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Recent data on the production of D mesons and �+
c baryons in heavy ion collisions at the BNL Relativistic

Heavy Ion Collider and the CERN Large Hadron Collider exhibit a number of striking characteristics such as
enhanced yield ratios D+

s /D0 and �+
c /D0 and their transverse momentum dependencies. In this article, we derive

the momentum dependence of open charm mesons and singly charmed baryons produced in ultrarelativistic
heavy ion collisions via the equal-velocity quark combination. We present analytic expressions and numerical
results of yield ratios and compare them with the experimental data available. We make predictions for other
charmed hadrons.
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I. INTRODUCTION

In ultrarelativistic heavy ion collisions, heavy quarks and
antiquarks are produced predominantly via initial hard scat-
terings and then experience the entire evolution of a violently
interacting medium of deconfined quarks and gluons—the
quark-gluon plasma (QGP). These heavy flavor quarks and
antiquarks interact strongly with constituents of the QGP
medium [1,2], exchange energy and momentum in the par-
tonic evolution process [3–5], and combine with them to form
heavy flavor hadrons that can be observed experimentally.
Therefore, the production of heavy flavor hadrons is usually
believed to play a very special role in studying the hadroniza-
tion mechanism and properties of the QGP matter [6–11].

Recently, experimental data on open charm mesons and
�+

c baryons with improved precision and extended transverse
momentum (pT ) coverage at the BNL Relativistic Heavy
Ion Collider (RHIC) and the CERN Large Hadron Collider
(LHC) have been published [12–18]. These data show indeed
a number of fascinating features. The most striking ones might
be the enhancement of the strange to nonstrange meson yield
ratio D+

s /D and that of the baryon-to-meson ratio �+
c /D0. It
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has been observed [15,16] that the D+
s /D ratio in ultrarela-

tivistic heavy ion collisions is much higher than predictions
of fragmentation models [19,20]. The �+

c /D0 ratio exhibits
also a very strong enhancement trend at the intermediate-pT

area not only in RHIC Au-Au and LHC Pb-Pb collisions
but also in pp and p-Pb reactions at the extremely high
energies available at LHC [18]. They are much higher than the
predictions of perturbative QCD and event generators based
on fragmentation models [18,21].

Theoretically, much effort has also been put into the
hadronization mechanism of charm quarks in high-energy
heavy ion collisions [1,22–33]. It seems in particular that
the coalescence or (re)combination mechanism should play
an irreplaceable role in describing the production of charmed
hadrons with low and intermediate transverse momenta [1,24–
32]. In this connection, we note in particular that the quark
combination model under equal-velocity combination (here-
after referred to as EVC) [34] provides a very simple and
elegant way to describe the pT dependence of production rates
of hadrons and has been successfully applied [35,36] to pp
and p-Pb collisions to describe the enhancement of �+

c /D0.
It is therefore interesting to see whether it can also be applied
to heavy ion collisions to describe the heavy flavor hadron
production as well.

In this article, we apply the quark combination via EVC
to ultrarelativistic heavy ion collisions to study the production
of open charm D mesons and singly charmed baryons in the
low- and intermediate-pT regions. We present the detailed
derivations and give analytic expressions for pT dependencies
of ratios of production rates of different hadrons. We compare
the results with the experimental data available [12,14,15] and
make predictions for other types of hadrons.

The rest of the article is organized as follows. In
Sec. II, we present the derivation of the momentum-dependent
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production of singly charmed hadrons in the quark combina-
tion model via EVC in ultrarelativistic heavy ion collisions.
We present in particular the analytic expressions for two kinds
of yield ratios measured by RHIC and LHC experiments
[14–17] as the function of pT and discuss their qualitative
properties. In Sec. III, we apply the results obtained in Sec. II
to Au-Au collisions at

√
sNN = 200 GeV. In Sec. IV, we

present a summary.

II. THE CHARMED HADRON PRODUCTION IN THE
QUARK COMBINATION VIA EVC

The basic idea of the quark combination mechanism and
formulas for the momentum dependence have been presented
in many different literatures. An example of the derivation
for light flavor hadrons starting from the general formulas has
been given in Ref. [37] where pT -integrated yield correlations
have been calculated. Here, in this section, for explicitness, we
just follow the same procedure as that in Ref. [37] and present
the results of momentum dependence for singly charmed
hadrons. After that, we present the corresponding results
obtained under EVC.

