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In this work, the two-photon-exchange (TPE) effects in ep → enπ+ at small −t are discussed within a
hadronic model. Under the pion dominance approximation the TPE contribution to the amplitude can be
described by a scalar function in the limit me → 0. The TPE contributions to the amplitude and the unpolarized
differential cross section are both estimated when only the elastic intermediate state is considered. We find that
the TPE corrections to the unpolarized differential cross section are about from −4% to −20% at Q2 = 1–1.6
GeV2. After considering the TPE corrections to the experimental data sets of unpolarized differential cross
section, we analyze the TPE corrections to the separated cross sections σL,T,LT,TT. We find that the TPE corrections
(at Q2 = 1–1.6 GeV2) to σL are about from −10% to −30%, to σT are about 20%, and to σLT,TT are much
larger. By these analysis, we conclude that the TPE contributions in ep → enπ+ at small −t are important
to extract the separated cross sections σL,T,LT,TT and the electromagnetic magnetic form factor of π+ in the
experimental analysis.
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I. INTRODUCTION

In the last two decades, the two-photon-exchange (TPE)
effects in ep → ep have attracted much interest due to their
importance in the extraction of the electromagnetic (EM) form
factor of protons. Many model-dependent methods have been
used to estimate the TPE contributions in ep → ep such as
the hadronic model [1], GPD method [2], perturbative QCD
(pQCD) calculation [3], dispersion-relation approach [4,5],
SCEF method [6], and phenomenological parametrization [7].
Among all these methods, the dispersion-relation approach for
ep scattering gives the most reliable results in the region with
medium momentum transfer, and the cost is that it needs to
continue the physical quantity analytically into the unphysical
region and take some experimental data as input to fix the
subtraction constant [5]. Furthermore, the difference between
the dispersion-relation approach and the hadronic model can
be expressed as a polynomial function on the squared center-
of-mass energy. In some special cases, the two methods give
the same results.

Due to the important contributions of the TPE corrections
in ep → ep, similar TPE corrections in e+e− → pp [8],
eπ → eπ [9], ep → eNπ [10], μp → μp [11], and ep →
e� → epπ0 [12] are studied, aiming at the precise extraction
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from the experimental data of the EM form factor of protons
in the timelike region, the EM form factor of pions in the
spacelike region, and the EM transition form factors of γ ∗N�

in the spacelike region.
Experimentally, the extraction of the EM form factor of

pion via eπ → eπ is limited at very small Q2 with Q2 ≡ −q2

and with q being the four-momentum transfer because there is
no free pion target. The electromagnetic production of pions
in ep → enπ+ is usually used to extract the EM form factor of
pions [13–17]. It is a natural question that how large the TPE
contributions in this process and how large their corrections
to the extracted EM form factor of pion are. In this work,
we estimate the TPE contributions in this process within
the hadronic model and analyze the TPE corrections to the
separated cross sections which are used to determine the EM
form factor of pions.

We organize the paper as follows: In Sec. II we describe the
basic formulas of our calculation under the pion-dominance
approximation, in Sec. III we express the physical amplitude
as a sum of two invariant amplitudes and discuss the infrared
(IR) property of the TPE amplitude, in Sec. IV we express
the unpolarized differential cross section by the coefficients of
the invariant amplitudes, in Sec. V we present the numerical
results for the TPE corrections to the amplitude, to the un-
polarized differential cross section and to the separated cross
sections σL,T,LT,TT. A detailed discussion on these numerical
results and the conclusion from these numerical results are
also given.

II. BASIC FORMULA FOR ep → enπ+

Under the one-photon exchange (OPE) approximation, the
ep → enπ+ process can be separated into two subprocesses,
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FIG. 1. ep → enπ+ under the one-photon exchange.

e → eγ ∗ and γ ∗ p → nπ+, shown in Fig. 1 where we label the
momenta of initial electron, initial proton, final electron, final
pion, and final neutron as p1–p5, respectively, and for simplic-
ity we define the following five independent Lorentz-invariant
variables: s ≡ (p1 + p2)2, Q2 ≡ −q2 ≡ −(p1 − p3)2, W ≡
[(p4 + p5)2]1/2, t ≡ (p2 − p5)2, and p14 ≡ p1 · p4.

The dynamics of the subprocess e → eγ ∗ is clear while
the dynamics of the subprocess γ ∗ p → nπ+ is very complex.
In this work we limit our discussion on the momenta region
with Q2 small, −t ≈ 0 and W far away from the resonances.
In this region, one can estimate the subprocess γ ∗ p → nπ+ in
the hadronic level as an approximation and can expect that the
π exchange diagram showed in Fig. 2(a) may give the most
important contribution due to the large enhancement from the
pion propagator. In Fig. 2, the s-channel diagram is also pre-
sented to keep the gauge invariance. The sum of the t-channel
and s-channel is gauge invariant. The contribution from the
u-channel diagram with the neutron as the intermediate state
is also gauge invariant independently and is small at low −t
since the electric charge of neutron is zero and it couples to
photons via Fμν . We neglect this contribution in the following
and only consider the sum of the t channel and s channel.

