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Particle representation for the kaonic NNK system
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The kaonic system NNK̄ is studied based on the configuration space Faddeev equations. We consider two
models associated with isospin “natural” basis and isospin “charge” basis. One basis is related to another by a
unitary transformation. We show that the “particle representation” for NNK̄ (sNN = 0) system motivated by the
charge basis does not describe the system in terms of coupled particle channels ppK−/pnK̄0. The coupling is
associated with the nondiagonal elements of the matrix representation for the NK̄ potential in the charge basis.
The matrix can be diagonalized by a simple unitary transformation. With this relation, the Kyoto potential is
discussed. The particle configurations of the NNK̄ system may be classified by the presence or absence of the
Coulomb interaction according to an analogy with the NNN system. The NNK̄ (sNN = 0) system is represented
by four particle configurations: ppK−, npK−, npK̄0, and nnK̄0.
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I. INTRODUCTION

The quasibound states in the kaonic NNK̄ (sNN = 0) sys-
tem have been intensively studied in recent years. However,
the theoretical predictions for the NNK̄ (sNN = 0) binding
energy are in disagreement with the values derived from ex-
isting experimental data [1]. The experimental data are above
100 MeV, while theoretical values are about 20 MeV, ob-
tained with the chiral potentials, and about 50 MeV using the
phenomenological potentials. The most recent J-PARC E15
experiment [2] supports the existence of the nuclear bound
system ppK− with an energy of −47 ± 3(stat.)+3

−6(sys.) MeV
that is in agreement with the theoretical prediction of the phe-
nomenological approach of Ref. [3]. However, this does not
mean that the agreement between theory and experiments is
reached, because a two-peak structure of the ppK− spectrum
is proposed in Refs. [4,5] where the ppK− = (K− p)I=0 p =
�∗ p system has the Jπ = 0− ground state with energy about
−100 MeV and a Jπ = 1+ excited state with energy about
−50 MeV. Due to high momentum transfer found in the
J-PARC E15 experiment, the measured peak of −50 MeV
appears to belong to the excited state and not to the ground
state.

Properties of the kaonic system are defined by the NK̄
interaction having a significant difference for isospin singlet
and triplet channels. The isospin singlet component of the NK̄
potential generates a quasibound state corresponding to the
�(1405) resonance below the K− p threshold. The resonance
has a double state nature due to the coupling of the NK̄ qua-
sibound state and the π� resonance [3,6,7]. Discussion about
the experimental background and theoretical interpretations
can be found in Refs. [1,5,8–10].

*ifilikhin@nccu.edu

The theoretical consideration of the NNK̄ system is based
on the isotopic-spin formalism in which mesons K̄0 and K−
are two isospin states of the K̄ particle with isospin 1

2 . The
nucleon is also considered as an isospin 1

2 particle having two
states (proton and neutron) with different projections of the
isospin. According to the isospin formalism, the isospins in
the NNK̄ system are summed as isospins of three identical
particles. In the NNK̄ (sNN = 0) system, the particle channels
ppK− and pnK̄0 can be defined due to the possible particle
transition nK̄0 ↔ pK−. The system can be found in the ppK−
or pnK̄0 state at the same time. The question is how these par-
ticle channels can be described within the isospin formalism.

A particle model was proposed in Ref. [11] within the
“particle representation” for a dK− atomic system. This sys-
tem corresponds to the nuclear NNK̄ (sNN = 1) state. The
particle representation [11] is related to the coupled channels
nnK̄0/npK−, which are possible due to the particle transition
mentioned above. The transformation of the isospin formal-
ism to the particle representation can be obtained by unitary
rotation [12] of the “natural” isospin basis for the NNK̄
system, which includes the elements having fixed value of
isospin of the pairs corresponding to the scheme (i + j) + k
of the isospin addition for particles i, j, k. We will call
this rotation a transformation into the “given charge” isospin
basis. The transformation leads to a modification of the matrix
representation for the NK̄ potential, which is diagonal in the
natural isospin basis. In [11], the nondiagonal matrix elements
of the new representation describe the coupling between nnK̄0

and npK− channels. In that way, the particle picture for
NNK̄ (sNN = 1) is formally included in the isospin formalism.