A. The general formalism

To derive the momentum-dependent production rates of
mesons and baryons in ultrarelativistic heavy ion collisions,
just as in Ref. [37] we start with a color-neutral quark-
antiquark system with Nqi quarks of flavor qi and Nq̄i an-
tiquarks of flavor q̄i and suppose they hadronize via the
quark combination mechanism. The momentum distributions
fMj (p; Nqi , Nq̄i ) and fB j (p; Nqi , Nq̄i ) for the directly produced
meson Mj and baryon Bj are given by

fMj

(
p; Nqi , Nq̄i

) =
∑
q̄1q2

∫
d p1d p2Nq̄1q2 f (n)

q̄1q2

(
p1, p2; Nqi , Nq̄i

)
×RMj ,q̄1q2

(
p, p1, p2; Nqi , Nq̄i

)
, (1)

fB j

(
p; Nqi , Nq̄i

) =
∑

q1q2q3

∫
d p1d p2d p3

× Nq1q2q3 f (n)
q1q2q3

(
p1, p2, p3; Nqi , Nq̄i

)
×RBj ,q1q2q3

(
p, p1, p2, p3; Nqi , Nq̄i

)
, (2)

where f (n)
q̄1q2

and f (n)
q1q2q3

are normalized joint momentum dis-
tributions for q̄1q2 and q1q2q3, respectively; Nq̄1q2 = Nq̄1 Nq2 is
the number of q̄1q2 pairs; Nq1q2q3 is the number of q1q2q3 clus-
ters in the system, and it takes Nq1 Nq2 Nq3 for q1 �= q2 �= q3,
Nq1 (Nq1 − 1)Nq3 for q1 = q2 �= q3, and Nq1 (Nq1 − 1)(Nq1 − 2)
for q1 = q2 = q3; and kernel functions RMj ,q̄1q2 and RBj ,q1q2q3

stand for the probability density for a q̄1q2 pair with momenta
p1 and p2 to combine into a meson Mj of momentum p and
that for a q1q2q3 cluster with p1, p2, and p3 to combine into a
baryon Bj of p, respectively.

Just as discussed in Ref. [37], RMj ,q̄1q2 and RBj ,q1q2q3

carry the kinematical and dynamical information of the quark
combination. Their precise forms cannot be derived from
the first principles due to their complicated nonperturbative
nature. Nevertheless, they are constrained by a number of

symmetry laws and rules such as the momentum conservation,
constraints due to intrinsic quantum numbers such as spin
and flavor, the requirement of the hadronization unitarity so
that the production of all the open and hidden charm hadrons
should exhaust all charm quarks and antiquarks in the system,
and the meson-baryon production competition, and so on. To
take these constraints into account explicitly, we rewrite them
in the following forms:

RMj ,q̄1q2

(
p, p1, p2; Nqi , Nq̄i

)
= CMjR( f )

q̄1q2
RM,q̄1q2

(
p1, p2; Nqi , Nq̄i

)
δ(p1 + p2 − p), (3)

RBj ,q1q2q3

(
p, p1, p2, p3; Nqi , Nq̄i

)
= CBjR( f )

q1q2q3
RB,q1q2q3

(
p1, p2, p3; Nqi , Nq̄i

)
× δ(p1 + p2 + p3 − p). (4)

Here the δ functions are used to guarantee the momentum
conservation. The factors R( f )

q̄1q2
and R( f )

q1q2q3 contain Kronecker
δ’s to guarantee the quark flavor conservation, e.g., if Mj is a
D meson with constituent quark content q̄c, R( f )

q̄1q2
= δq1,qδq2,c.

For R( f )
q1q2q3 , we need to include a number Niter to account

for the fact that there are different iterations for the flavors
of the three quarks and Niter = 1, 3, or 6 for q1 = q2 = q3,
q1 = q2 �= q3, or q1 �= q2 �= q3.