The unpolarized differential cross section at small −t is
usually used to determine the EM form factor of pions. Dif-
ferent from eπ+ → eπ+ process where the EM form factor
of pions can be extracted from the total cross section directly,
the EM form factor cannot be extracted directly from the total
unpolarized cross section of ep → enπ+ and should be ex-
tracted via the φπ dependence of the unpolarized differential
cross section. The TPE contributions may change the angle
dependence of the unpolarized differential cross section and
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FIG. 2. Diagrams for ep → enπ+ under the one-photon ex-
change with (a) the pion exchange diagram and (b) the elastic s-
channel diagram.

then effect the extraction of the EM form factor in an indirect
and nontrivial way.

When we discuss the TPE effects, the contributions from
the corresponding TPE diagrams shown in Fig. 3 should be
considered where the TPE contributions from Figs. 3(d)–3(f)
are also included to keep the gauge invariance. In principle,
when Q2 ≈ 1 GeV2 the contributions from the elastic state
and the inelastic states such as 2π (ρ, σ ), 3π between the two
photons may both give the vital contributions. In this work, as
a first step we limit our discussion on the contributions from
the elastic state since naively the transition form factors γ ∗πρ,
γ ∗πσ are much smaller than the EM form factor γ ∗ππ when
Q2 increase.

When taking Feynman gauge and limiting the discussion
on the small −t , the contributions from the diagrams Figs. 2(a)
and 3(a)–3(c) are the most important in the OPE and TPE lev-
els, respectively. Since we are only interested in the property
of the TPE corrections or the ratio of the TPE contributions
to the OPE contributions, in the following discussion we only
consider the contributions from Figs. 2(a) and 3(a)–3(c). Such
simplification has an advantage that the TPE contributions
have a very simple form in the amplitude level.

Under the above approximation, the ratio of the TPE
contributions to the OPE contributions is not dependent on
the interactions between pions, protons, and neutrons since the
relative TPE corrections are only dependent on the subprocess
eπ∗ → eπ . In the practical calculation we simply take the
interaction between pions, protons, and neutrons as iso-scalar
type. We use the interactions constructed in Ref. [18] to
describe the interactions between the pion and the photon.

Taking the Feynman gauge, one has

M(a)
1γ = −iūe(p3)(−ieγ μ)ue(p1) ūn(p5)(−g0γ5)up(p2)	ν (p4, pt )Sπ (pt )Dμν (p1 − p3),

M(a)
2γ = −i

∫
d4k1

(2π )4
ūe(p3)(−ieγ μ)SF (p1 − k1)(−ieγ ρ )ue(p1) ūn(p5)(−g0γ5)up(p2)	ν (p4, p4 − k2)

× Sπ (p4 − k2)	ω(p4 − k2, pt )Sπ (pt )Dμν (k2)Dρω(k1),

M(b)
2γ = −i

∫
d4k1

(2π )4
ūe(p3)(−ieγ μ)SF (p1 − k1)(−ieγ ρ )ue(p1) ūn(p5)(−g0γ5)up(p2)	ω(p4, p4 − k1)

× Sπ (p4 − k1)	ν (p4 − k1, pt )Sπ (pt )Dμν (k2)Dρω(k1),

M(c)
2γ = −i

∫
d4k1

(2π )4
ūe(p3)(−ieγ μ)SF (p1 − k1)(−ieγ ρ )ue(p1) ūn(p5)(−g0γ5)up(p2)�ων (k1, k2)Sπ (pt )Dμν (k2)Dρω(k1), (1)
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FIG. 3. Diagrams for ep → enπ+ with two-photon exchange where panels (a)–(c) correspond to the π exchange t-channel one-photon
exchange diagram and panels (d)–(f) correspond to the s-channel one-photon exchange diagram.

with

SF (k) = i(k/ + me)

k2 − m2
e + iε

,

Sπ (k) = i

k2 − m2
π + iε

, (2)

Dμρ (k) = −i

k2 + iε
gμρ,

and

	μ(p f , pi ) = ie
{
[1 + f (k2)k2](p f + pi )

μ

− f (k2)
(
p2

f − p2
i

)
kμ

}
,

�μν (k1, k2) = 2ie2[gμν + f
(
k2

1

)(
k2

1gμν − kμ
1 kν

1

)
+ f

(
k2

2

)(
k2

2gμν − kμ
2 kν

2

)]
, (3)

where e = −|e|, k ≡ p f − pi, and f (k2) describes the EM
form factor of pion Fπ (k2) and has the relation

Fπ (k2) = 1 + k2 f (k2). (4)

In Ref. [5], the authors discussed and compared the TPE
contributions calculated from the hadronic model and the
dispersion relation in detail in the ep case. Their discussions
hint that the two methods give the same results when the
interaction between the point-like particles is traditionally
renormalized and give different results when the interaction
between the point-like particles is traditionally nonrenormal-
ized, respectively. In ep scattering, the pure electric interaction
belongs to the former, and the pure magnetic interaction
belongs to the latter. This property is natural since a new
contact interaction should be introduced when the interac-
tion leads to a traditional nonrenormalized UV divergence.
Such contact interaction includes an undetermined finite

contribution in polynomial form and should be also consid-
ered in the hadronic model. This reason can also explain
the behavior of the difference between the dispersion-relation
approach and the hadronic model in the ep case. In the
dispersion-relation approach, such finite contribution is fixed
by the experimental data or by the asymptotic behavior in
high energy predicted by other methods. In the eπ -interaction
case, the situation is different from the ep case since now the
interaction for a point-like charged pseudoscalar particle is
renormalized. On the other hand the gauge invariance results
in a contact term. Such a contact term gives a pure real
contribution and does not appear in the ep case. These two
properties prompts us to use the dynamical hadronic model to
calculate the TPE contribution in ep → enπ+ when only the
elastic state is included.

