the density decreases, which is indicative of a bound state in
the absence of gravity.11 Figure 7(a) clearly shows that QM in
case A (highest value of ρtr) tends to be unstable. [The narrow
region of stability shown in Fig. 6(a) for case A becomes
invisible in Fig. 7(a).] Similar to the previous figures, the
effects of the softening of the QM equation of state caused by
increasing the pairing strength (A → R) and the improvement
of the stability caused by increasing the vector couplings (R
→ B) are clearly seen in Fig. 7(a). The behavior of the curves
with increasing vector couplings (R → B) are qualitatively
similar to the results shown in Refs. [32,39], although in those
works only small vector couplings could be used because the
counteracting effects of pairing were not taken into account.
The overall softening of the QM equation of state and the
resulting improvement of the stability along the line A → B
of Fig. 1 continues further as we go on to the case C. In
this case, the star mass at the onset of the phase transition is
lower than in cases A and B, but the QM equation of state
is stiff enough to support heavy hybrid stars with radii of
about 11 km. Our results for all cases shown in Fig. 7 follow

11If the pressure drops to zero at ρB = 0, the lower part of the NM
curves in Fig. 7 would turn to the right side, instead of turning to the
left. We note that real neutron star matter is not self-bound, so the
presence of a self-bound state at low densities may be an artifact of
our model. This, however, affects only the lower parts of the curves
shown in Fig. 7, and not the results on the phase structure and the
maximum mass of the star.
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FIG. 7. Mass-radius relation for neutron stars. (a) shows the
results obtained for the points A and B in comparison to point R
of Fig. 1, and (b) shows the result obtained for the point C. The black
solid line shows the pure NM case.

qualitatively the connected topology of Fig. 2(c) in Ref. [56],
i.e., the pure neutron star and hybrid star configurations form
a connected sequence. [As already mentioned, for case A
this is not immediately evident on the scale of Fig. 7(a).] A
connected sequence of this type has also been obtained in
the calculations of Ref. [42], see their Fig. 7 for the case of
�P > 5%.

We finally remark that our scenario C is completely consis-
tent with the PSR observation of massive neutron stars [7,8],
as shown in Fig. 7(b). The data for the event observed
by GW170817 [9–11] (Mstar = 1.17–1.60 M�, R = 11.9 ±
1.4 km) is also indicated in Fig. 7, and can be reproduced with
a pure NM equation of state. Before drawing firm conclusions,

however, it is most important to closely investigate the role of
strangeness, both in the NM and the QM phase.

V. SUMMARY

We have studied the equation of state for cold high-density
neutron star matter by using the two-flavor NJL model. Our
principal aim was to use a model framework, which is based
on a reasonable description of hadron structure in vacuum
and nuclear matter. We used the Gibbs conditions to construct
the hadron-quark phase transition. Our emphasis was on the
important counteracting roles played by the attractive pair-
ing interaction (coupling constant GS) and repulsive vector
interaction (coupling constants Gω, Gρ) in quark matter. For
this purpose, we scaled the value of GS adjusted to the free
nucleon mass by a factor cs, and Gω, Gρ adjusted to the
binding energy and symmetry energy at the saturation point
of isospin symmetric nuclear matter by a common factor
cv , and investigated the dependence of the results on the
parameters (cs, cv ). We found that there exists a narrow region
of allowed values of these parameters, shown in yellow in
Fig. 1, which give a reasonable description of the hadron-
quark phase transition and the properties of neutron stars.
Importantly, this region extends up to cs = 0.98, i.e., we
found that practically the same strength of the scalar diquark
interaction, which is required to reproduce the nucleon mass
and other quark-quark correlation effects in baryons [48], can
also be used to describe the phase transition to color super-
conducting quark matter and the stable massive hybrid stars.
Concerning the vector interaction, we found that the coupling
constants must be decreased in the quark matter sector by a
factor of 0.45 � cv � 0.68 to obtain a reasonable scenario
for the phase transition and neutron stars. Nevertheless, we
found that the inclusion of the vector repulsion in quark matter
is very important, which is consistent with earlier reported
results [6,58,59].

Our equation of state above the hadron-quark transition
density is close to a phase where chiral symmetry is largely
restored and color symmetry is strongly broken, which is
consistent with the findings of many previous works based
on the two-flavor picture of quark pairing. We compared
our resulting equation of state with the phenomenological
parametrizations of Refs. [56,57], which are based on generic
stability criteria for hybrid stars, and found a qualitative
and quantitative consistency for the region of our allowed
parameters. We found that the stability of massive hybrid stars
favors the largest possible values of the pairing strength and
the vector couplings in quark matter.12 For the case of point
C in Fig. 1, we found a phase transition to QM at about
three times the normal nuclear matter density, and a connected
sequence of pure neutron star and hybrid star configurations.
The maximum star mass in this case exceeds two solar masses,
which is in agreement with recent observations of a massive
neutron star [7,8]. Our equation of state for quark matter,

12Interestingly, a similar preference of large coupling constants has
also been found in a different treatment of the phase transition based
on hadron-quark continuity [6].
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obtained by using the allowed region of parameters, is stiff
enough to support a heavy hybrid star within a reasonably
broad range of stability.

Although we used the Gibbs conditions to describe the
hadron-quark phase transition, our results for the allowed
range of parameters are very similar to the usual Maxwellian
first-order phase transition: The variation of the pressure
during the phase transition is small, and therefore the spatial
extension of the mixed phase inside the star is small compared
to its overall size, resulting in an almost sharp boundary
between the quark matter core and the surrounding nuclear
matter phase. This scenario suggests that the inclusion of
finite-size effects in the mixed phase, which are known to
work against spatially extended mixed phases [32,66–68],
will not lead to qualitative changes of the overall physical
picture. Quantitatively, however, finite-size effects should be
investigated in future applications of our model.

The calculations presented in this work should be extended
to include the effects of strangeness in both the hadronic and
the quark matter phases. For the case of single baryons, recent

studies have shown that the properties of hyperons (masses,
magnetic moments, and form factors) can be described in this
NJL framework [65]. In the quark matter phase different types
of pairings, such as color-flavor locking, should be included,
and the role of a chemical potential associated with color
neutrality should be taken into account. In our view this work
is an important step towards a unified description of single
hadrons, nuclear systems, quark matter, and neutron stars in
the framework of an effective quark theory of QCD.
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