The factor CMj is the probability for M to be Mj if the
quark content of M is the same as Mj and similar for CBj . In
the case that only JP = 0− and 1− mesons and JP = (1/2)+
and (3/2)+ baryons are considered, they are determined
completely by the production ratio of vector to pseudoscalar
mesons and that of JP = (1/2)+ to JP = (3/2)+ baryons with
the same flavor content.

The remaining factor RM,q̄1q2 now stands for the probability
of a q̄1q2 pair with momenta p1 and p2 to combine into a
meson M with any momentum and other quantum numbers
and similarly for RB,q1q2q3 . They depend on the momenta of
the (anti)quarks and their situated environments represented
by Nqi and Nq̄i and should be determined by the dynamics in
the combination process.

In this way, we obtain the momentum distribution for a
charmed meson Dj with quark flavor content q̄1c and that for
a singly charmed baryon Bc

j with q1q2c as

fDj

(
p; Nqi , Nq̄i

) =
∫

d p1d p2Nq̄1c f (n)
q̄1c

(
p1, p2; Nqi , Nq̄i

)
×CDjRM,q̄1c

(
p1, p2; Nqi , Nq̄i

)
× δ(p1 + p2 − p), (5)

fBc
j

(
p; Nqi , Nq̄i

) =
∫

d p1d p2d p3

× Nq1q2c f (n)
q1q2c

(
p1, p2, p3; Nqi , Nq̄i

)
CBc

j
Niter

×RB,q1q2c
(
p1, p2, p3; Nqi , Nq̄i

)
× δ(p1 + p2 + p3 − p). (6)

Here, as well as in the following of this article, when talking
about charmed mesons Dj and singly charmed baryons Bc

j , q1,
q2, and q̄1 denote u, d , and s flavors of quarks or antiquarks.
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We emphasize that, as usual in combination models, in this
article we focus the study on the charmed hadron production
in the momentum space where a series of novel phenomena
have been observed experimentally. The number of con-
straints discussed in the second paragraph of this subsection
when constructing kernel functions do not include those from
coordinate space. The influence from the coordinate space
distribution and correlation to the momentum space will be
another important and interesting aspect of future studies on
combination models. See, e.g., Refs. [31,38] and the refer-
ences given there.

B. The momentum distribution under EVC

It has been shown that [34] EVC seems to work well for
light and strange hadron production in low- and intermediate-
pT regions. For charmed hadrons, the mass differences be-
tween the charm and the other quarks are large. It is therefore
much more sensitive and more interesting to see whether the
combination proceeds via EVC or other rules [9].

Under EVC, RM,q̄1q2 and RB,q1q2q3 take

RM,q̄1q2

(
p1, p2; Nqi , Nq̄i

)
= AM,q̄1q2

(
Nqi , Nq̄i

)mq1 + mq2

mq1 mq2

δ

(
p1

mq1

− p2

mq2

)
, (7)

RB,q1q2q3

(
p1, p2, p3; Nqi , Nq̄i

)
= AB,q1q2q3

(
Nqi , Nq̄i

)mq1 + mq2 + mq3

mq1 mq2 mq3

δ

(
p1

mq1

− p2

mq2

)

× δ

(
p1

mq1

− p3

mq3

)
, (8)

where mqi is the constituent quark mass and is taken as
mu = md = 0.33 GeV, ms = 0.5 GeV, and mc = 1.5 GeV in
the numerical calculations in this article; and AM,q̄1q2 and
AB,q1q2q3 are factors denoting the meson-baryon production
competition as well as guaranteeing the unitarity. They depend
on the numbers of different flavor quarks and antiquarks
in the considered system. The mass term is introduced for
normalization, so that the original kernel functions in Eqs. (1)
and (2) take the following forms:

RMj ,q̄1q2

(
p1, p2; Nqi , Nq̄i

)
= CMjR( f )

q̄1q2
AM,q̄1q2

(
Nqi , Nq̄i

)
× δ

(
p1 − xq1

q1q2
p
)
δ
(
p2 − xq2

q1q2
p
)
, (9)

RBj ,q1q2q3

(
p1, p2, p3; Nqi , Nq̄i

)
= CBjR( f )

q1q2q3
AB,q1q2q3

(
Nqi , Nq̄i

)
δ
(
p1 − xq1

q1q2q3
p
)

× δ
(
p2 − xq2

q1q2q3
p
)
δ
(
p3 − xq3

q1q2q3
p
)
, (10)

where xqi
q1q2 = mqi/(mq1 + mq2 ) and xqi

q1q2q3 = mqi/(mq1 +
mq2 + mq3 ) are the fractions of the momentum of the produced
hadron carried by qi.