III. INFRARED DIVERGENCE OF THE AMPLITUDE

Generally, the amplitudes given in Eq. (1) can be expressed
in the following simple form:

M1γ ≡ M(a)
1γ = c(1γ )

1 M1 + c(1γ )
2 M2,

M2γ ≡ M(a+b+c)
2γ = c(2γ )

1 M1 + c(2γ )
2 M2, (5)

with

M1 ≡ iū(p3, me)(2p/4 + p/3 − p/1)u(p1, me) ū(p5, mn)

×	5u(p2, mp),

M2 ≡ iū(p3, me)u(p1, me) ū(p5, mn)	5u(p2, mp), (6)

with 	5 ≡ gπNNγ5 being the vertex of the πNN isoscalar
interaction. The coefficients c(1γ )

1 and c(1γ )
2 can be easily
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gotten and are expressed as

c(1γ )
1 = 4παeFπ (q2)

Q2
(
t − m2

π

) ,

c(1γ )
2 = 0, (7)

with αe ≡ e2/4π .
When taking the approximation me = 0 one has c(2γ )

2 = 0
due to the symmetry and our numerical results also show this
property. The expressions for c(2γ )

1 and c(2γ )
2 are complex;

even the form factor f (k2) is taken as a simple monopole
form. A general property is that there is only IR divergence
in c(2γ )

1 . The detailed analysis shows that the IR divergence
comes from the diagrams in Figs. 3(a) and 3(b), and the
corresponding IR divergence [19] in c(2γ )

1 by keeping me in
the propagator can be expressed as

c(2γ ,a)
1,IR = −2α2

e Fπ (q2)

Q2
(
t − m2

π

) a ln
[−a+

√
a2−4m2

e m2
π

2memπ

]
√

a2 − 4m2
em2

π

ln
λ2

μ2
c

≈ −2α2
e Fπ (q2)

Q2
(
t − m2

π

) (
ln

memπ

a
+ iπ

)
ln

λ2

μ2
c

, (8)

and

c(2γ ,b)
1,IR = −2α2

e Fπ (q2)

Q2
(
t − m2

π

) p14 ln
[ p14+

√
p2

14−m2
e m2

π

memπ

]
√

p2
14 − m2

em2
π

ln
λ2

μ2
c

≈ −2α2
e Fπ (q2)

Q2
(
t − m2

π

) ln
2p14

memπ

ln
λ2

μ2
c

, (9)

where a ≡ 2p14 + Q2 + t − m2
π , λ is the introduced infinites-

imal mass of the photon, μc is an energy scale to keep the
result dimensionless, and the properties that a > 0, p14 > 0
in the physical region are used in the expansions on me.
The results show that the full IR divergence is free from me.
The above IR divergence should be included in any experi-
mental data analysis when the real radiative corrections are
included.

In ep → ep process, the contribution from the TPE di-
agrams under the soft momentum approximation which in-
cludes the IR divergence is usually estimated via the clas-
sical Mo-Tsai’s soft approximation [20] in the experimental
analysis. In this approximation the soft TPE contribution is
calculated by taking the momentum of one photon as zero
both in the numerator and one of the denominators of the
propagators. In Ref. [21], Maximon and Tjon suggest another
approximation to estimate the soft TPE contribution. In their
estimation, the soft contribution is calculated by taking mo-
mentum of one photon as zero only in the numerator. The
analytical expressions in the latter method can be obtained
in ep → ep or eπ → eπ . In the ep → enπ+ process, the
intermediate pion is off-shell, which introduces an additional
variable t , the analytical expressions under the above soft
approximation are very complex and we do not go to show
them. To show the TPE corrections from the finite momen-
tum transform, we define the IR-free TPE contributions as

follows:

c(2γ )
1,fin ≡ c(2γ )

1 − (
c(2γ ,a)

1,IR + c(2γ ,b)
1,IR

)
,

c(2γ )
1,Tsai ≡ c(2γ )

1 − (
c(2γ ,a)

1,Tsai + c(2γ ,b)
1,Tsai

)
, (10)

c(2γ )
1,Tjon ≡ c(2γ )

1 − (
c(2γ ,a)

1,Tjon + c(2γ ,b)
1,Tjon

)
,

where the indexes Tsai and Tjon refer to the corresponding
contributions by the Mo-Tsai’s method and Maximon-Tjon’s
method, respectively. In the practical calculation with the
experimental momenta as inputs, we find that the results
c(2γ )

1,fin with μc = 1 GeV are close to c(2γ )
1,Tsai, while they are

much different from c(2γ )
1,Tjon. For simplicity, in the following

discussion we use c(2γ )
1,fin with μc = 1 GeV to show the TPE

contributions and analyze the experimental data sets.