As an example of such a transformation, one can point out
the Kyoto NK̄ potential proposed within a similar approach in
Refs. [13,14]. In these papers, the given charge basis is named
the “charge basis” and a particle model (with physical masses)
is developed for the coupled nnK̄0/npK− channels. Note that
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the motivation for the transformation of the isospin basis is
the simplicity of the representation of the Coulomb potential,
which becomes diagonal in the charge basis (see for example
[15]).

In the present work, we discuss the channel interpretation
of the particle representation based on the given charge isospin
basis. The goal is to propose a description of the NNK̄ system
in terms of physical particles.

In our study, we used the Faddeev equations in configura-
tion space [16] formulated for a three-body AAB system that
includes two identical particles AA. The Faddeev equations
enable the separation of components of the total wave function
corresponding to the different particle arrangements (AA)B
and A(AB).

II. FADDEEV EQUATION IN CONFIGURATION SPACE

The kaonic cluster NNK̄ (sNN = 0) is represented by the
three-body AAB system with two identical particles. The total
wave function of the system is decomposed into the sum
of the Faddeev components U and W corresponding to the
(NN )K̄ and N (NK̄ ) types of rearrangements: � = U + W −
PW , where P is the permutation operator for two identical
particles. In the expression for �, the sign “−” corresponds
to two identical fermions. Each component is expressed by
corresponding Jacobi coordinates. The Faddeev equations are
presented by two equations for the components U and W [17]:

(
HU

0 + VNN − E
)
U = −VNN (W − PW ),(

HW
0 + VNK̄ − E

)
W = −VNK̄ (U − PW ),

(1)

where HU
0 (HW

0 ) is the kinetic energy operator presented in
the Jacobi coordinates for corresponding rearrangement U
(W ). The wave function of the system AAB is automatically
antisymmetrized with respect to two identical fermions. In the
present work, we consider the s-wave approach for the kaonic
systems. The total angular momentum L = 0 and angular
momenta in the subsystem (NN )K̄ and N (NK̄ ) are equal to
zero.

III. ISOSPIN FORMALISM FOR KAONIC SYSTEM

The NNK̄ (sNN = 0) system is a system with two identical
particles described by Eq. (1). The Faddeev components U
and W are expressed in terms of spin and isospin spaces:

U = Uχspinη
U
isospin, W = Wχspinη

W
isospin,

We consider the NNK̄ system with the triplet isospin state
of the nucleon pair INN = 1. The isospin basis for the NNK̄
system in the state I = 1

2 and Iz = 1
2 can be written us-

ing the isospin functions: η+−+ = η+(1)η−(2)η+(3), η−++ =
η−(1)η+(2)η+(3), η++− = η+(1)η+(2)η−(3). Here, for ex-
ample, η−(k) is the isospin eigenfunction of kth particle
with a projection of − 1

2 . The three-body isospin basis ηU

for the configuration (1 + 2) + 3 includes two elements with
different isospins (singlet or triplet) of the (1+2) pair and can

be written as

η1 = 1√
2

(η+−+ − η−++), singlet,

η2 =
√

2

3

(
η++− − 1

2
η+−+ − 1

2
η−++

)
, triplet. (2)

The basis ηW for the configurations (3 + 1) + 2 [and (2 +
3) + 1] can be obtained from Eq. (2) by cyclical permutations
of the isospin projections [15,18]. The numerical coefficients
in Eq. (2) are the Clebsch-Gordan coefficients defined by the
algebraic combination of three isospin 1

2 particles.
Note that in Ref. [13] the element η2 of Eq. (2) was

decomposed into the sum of two terms: η2 = η1
2 + η2

2 =√
2
3η++− − 1√

6
(η+− + η−+)η+. The first (second) term can

formally correspond to the (pp)K− [(np)K̄0] configurations
within the condition that the isospin functions of nucleons and
kaons are different. Such clear correspondence is not possible
for the configuration N (NK̄ ). While conclusions about the
existence of the coupled fractions (pp)K−/(np)K̄0 have been
made, further analysis of the system NNK̄ within this isospin
basis using the proposed notation was not performed in [13],
and the correspondence of the term η2

2 to the (np)K̄0 fraction
has not been used anywhere else.

The spin states of the NNK̄ system can be described by
spin states of the nucleon pair, which can be spin singlet
or spin triplet. The singlet spin function χ s=0(NN ) is an
asymmetrical function regarding the permutation of nucleons,
χ s=0(NN ) = 1√

2
(χ+− − χ−+), which provides the sign “+”

in Eq. (1). The triplet spin function χ s=1(NN ) is symmetric,
which gives the sign “−” in Eq. (1).