IV. THE UNPOLARIZED CROSS SECTION

Using the general expression of the amplitudes (5) and (6),
one can get the expressions of the unpolarized differential
scattering cross sections as follows:

d5σ
1γ
un

dEe′d�e′d�π

∝
∑
spin

M1γM∗
1γ

= 8
∣∣c(1γ )

1

∣∣2
(−t )

[
8p2

14 + 4
(
Q2 + t − m2

π

)
× p14 − 2m2

πQ2], (11)

d5σ
2γ
un

dEe′d�e′d�π

∝
∑
spin

2Re
[M2γM∗

1γ

]

= 2Re
{
8c(1γ )

1 c(2γ )
1,fin(−t )

[
8p2

14

+ 4
(
Q2 + t − m2

π

)
p14 − 2m2

πQ2
]

+ 8mec(1γ )
1 c(2γ )

2 (−t )
(−m2

π +4p14+Q2+t
)}

,

(12)

where Ee′ is the energy of final electron in the laboratory
frame, �e′ is the angle of the final electron in the laboratory
frame, �π is the angle of the pion in the center frame of the
pion and final proton, and we have taken c(1γ )

1 as real. From
Eq. (12) one can also see that the contribution from c(2γ )

2 can
be neglected when making the approximation me = 0.

The unpolarized cross sections above can be written as

d5σ X
un

dEe′d�e′d�π

≡ 	νJ (t, φπ → �π )
d2σ X

un

dtdφπ

, (13)

where X refers to 1γ or 2γ , J (t, φπ → �π ) = dt
sin θπ dθπ

, and

	ν = αe
2π2

Ee′
Ee

W 2−m2
p

2mpQ2
1

1−ε
is the virtual photon flux factor with

Ee being the energy of initial electron in the laboratory frame,
mp the mass of the proton, and ε the longitudinal polarization
of the virtual photon, whose definition can be found in the
Appendix. According to the dependence on φπ and ε, the OPE
cross section d2σ

1γ
un /dtdφπ can be separated into four terms
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FIG. 4. Numeric results for Re[c(2γ )
1,Tsai/c(1γ )

1 ] vs −t at fixed Q2, W , ε, and φπ . The left panel is the result with Q2 = 1 GeV2 and the right
panel is the result with Q2 = 1.6 GeV2.

as follows:

2π
d2σ

1γ
un

dtdφπ

= ε
dσ

1γ

L

dt
+ dσ

1γ

T

dt
+

√
2ε(ε + 1)

dσ
1γ

LT

dt
cos φπ

+ ε
dσ

1γ

TT

dt
cos 2φπ

≡ εσ
1γ

L + σ
1γ

T +
√

2ε(ε + 1)σ 1γ

LT cos φπ

+ εσ
1γ

TT cos 2φπ, (14)

where the four separated cross sections dσ
1γ

L,T,LT,TT/dt shortly

written as σ
1γ

L,T,LT,TT only depend on Q2, W , and θπ .
When one takes me = 0 in Eq. (12), one can see that

the TPE cross section d2σ
2γ
un

dtdφπ
has the same form with OPE

cross section. After using the variables Q2, W , ε, θπ , and φπ

to express the cross section one can see that d2σ
2γ
un /dtdφπ

has the same φπ dependence with d2σ
1γ
un /dtdφπ and can

also be separated into the same form as Eq. (14) but now
the four corresponding separated cross sections σ

2γ

L,T,LT,TT are
dependent on Q2, W , θπ , and ε.

V. THE NUMERICAL RESULTS AND DISCUSSION

In the practical calculation, we take the input form factor
Fπ (q2) as the monopole from which is used in Refs. [22]

and [18],

Fπ (q2) = −�2

q2 − �2
, (15)

with � = 0.77 GeV. We use the packages FEYNCALC [23]
and LOOPTOOLS [24] to carry out the analytical and numer-
ical calculations, respectively. For comparison, we take the
experiment kinematics from the Thomas Jefferson National
Accelerator Facility (JLab) Fπ [16] with Q2 = 1 GeV2 and
Q2 = 1.6 GeV2 at W = 1.95 GeV as examples to show the
TPE contributions.

A. Two-photon-exchange contributions
to the amplitude c(2γ )

1,fin/c(1γ )
1

The −t dependence of the TPE correction Re[c(2γ )
1,Tsai/c(1γ )

1 ]
is presented in Fig. 4 where the left and right panels are corre-
sponding to Q2 = 1 GeV2 and Q2 = 1.6 GeV2, respectively.
The (blue) dashed curves and the (olive) dash-dotted curves
refer to the results at φπ = π/6 and φπ = π/3 with ε = 0.65
or 0.63, the (black) solid curves and the (red) dotted curves are
associated with ε = 0.33 or 0.27. The results clearly show that
the absolute magnitude of TPE corrections Re[c(2γ )

1,Tsai/c(1γ )
1 ] at

φπ = π/6 increase when −t increases while the corrections
at φπ = π/3 are not sensitive to −t . Another interesting
property is that the TPE corrections at very small −t are

FIG. 5. Numeric results for Im[c(2γ )
1,Tsai/c(1γ )

1 ] vs −t at fixed Q2, W , ε, and φπ . The left panel is the result with Q2 = 1 GeV2 and the right
panel is the result with Q2 = 1.6 GeV2.
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FIG. 6. Numeric results for c(2γ )
1,Tsai/c(1γ )

1 vs ε at fixed Q2, W , θπ , and φπ . The left panel is the result for the real part and the right panel is
the result for the imaginary part.

not sensitive to φπ while the TPE corrections at large −t are
sensitive to φπ .

At φπ = π/6, one can see that the TPE corrections at small
ε range about from −4% to −6% at small −t and reach about
from −7% to −10% at large −t at Q2 = 1.0 and 1.6 GeV2,
respectively. The magnitude at small −t and small ε is similar
to the TPE corrections in eπ → eπ . These properties suggest
that the −t dependence of the TPE corrections at small φπ is
relatively important.

The −t dependence of the imaginary parts of the TPE
corrections, Im[c(2γ )

1,Tsai/c(1γ )
1 ], is presented in Fig. 5 where the

same definitions as in Fig. 4 are used for the curves. The
results show an interesting and important property: the TPE
corrections to the imaginary part are not sensitive to Q2, φπ ,
−t , and ε at W = 1.95 GeV and are almost about 7%.

The ε dependence of the TPE corrections c(2γ )
1,Tsai/c(1γ )

1 is
presented in Fig. 6 where θπ is taken as π/18, π/12 and
−t is limited within the experimental data sets. The (black)
solid curves and the (red) dotted curves refer to the results
with θπ = π/18 at Q2 = 1 and 1.6 GeV2, respectively. The
(blue) dashed curves and the (olive) dash-dotted curves are
associated with θπ = π/12. The results clearly show that
the absolute magnitude of Re[c(2γ )

1,Tsai/c(1γ )
1 ] decreases when ε

increases. This is a general property of the TPE corrections.
At ε = 0.1 the TPE corrections Re[c(2γ )

1,Tsai/c(1γ )
1 ] reach about

−9% and −12% at Q2 = 1 GeV2 and 1.6 GeV2, respectively.

The results in the right panel clearly show that the TPE
corrections to the imaginary part are not sensitive to ε.

B. Comparison between c(2γ )
1,fin/c(1γ )

1 , c(2γ )
1,Tsai/c(1γ )

1 , and c(2γ )
1,Tjon/c(1γ )

1

In this section, we compare the results c(2γ )
1,X /c(1γ )

1 where
the subindex X refers to fin, Tsai, and Tjon, respectively. In
Figs. 7 and 8 we present the results for c(2γ )

1,X /c(1γ )
1 vs −t

at fixed Q2, W , ε, and φπ . In Figs. 9 and 10 we present
the results for c(2γ )

1,X /c(1γ )
1 vs ε at fixed Q2, W , θπ , and φπ .

These results clearly show that c(2γ )
1,fin are close to c(2γ )

1,Tsai, but

different from c(2γ )
1,Tjon. Experimentally, the soft contributions

by Mo-Tsai’s method are usually used to analysis the data sets.
In our calculation, because the results c(2γ )

1,fin are close to c(2γ )
1,Tsai

and the expression of c(2γ ,a+b)
1,IR is simple and can be used in the

further data analysis directly, we use c(2γ )
1,fin/c(1γ )

1 to analysis the
experimental data sets in the following.

C. Two-photon-exchange corrections to unpolarized
differential cross section

To show the TPE corrections to the unpolarized differential
scattering cross section, we define

δ2γ
un ≡ dσ

2γ
un

dtdφπ

/
dσ

1γ
un

dtdφπ

= 2 Re
[
c(1γ )

1 c(2γ )
1,fin

]
∣∣c(1γ )

1

∣∣2 = 2 Re

[
c(2γ )

1,fin

c(1γ )
1

]
,

(16)

FIG. 7. Comparison between Re[c(2γ )
1,X ]/c(1γ )

1 vs −t at fixed Q2, W , ε, and φπ where the index X refers to fin, Tsai, and Tjon, respectively.
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FIG. 8. Comparison between Im[c(2γ )
1,X ]/c(1γ )

1 vs −t at fixed Q2, W , ε, and φπ where the index X refers to fin, Tsai, and Tjon, respectively.

where we have used the property that c(1γ )
1 is real. Equa-

tion (16) means that the TPE corrections to the unpolarized
cross sections are just twice the real part of the TPE correc-
tions to the coefficient c1. After considering this factor of two,
one can see that the TPE corrections to the unpolarized cross
section at small ε, small φπ , and Q = 1 GeV2 can reach about
−10%, which is not small. Furthermore, the TPE corrections
are sensitive to ε, φπ , and −t or θπ when Q2 and W are fixed.
Generally one can expect that these two properties may result
in nontrivial effects when extracting some physical quantities
from the angle dependence of the differential cross section.

When comparing with the TPE corrections in e+e− →
pp [8], eπ → eπ [9], μp → μp [11], and ep → e� → epπ0

at W = 1.232 GeV [12], we can see that the absolute magni-
tude of the TPE corrections in ep → enπ+ are much larger.
This property can be understood by the fact that the inter-
mediate pion with four-momentum pt ≡ p5 − p2 is off-shell
which is different from the other processes. Naively, if p2

t = t
goes to m2

π , the TPE corrections to the coefficients should be
same as the TPE corrections in the physical process eπ → eπ .
From Fig. 4, one can see that the absolute magnitude of TPE
corrections Re[c(2γ )

1,fin/c(1γ )
1 ] decreases when t increases in the

region t ⊆ [−0.2,−0.08] GeV2.