We assumed that s-wave spin/isospin dependent VNN and
VNK̄ potentials are used. The Faddeev components U and W
are represented by the form

U =
2∑

i=1

Uiη
U
i χ s=0, W =

2∑
i=1

Wiη
W
i χ s=0. (3)

This form is used for the separation of the spin-isospin vari-
ables in Eq. (1). The corresponding matrices of representation
of the operators I , P and the potentials VNN and VNK̄ in the
bases ηU and ηW were calculated by the projection procedure
[19]:

〈ηU |I|ηW 〉 = I (U,W ) =
(− 1

2 −
√

3
2√

3
2 − 1

2

)
,

〈ηU |P|ηW 〉 = P(U,W ) =
(

1
2

√
3

2√
3

2 − 1
2

)
,

〈ηW |I|ηU 〉 = I (W,U ) =
( − 1

2

√
3

2

−
√

3
2 − 1

2

)
,

〈ηW |P|ηW 〉 = P(W,W ) =
(

1
2 −

√
3

2

−
√

3
2 − 1

2

)
.
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The matrices of the potentials have diagonal forms according
to the fixed value of the isospin or spin of a pair of particles
in Eq. (2). For the NNK̄ system, this separation leads to the
following form of the Faddeev equations:(

HU
0 + vt

NN − E
)U

= −vt
NN

(
−1

2
W t +

√
3

2
W s − 1

2
pW t +

√
3

2
pW s

)
,

(
HW

0 + vs
K̄N − E

)W s

= −vs
K̄N

(√
3

2
U + 1

2
pW s −

√
3

2
pW t

)
,

(
HW

0 + vt
K̄N − E

)W t

= −vt
K̄N

(
−1

2
U −

√
3

2
pW s − 1

2
pW t

)
. (4)

The isospin singlet and triplet W components of the wave
function are denoted by indexes s and t , and the exchange
operator p acts on the particles’ coordinates only. Here,
the Faddeev component U is restricted by a single element
corresponding to the singlet spin state of the nucleons. The
isospin singlet component of U is equal to zero due to the
right-hand side of the corresponding equation in Eq. (1) being
equal to zero within the applied s-wave approximation. The
corresponding equation is therefore not shown in the set (4).

To describe the pair interactions, one can use s-wave
Akaishi-Yamazaki (AY) [3] or simulating Hyodo-Weise
(sHW) potentials [20]. The potentials effectively reduce the
coupled-channel dynamics into a single channel NK̄ interac-
tion. The effective NN potential may be chosen to be the same
as in Ref. [3]. Our calculation, performed for the AY model,
gives a NNK̄ (sNN = 0) binding energy of 46.3 MeV and
width of 50 MeV, which are close to the values of 47.7 MeV
and 60 MeV, respectively, obtained in Ref. [21].

IV. CHARGE BASIS AND PARTICLE REPRESENTATION

The definition of the charge basis for a three-body
kaonic system and the Kyoto NK̄ potential can be found in
Refs. [13,14]. The components of the Kyoto NK̄ potential
were presented by two terms in the form

V ± = 1
2vs

K̄N ± 1
2vt

K̄N . (5)

This form can be obtained by a unitary transformation of
the natural isospin basis given by Eq. (2). The new isospin
basis was chosen by the particles’ isospin projections, which
are motivated by the “isospin charge” set of particles: ppK−
or pnK−, (+ + −) or (+ − −). The isospin functions η+−+,
η−++, and η++− are a new isospin basis τ which is not
related to definite values of pair isospins. Let us call the new
basis the “given charge basis.” To obtain the transformation
matrix, one has to add an additional element to Eq. (2). This
element describes the isospin state of the NNK̄ (INN = 1)
[NNK̄ (sNN = 0)] system with isospin 3

2 and the projection 1
2

(or − 1
2 ). For the configuration (1 + 2) + 3, this basis element

is written as

η3 = 1√
3

(η+−+ + η−++ + η++−), triplet, (6)

where the pair (1 + 2) is in the triplet isospin state. The pair
potentials NN and K̄N have diagonal representation in the
natural isospin basis defined by Eqs. (2) and (6):