D. Two-photon-exchange corrections to separated
cross sections σL, σT, σLT, and σTT

Experimentally, the separated cross sections σL, σT, σLT,
and σTT are usually extracted from the original experimental

data dσ Ex
un /dtdφπ via Eq. (14) and are then used to deter-

mine the EM form factor of π+. Since the TPE corrections
to the unpolarized cross section are not small and sensitive
on the angles, one should be careful in the separation. In this
section, we analyze the TPE corrections to the separated cross
sections.

When considering the TPE contribution, one has

dσ Ex
un

dtdφπ

= dσ
ph,1γ

un

dtdφπ

(
1 + δph,2γ

un

)
, (17)

where dσ Ex
un /dtdφπ refers to the experimentally observed

cross section, dσ
ph,1γ

un /dtdφπ refers to the physical cross sec-
tion via OPE, and δ

ph,2γ
un refers to the physical TPE correction

to the cross section. Since actually we do not known all the
dynamics of QCD, the physical dσ

ph,1γ
un /dtdφπ and δ

ph,2γ
un are

difficult to calculate precisely. It is a good approximation to
assume δ

ph,2γ
un ≈ δ

2γ
un since the most important contributions

in the OPE and TPE levels are considered in our calculation,
respectively. We can expect that the model dependence of
their ratio is much weaker than the absolute magnitude, like
the ep → ep case where the relative TPE corrections are not
sensitive to the input form factors. By this approximation,
we have

dσ Ex
un

dtdφπ

≡ dσ
ph,1γ

un

dtdφπ

≈ dσ Ex
un

dtdφπ

(
1 − δ2γ

un

)
. (18)

The current experimental analysis is based the exper-
imental cross section dσ Ex

un /dtdφπ and Eq. (14). After

FIG. 9. Comparison between Re[c(2γ )
1,X ]/c(1γ )

1 vs ε at fixed Q2, W , θπ , and φπ where the index X refers to fin, Tsai, and Tjon, respectively.
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FIG. 10. Comparison between Im[c(2γ )
1,X ]/c(1γ )

1 vs ε at fixed Q2, W , θπ , and φπ where the index X refers to fin, Tsai, and Tjon, respectively.

considering the TPE contributions, in principle the analysis
should be based on the corrected experimental cross section
dσ Ex

un /dtdφπ and Eq. (14). The comparison between the re-
sults from these two analyses can tell us how large are the
TPE corrections to the separated cross sections σL, σT, σLT,
and σTT.

In the practical analysis, we take two data sets named
ExA and ExB as inputs to do the analysis. In the data sets
ExA, we take the experimental extracted σ ExA

L , σ ExA
T , σ ExA

LT ,
and σ ExA

TT by JLab Fπ [16] as inputs to get dσ ExA
un /dtdφπ at

specific ε and φπ via Eq. (14). The corresponding values are
listed in Table I. We take ε as 0.33, 0.65 at low Q2, take ε

as 0.27, 0.63 at high Q2, and take φπ from 5◦ to 355◦ with
�φπ = 25◦. In the data sets ExB, we use the experimentally
fitted formula [16] to produce dσ ExB

un /dtdφπ . For comparison,
the corresponding σ ExB

L , σ ExB
T , σ ExB

LT , and σ ExB
TT are listed in

Table II. In this data sets, we take ε from 0.33 to 0.65 with
�ε = 0.03 at low Q2, take ε from 0.27 to 0.63 with �ε =
0.035 at high Q2 to produce more data points, and take φπ

from 5◦ to 355◦ with �φπ = 25◦.
After getting the data sets dσ ExA,ExB

un /dtdφπ , we use the
estimated TPE corrections in the corresponding kinematics
region to get dσ ExA,ExB

un /dtdφπ . Then we use Eq. (14) to fit the
corrected data sets to get the corrected separated cross sections
σ

ExA,ExB
L , σ

ExA,ExB
T , σ

ExA,ExB
LT , and σ

ExA,ExB
TT .

In Tables III–VI, we present the relative TPE corrections
σ̄ ExA

X /σ ExA
X and σ̄ ExB

X /σ ExB
X where X refers to L, T, LT, and TT,

TABLE I. Numerical results for the separated cross sections
σ ExA

L , σ ExA
T , σ ExA

LT , σ ExA
TT directly taken from JLab Fπ [16].

Q2 W
(GeV2) (GeV) t (GeV2) σ ExA

L σ ExA
T σ ExA

LT σ ExA
TT

0.945 1.970 −0.080 11.840 6.526 1.339 −1.584
1.010 1.943 −0.100 9.732 5.656 0.719 −0.582
1.050 1.926 −0.120 7.116 5.926 0.331 −1.277
1.067 1.921 −0.140 4.207 5.802 0.087 −0.458
1.532 1.975 −0.165 4.378 3.507 0.356 −0.268
1.610 1.944 −0.195 3.191 3.528 0.143 −0.126
1.664 1.924 −0.225 2.357 2.354 −0.028 −0.241
1.702 1.911 −0.255 2.563 2.542 −0.100 −0.083

respectively. The numerical results show a general property
that both data sets give similar relative TPE corrections to
σ

ExA,ExB
L,T,TT and give very different relative TPE corrections to

σ
ExA,ExB
LT at some special points. The latter can be understood

in a simple way since, in these points, the input data sets
σ

ExA,ExB
LT are much smaller than the others. This means that

the relative uncertainty to the extracted σ
ExA,ExB
LT actually is

much larger than others.
At Q2 ≈ 1 GeV 2 and −t ≈ 0.1 GeV2, the relative TPE

corrections to σ
ExA,ExB
L are about −10% and the corrections

to σ
ExA,ExB
T are about 20%. When Q2 and −t increase, the

relative TPE corrections to σ
ExA,ExB
L reach about from −20%

to −30%, while are still about 20% to σ
ExA,ExB
T . The relative

TPE corrections to σ
ExA,ExB
TT are small at small −t and are

large and sensitive to the input data sets at large −t . the TPE
corrections to σ

ExA,ExB
LT are always large and even become

unreliable and very sensitive to the input data sets at large −t .
The experimentally extracted σL is usually used to determine
the pion form factor Fπ through the Chew-Low method (based
on the Born term model [25]) or the Regge model [26]. Our
results show that the relative TPE corrections to σ

ExA,ExB
L

reach about from −10% to −30% at Q2 = 1–1.6 GeV2. This
means that the relative TPE corrections to the EM form factor
of pions are about on the order of −5% to −15% and should
be considered carefully. At high Q2, one can expect that the

TABLE II. Numerical results for the separated cross sections
σ ExB

L , σ ExB
T , σ ExB

LT , σ ExB
TT produced by the fitted formulas given in

Ref. [16].

Q2 W
(GeV2) (GeV) t (GeV2) σ ExB

L σ ExB
T σ ExB

LT σ ExB
TT

0.945 1.970 −0.080 11.8344 6.8054 1.0266 −0.8270
1.010 1.943 −0.100 8.4637 5.9616 0.5703 −0.8978
1.050 1.926 −0.120 6.0577 5.3624 0.0985 −1.0413
1.067 1.921 −0.140 4.2969 4.9353 −0.0427 −1.2690
1.532 1.975 −0.165 4.6398 3.7839 0.3938 −0.1479
1.610 1.944 −0.195 3.3657 3.3617 0.1901 −0.1395
1.664 1.924 −0.225 2.4370 3.0447 0.0299 −0.1460
1.702 1.911 −0.255 1.7574 2.7978 −0.0997 −0.1569
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TABLE III. Numerical results for the ratios σ̄ ExA
L /σ ExA

L and
σ̄ ExB

L /σ ExB
L . The experimental data sets for σ ExA

L and σ ExB
L are also

listed.

Q2 W
(GeV2) (GeV) t (GeV2) σ ExA

L σ̄ ExA
L /σ ExA

L σ ExB
L σ̄ ExB

L /σ ExB
L

0.945 1.970 −0.080 11.840 0.9209 11.8344 0.9191
1.010 1.943 −0.100 9.732 0.9137 8.4637 0.8967
1.050 1.926 −0.120 7.116 0.8726 6.0577 0.8664
1.067 1.921 −0.140 4.207 0.7820 4.2969 0.8243
1.532 1.975 −0.165 4.378 0.8518 4.6398 0.8510
1.610 1.944 −0.195 3.191 0.7839 3.3657 0.8083
1.664 1.924 −0.225 2.357 0.7095 2.4370 0.7490
1.702 1.911 −0.255 2.563 0.7946 1.7574 0.6669

TPE corrections should be much more important and should
be considered seriously to extract the EM form factor of pions
reliably.

In summary, in this work the TPE corrections to the
amplitude and the unpolarized differential cross section of
ep → enπ+ are estimated in a hadronic model. The TPE
corrections to the extracted four separated cross sections are
also analyzed based on the experimental data sets. Our results
show that, at Q2 = 1–1.6 GeV2, the TPE correction to σL is
about from −10% to −30% and about 20% to σT.
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APPENDIX: THE MOMENTA IN THE LABORATORY
FRAME AND CENTER FRAME OF nπ+

In this Appendix, we list the manifest expressions of the
momenta used in our calculation in the laboratory frame and

TABLE IV. Numerical results for the ratios σ̄ ExA
T /σ ExA

T and
σ̄ ExB

T /σ ExB
T . The experimental data sets for σ ExA

T and σ ExB
T are also

listed.

Q2 W
(GeV2) (GeV) t (GeV2) σ ExA

T σ̄ ExA
T /σ ExA

T σ ExB
T σ̄ ExB

T /σ ExB
T

0.945 1.970 −0.080 6.526 1.2064 6.8504 1.2027
1.010 1.943 −0.100 5.656 1.2104 5.9616 1.1990
1.050 1.926 −0.120 5.926 1.1977 5.3624 1.1932
1.067 1.921 −0.140 5.802 1.1858 4.9353 1.1853
1.532 1.975 −0.165 3.507 1.2312 3.7839 1.2278
1.610 1.944 −0.195 3.528 1.2273 3.3617 1.2275
1.664 1.924 −0.225 2.354 1.2269 3.0447 1.2271
1.702 1.911 −0.255 2.542 1.2453 2.7978 1.2267

TABLE V. Numerical results for the ratios σ̄ ExA
LT /σ ExA

LT and
σ̄ ExB

LT /σ ExB
LT . The experimental data sets for σ ExA

LT and σ ExB
LT are also

listed.