V = diag{vs, vt , vt }. (7)

The transformation matrix of the bases is given as

η = Sτ, (8)

where τ = (τ1, τ2, τ3)T , τ1 = η+−+, τ2 = η−++, τ3 = η++−,
and

S =

⎛
⎜⎜⎝

1√
2

− 1√
2

0

− 1√
6

− 1√
6

√
2
3

1√
3

1√
3

1√
3

⎞
⎟⎟⎠. (9)

The matrix S is unitary: ST S = I . In the given charge basis
(8), the matrix representation for potentials has nondiagonal
elements:

ST V S =

⎛
⎜⎝

1
2 (vt + vs) 1

2 (vt − vs) 0
1
2 (vt − vs) 1

2 (vt + vs) 0

0 0 vt

⎞
⎟⎠

=
⎛
⎝V + V − 0

V − V + 0

0 0 vt

⎞
⎠, (10)

where V + = 1
2 (vt + vs) and V − = 1

2 (vt − vs). These matrix
elements are interpreted in Refs. [11,13,14] as a coupling of
the channels ppK− and npK0.

One can find a similar channel interpretation for the two-
body system NK̄ . The coupled channel Schrödinger equation
was written in Refs. [13,14] as[

H0 − E +
(

V+ V−
V− V+

)]
φ = 0, (11)

where φ = (φ1, φ2)T , φ1 (φ2) corresponds to the K− p (K̄0n)
state of NK̄ , V+ = V + + V −, and V− = V + − V −.

The unitary transformation t = 1√
2
(−1 1

1 1), φ̃ = tT φ, sep-

arates the channels as follows[
H0 − E + 2

(
V − 0

0 V +

)]
φ̃ = 0. (12)

The last equations imply a redefinition for singlet and triplet
components of the NK̄ potential. The potentials vs and vt are
not clearly defined in this model because the components φ1

and φ2 are represented as (−+) and (+−) and the components
φ̃1 and φ̃1 are antisymmetric and symmetric combinations of
φ1 and φ2. In another words, the potentials in Eq. (12) have
to be defined as triplet and singlet components of the NK̄
potential. However, it is not possible due to the definition of
Eqs. (11) and (10) for V + and V − in which vs and vt are
already used. The interpretation of the components φ1 and
φ2 as pK− and nK̄0 components is arbitrary. In the isospin
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space, we have a system of identical particles. For the NK̄
system, the number of “channels” and the number of basis
elements is equal. The problem is when these numbers are not
equal as in the NNK̄ system: two physical channels ppK− and
npK̄0 and three basis elements η+−+, η−++, and η++−. One
element of the basis is extra for the “channel interpretation.”
In the work [11], the problem was artificiality solved by the
introduction of an additional channel pnK̄0. Such a solution
follows the method used to construct the isospin basis as cycli-
cal permutations of isospins of particles: {+ + −, + − +,
− + +}. The descriptions of the NNK̄ system as a system of
particles can be written in the following form: {ppK−, pK− p,
K− pp} or {pK̄0n, pnK̄0, nK̄0 p} or {ppK−, pnK̄0, npK0}
(mixed variant) or {ppK−, pnK̄0, K− pp}. These four variants
reproduce the form {+ + −, + − +, − + +} formally. The set
of physical particles may be arbitrarily chosen as in Ref. [11].
In Ref. [14], the isospin basis τ was restricted by two elements
− + − and + − − described as K− pn and K̄0nn, respectively.
The Kyoto potential simulates the particle transition on this
restricted basis using isospin exchange operators, resulting
in the permutation of pairs of isospin projections −+ and
+− (K− p and K̄0n), which is a transformation of the basis
elements into each other. Thus, the coupling of the channels
has appeared. Notice, however, that the isospin basis is formed
as a basis of identical particles using cyclical permutations.

The unitary transformation S for the matrix representation
of Eq. (1) in the basis η leads to the matrices

ST V I (U,W )S =
⎛
⎝ 0 V + V −

0 V − V +

vt 0 0

⎞
⎠,

ST V P(U,W )S =
⎛
⎝ 0 V − V +

0 V + V −

vt 0 0

⎞
⎠, (13)

ST V I (W,U )S =
⎛
⎝V − 0 V +

V + 0 V −

0 vt 0

⎞
⎠,

ST V P(W,W )S =
⎛
⎝V + 0 V −

V − 0 V +

0 vt 0

⎞
⎠. (14)

The new set of the Faddeev equations has to include additional
equations with isospin triplet potential corresponding to the
isospin element I = 3/2 in the η basis. The transformation of
the isospin basis η does not result in isospinless representa-
tion. The total wave function is represented by the form

� = U + W − PW =
3∑

i=1

(Uiτ
U
i + (1 + P)Wiτ

W
i

)
.