Q2 W
(GeV2) (GeV) t (GeV2) σ ExA

LT σ̄ ExA
LT /σ ExA

LT σ ExB
LT σ̄ ExB

LT /σ ExB
LT

0.945 1.970 −0.080 1.339 1.2046 1.0266 1.2730
1.010 1.943 −0.100 0.719 1.3394 0.5703 1.4263
1.050 1.926 −0.120 0.331 1.7029 0.0985 3.0947
1.067 1.921 −0.140 0.087 3.5629 −0.0427 0.5850
1.532 1.975 −0.165 0.356 1.4101 0.3938 1.4284
1.610 1.944 −0.195 0.143 1.9492 0.1901 1.7674
1.664 1.924 −0.225 −0.028 −3.5338 0.0299 5.4036
1.702 1.911 −0.255 −0.100 −0.1846 −0.0997 −0.2142

the center frame of nπ+. In the center frame of pions (p4) and
neutrons (p5), the momenta labeled as piC are taken as

p1C = (E1C, E1C sin θ1, 0, E1C cos θ1),

p2C = (
E2C, 0, 0, −

√
E2

2C − M2
n

)
,

p45C ≡ p4C + p5C = (W, 0, 0, 0),

qC ≡ p45C − p2C = (
W − E2C, 0, 0,

√
E2

2C − M2
n

)
,

p3C = p1C − qC,

p4C = (EπC, pπC sin θπ cos φπ, pπC sin θπ sin φπ,

× pπC cos θπ ),

p5C = p45C − p4C . (A1)

In the laboratory frame the momenta labeled as piL are
taken as

p1L = (Ee, 0, 0, Ee),

p2L = (mp, 0, 0, 0), (A2)

p3L = (Ee′ , Ee′ sin θe′ , 0, Ee′ cos θe′ ).

TABLE VI. Numerical results for the ratios σ̄ ExA
TT /σ ExA

TT and
σ̄ ExB

TT /σ ExB
TT . The experimental data sets for σ ExA

TT and σ ExB
TT are also

listed.

Q2 W
(GeV2) (GeV) t (GeV2) σ ExA

TT σ̄ ExA
TT /σ ExA

TT σ ExB
TT σ̄ ExB

TT /σ ExB
TT

0.945 1.970 −0.080 −1.584 1.0024 −0.8270 0.9470
1.010 1.943 −0.100 −0.582 0.8963 −0.8978 0.9554
1.050 1.926 −0.120 −1.277 0.9777 −1.0413 0.9711
1.067 1.921 −0.140 −0.458 0.7903 −1.2690 0.9917
1.532 1.975 −0.165 −0.268 0.8833 −0.1479 0.6491
1.610 1.944 −0.195 −0.126 0.6490 −0.1395 0.6349
1.664 1.924 −0.225 −0.241 0.8344 −0.1460 0.6333
1.702 1.911 −0.255 −0.083 0.3141 −0.1569 0.6378
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From these expressions, we have the following relations:

s = 1

2

⎡
⎣ mp

2 + Q2 + W 2 +
√[(

mp
2 + Q2

)2 + 2
(−m2

p + Q2
)
W 2 + W 4

]
(1 − ε2)

1 − ε

⎤
⎦,

t = 1

2W 2

[−m4
p + (

m2
π − W 2)(Q2 + W 2) + m2

p

(
m2

π − Q2 + 2W 2) + t0
√

m4
p + 2m2

p(Q2 − W 2) + (Q2 + W 2)2 cos θπ

]
,

p14 = 1

4W 2

⎧⎨
⎩ t0

[−(
m2

p + Q2
)
t1 + W 2t2

]
cos θπ√

m4
p + 2m2

p(Q2 − W 2) + (Q2 + W 2)2
+ t1

(
m2

p − m2
π − W 2

)

− 2W t0

√√√√ −Q2t1s + Q2
(
m2

p − s
)
W 2[(

m2
p + Q2

)2 + 2
(−m2

p + Q2
)
W 2 + W 4

] sin θπ cos φπ

⎫⎬
⎭, (A3)

with

t0 = √
(mp − mπ − W )(mp + mπ − W )(mp − mπ + W )(mp + mπ + W ),

t1 = m2
p + Q2 − s, (A4)

t2 = m2
p − Q2 − s,

and

ε ≡
[

1 + m4
p + 2m2

p(Q2 − W 2) + (Q2 + W 2)2

2m2
pQ2

tan2 θ ′
e

2

]−1

. (A5)

The expressions of the kinematics are consistent with those used in the JLab Fπ experiment [16].
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Correction: Errors in the subscripts to c appeared in the y-axis
labels of Figs. 4–6, in the first sentences of the affiliated cap-
tions, and in sentences 1 and 3, sentence 1, and sentences 1, 4,
and 6 of the first, third, and fourth paragraphs, respectively, of
Sec. V A. An error in the last term of Eq. (A3) also appeared.
All errors have been fixed.
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