Here, the spin basis χspin is not shown due to the restriction
by a single element corresponding to the singlet spin state of
nucleons. In the isospin basis τ , the Faddeev equations (1)
read (

HU
0 + V + − E

)U1 + V −U2

= −V +(W2 + pW3) − V −(W3 + pW2),

(
HU

0 + V + − E
)U2 + V −U1

= −V −(W2 + pW3) − V +(W3 + pW2),(
HU

0 + vt
NN − E

)U3 = −vt
NN (1 + p)W1,(

HW
0 + V + − E

)W1 + V −W2

= −V −(U1 + pW3) − V +(U3 + pW1),(
HW

0 + V + − E
)W2 + V −W1

= −V +(U1 + pW3) − V −(U3 + pW1),(
HW

0 + vt
NK̄ − E

)W3 = −vt
NK̄ (U3 + pW3). (15)

The numerical coefficients coming from the isospin addition
in Eq. (4) are reduced in Eq. (15) to be equal to 1. The
form (15) has to keep the two-body N + (NK̄ ) threshold.
However, this is hidden by the nondiagonal elements of matrix
of potentials. Diagonalization can be done by the matrix

t1 =

⎛
⎜⎝

1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

⎞
⎟⎠ =

(
t0 0

0 1

)
,

W ′ = t1W , and U ′ = t1U . After diagonalization, the left-hand
side of the new equations for W1 (U1) and W2 (U1) does not
include the potentials V ±, which are replaced by vt and vs.
The new matrices of potentials are diagonal. Equatio (15) is
rewritten as(

HU
0 + vt

NN −E
)U1 = − 1√

2
vt

NN (W2 + pW2 + W3+pW3),

(
HU

0 + vt
NN − E

)U3 = −vt
NN (1 + p)W1,(

HW
0 + V + − E

)W1 + V −W2

= −V −
(

1√
2
U1 + pW3

)
− V +(U3 + pW1),

(
HW

0 + V + − E
)W2 + V −W1

= −V +
(

1√
2
U1 + pW3

)
− V −(U3 + pW1),

(
HW

0 + vt
NK̄ − E

)W3 = −vt
NK̄ (U3 + pW3) (16)

after the transformation t1 for the components U1 and U2. The
component U ′

2 is equal to zero within the s-wave approach and
is not shown. We keep the notation U1 for the component U ′

1.
To perform the transformation, we take into account that

t0

(
V + V −

V − V +

)
tT
0 =

(
vt 0

0 vs

)
,

t0

(
V − V +

V + V −

)
tT
0 =

(
vt 0

0 −vs

)
.

Transforming the components W1 and W2 in Eq. (16), we
obtain(

HU
0 + vt

NN − E
)U1 = − 1√

2
vt

NN (1 + p)(W2 + W3),

(
HU

0 + vt
NN − E

)U3 = −vt
NN (1 + p)W1,
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(
HW

0 + vt
NK̄ − E

)W ′
1

= − 1√
2

vt
NK̄

(
1√
2
U1 + U3 + pW1 + pW3

)
,

(
HW

0 + vs
NK̄ − E

)W ′
2

= − 1√
2

vs
NK̄

(
1√
2
U1 − U3 + pW3 − pW1

)
,

(
HW

0 + vt
NK̄ − E

)W3 = −vt
NK̄ (U3 + pW3),

where W1 = 1√
2

(W ′
1 − W ′

2) and W2 = 1√
2

(W ′
1 + W ′

2).
After substitution, we have(
HU

0 + vt
NN − E

)U1

= − 1√
2
vt

NN (1 + p)

(
1√
2

(W ′
1 + W ′

2) + W3

)
,

(
HU

0 + vt
NN − E

)U3 = − 1√
2

vt
NN (1 + p)(W ′

1 − W ′
2),

(
HW

0 + vt
NK̄ − E

)W ′
1

= − 1√
2
vt

NK̄

[
1√
2
U1 + U3 + pW3 + 1√

2
p(W ′

1 − W ′
2)

]
,

(
HW

0 + vs
NK̄ − E

)W ′
2

= − 1√
2
vs

NK̄

[
1√
2
U1 − U3+pW3 − 1√

2
p(W ′

1−W ′
2)

]
,

(
HW

0 + vt
NK̄ − E

)W3 = −vt
NK̄ (U3 + pW3). (17)

We have thus obtained an analog for Eq. (4) where the
equations including isospin singlet or triplet potentials are
not associated with physical channels. There is no a reason
to interpret Eq. (17) as equations which are describing the
channel coupling. The channel interpretation requires at least
two isospin singlet potentials in the equations presenting the
ppK−/npK̄0 system (vpK− and vnK̄0 ). Equation (17) includes
only a single equation with this potential. The obvious reason
for the difference is that the set of NK̄ potentials of the isospin
model is defined by the set of pair isospin states, which are
possible when the total isospin is I = 1

2 or I = 3
2 . The set is

composed of the singlet, triplet, and triplet potentials. There-
fore, the particle interpretation [11,13,14] proposed within the
given charge formalism does not correspond to the equations
which describe the NNK̄ system.

We can restrict Eq. (17) to keep two components U1, W ′
1

and W ′
2 as in Ref. [14] and ignore the components U3 and W3

corresponding to the I = 3
2 state. In the notations of Eq. (4),

the restricted set takes the form

(
HU

0 + vt
NN − E

)U = −vt
NN (1 + p)

(
1

2
√

3
W s − 1

2
W t

)
,

(
HW

0 + vs
NK̄ − E

)W s = −vs
NK̄

(√
3

2
U + 1

2
pW s +

√
3

2
pW t

)
,

(
HW

0 + vt
NK̄ − E

)W t = −vt
NK̄

(
−1

2
U + 1

2
pW t + 1

2
√

3
pW s

)
.

(18)

TABLE I. An analogy between the NNK̄ and NNN systems,
where particle configuration is defined by using the Coulomb
interaction.

Coulomb interaction NNK̄ (sNN = 0) NNN

No nnK̄0 nnp, 3H, n-d
Yes ppK− ppn, 3He, p-d

Obviously, the solutions of Eqs. (17) and (4) have to be
different due to difference of the right-hand sides of the
equations. To obtain the same solution, we have to keep the
components U3 and W3 in Eq. (17).

To continue the analysis for the problem of separation
particle channels, one can consider an analogy using the three-
body nucleon system NNN . The isospin variables of wave
functions of both systems NNK̄ and NNN are the same. The
particle picture for the NNN system can be defined when the
Coulomb interaction is taken (or not taken) into account. We
present this analogy in Table I. The NNN system is taken to
be the npn system or 3H nucleus when the Coulomb potential
is not included in the physical model. The same model with
the Coulomb potential describes the ppn system or 3He nu-
cleus. Note, that the known low-energy p-d scattering prob-
lem is more complicated than the problem of n-d scattering
due to different asymptotic boundary conditions. According
to the analogy, one has to separate two particle configurations
of the kaonic cluster NNK̄ (sNN = 0). The first one is the nnK̄0

system and the second one is the ppK− system. The systems
are described by the same equations (4) [or (17)]. There is a
small energy gap between ground state levels corresponding
systems that are induced by the Coulomb potential.

In Ref. [19], the given charge isospin basis was used to
formulate a three-nucleon problem for the system AAB where
the proton and neutron are nonidentical particles. The three-
body problems for the systems npn and ppn were separately
considered; however, they were based on the same Faddeev
equations, taking into account the Coulomb potential and the
difference of the nn and pp interactions. The approach [19]
allows us to study the charge symmetry breaking effect of
the nucleon-nucleon interaction in a phenomenological way.
Also, one can define an analog of the charge symmetry break-
ing effect of the nucleon-nucleon interaction for the systems
nnK̄0 and ppK−.

The particle configurations npK− and npK̄0 can be for-
mally described by the Faddeev equation (4) for the AAB
system. Comparing with the ppK− configuration, one has
to exchange the np and pp potentials and the corresponding
sets of the Coulomb potentials. However, the physical particle
systems npK− and npK̄0 require the use of Faddeev equations
formulated for the system ABC in which all particles are non-
identical, which violates the isospin equivalency of nucleons.
An attempt to use the issospinless model for the coupled
systems ppK−/npK̄0 (sNN = 0) and npK−/nnK̄0 (sNN = 1)
is presented in Ref. [22].

Thus, we can separate four particle configurations related
to the NNK̄ (sNN = 0) system. The configurations can be
sorted by two sets, ppK−, pnK̄0 and npK−, nnK̄0, having the
opposite projections of total isospin. The different inputs for
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the systems are defined by the difference between the pair
nuclear and Coulomb potentials. For example, the systems
ppK− and nnK̄0 differ by addition of the Coulomb potential in
the system ppK− and the distinction of pp and nn spin-singlet
potentials. In addition, according to the charge conservation
principle, these configurations can be classified as neutral and
positively charged.

In Ref. [13], the authors consider two different parti-
cle systems for the NNK̄ (sNN = 0) state with the notation
ppK−-npK̄0 and npK−-nnK̄0. This classification is dictated
by charge conservation (the projections of the total isospin)
and the particle transition. The transition generates the cou-
pling between the channels. It means that the NNK̄ (sNN = 0)
system can be found as the ppK− system and the npK̄0

system, simultaneously, with equal probability [13]. In our
interpretation, within the framework of the simple models
for the NK̄ interaction known from literature, the notation
ppK−-npK̄0 is not possible. The systems ppK− and pnK̄0 are
noncoupled different systems or are equivalent systems when
the Coulomb potential is not taken into account.

V. SUMMARY

The kaonic system NNK̄ is an example of a three-body
system with an isospin-dependent NK̄ interaction. The “nat-
ural” isospin basis includes two elements to describe the
rearrangement channel N (NK̄ ). These elements correspond
to the singlet and triplet states of the NK̄ pair when the
total isospin of the system is I = 1

2 . Without the Coulomb
interaction, the three-body isospin states with I = 1

2 and I = 3
2

are not coupled.
The “particle representation” [11,13,14] for kaonic clusters

is formally related to the “given charge basis,” which was
obtained by a unitary transformation of the natural isospin
basis. The charge basis is complete and includes the three-
body isospin state I = 3

2 with a triplet NK̄ pair state. The
V ± potentials obtained in the given charge basis may be
replaced by vt and vs potentials using a simple transformation.
The matrix representation related to the V ± potentials can be
diagonalized to include the singlet vs and triplet vt compo-

nent of the NK̄ potential. Therefore, the Faddeev equations
written in the new isospin basis have to include, as an input,
the singlet, triplet, and again triplet components of the NK̄
potential. The resulting set of Faddeev equations does not
have a structure that can describe the particle channel coupling
ppK−/npK̄0 for the NNK̄ (sNN = 0) system with the input
of the pK−, nK̄0, pK̄0 potentials. A possibility for a channel
interpretation of the NNK̄ (sNN = 0) system may be the par-
ticle model for coupled isospinless ppK−and npK̄0 systems
[22]. A similar analysis for the NNK̄ (sNN = 1) system leads
to the same result. The coupled channel particle interpretation
nnK̄0/npK− has to include the nK̄0, pK−, and pK̄0 potentials,
in disagreement with the input of the isospin model for the
NNK̄ (sNN = 1) system.

The Kyoto NK̄ potential, including isospin exchange op-
erators, simulates the particle transition in the framework of
the isospin formalism. However, the isospin part of the Kyoto
NK̄ potential, defined for the restricted given charge basis,
contradicts the definition of the singlet (vs) and triplet (vt )
components of the NK̄ potentials in the natural isospin basis.

The particle interpretation for the NNK̄ (sNN = 0) kaonic
system is formally possible with the presence or absence of
the Coulomb interaction. The NNK̄ (sNN = 0) system with the
Coulomb potential may be described as the ppK− system. The
npK̄0 system may be related to the NNK̄ (sNN = 0) system
where the Coulomb potential is ignored. For the charged
NNK̄ (sNN = 0) kaonic cluster, there exist two quasibound
states ppK− and npK̄0 separated by the energy gap induced
by the Coulomb potential. Generally, one can determine four
particle configurations related to the NNK̄ (sNN = 0) bound
state, using the difference of pair potentials and masses of
kaons to define each configuration: ppK−, npK−, npK̄0, and
nnK̄0.
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