We note that because the purpose of this article is to
study the momentum distributions of charmed hadrons, we
use the momentum as variable and express the kernel function
determined by EVC in the form of Eqs. (7) and (8). It can

also be expressed in other forms in terms of other variables
depending on the properties that one wishes to describe. For
example, to study the rapidity distribution, we use the rapidity
y as variable and the δ function in Eqs. (7) and (8) should
be replaced by δ(y1 − yi ) multiplied by the kinematic factor
obtained from the Jacobi due to the variable change. It is
also interesting to see that in this case, EVC is just similar to
the so-called “near correlation in rapidity” discussed in quark
combination models some time ago [39].

Substituting Eqs. (7) and (8) into Eqs. (5) and (6) and
carrying out the integration over the quark momenta, we
obtain

fDj (p) = CDjAM,q̄1c
(
Nqi , Nq̄i

)
Nq̄1c f (n)

q̄1c

(
xq1

q1c p, xc
q1c p

)
, (11)

fBc
j
(p) = CBc

j
AB,q1q2c

(
Nqi , Nq̄i

)
Nq1q2cNiter

× f (n)
q1q2c

(
xq1

q1q2c p, xq2
q1q2c p, xc

q1q2c p
)
. (12)

Here and from now on in this article, we suppress the argu-
ments Nqi and Nq̄i in the momentum distribution functions for
explicitness.

The factor AM,q̄1c(Nqi , Nq̄i ) is the probability for a charm
quark to capture a specific antiquark q̄1 to form a meson
in the bulk quark-antiquark system; it should be inversely
proportional to the total number of quarks and antiquarks
Nq + Nq̄. Similarly, AB,q1q2c(Nqi , Nq̄i ) should be proportional
to 1/(Nq + Nq̄)2. Therefore, one can write

AM,q̄1c
(
Nqi , Nq̄i

) = AM/
(
Nq + Nq̄

)
, (13)

AB,q1q2c
(
Nqi , Nq̄i

) = AB/
(
Nq + Nq̄

)2
, (14)

where AM and AB are proportionality coefficients and they
closely relate to the unitarity and the meson-baryon produc-
tion competition. For a given quark-antiquark system, AM

and AB should be universal for all different D mesons and
singly charmed baryons due to the quark flavor blindness of
the strong interaction. Substituting Eqs. (13) and (14) into
Eqs. (11) and (12), respectively, we have

fDj (p) = NcAMCDj λq̄1 f (n)
q̄1c

(
xq1

q1c p, xc
q1c p

)
, (15)

fBc
j
(p) = NcABCBc

j
λq1q2 Niter f (n)

q1q2c

(
xq1

q1q2c p, xq2
q1q2c p, xc

q1q2c p
)
,

(16)

where λq̄1 ≡ Nq̄1/(Nq + Nq̄) and λq1q2 ≡ Nq1q2/(Nq + Nq̄)2. If
we consider a quark-antiquark system in the midrapidity
region at high energies so that the influence of net quarks from
the colliding nuclei can be neglected, the ratio λq̄1 and λq1q2 are
both determined completely by the strangeness suppression
factor λs.

If we neglect correlations of momentum distributions of
quarks and/or antiquarks of different flavors in the system,
i.e., we take

f (n)
q̄1q2

(p1, p2) = f (n)
q̄1

(p1) f (n)
q2

(p2), (17)

f (n)
q1q2q3

(p1, p2, p3) = f (n)
q1

(p1) f (n)
q2

(p2) f (n)
q3

(p3). (18)

In this case, we obtain

fDj (p) = NcAMCDj λq̄1 f (n)
q̄1

(
xq1

q1c p
)

f (n)
c

(
xc

q1c p
)
, (19)
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fBc
j
(p) = NcABCBc

j
λq1q2 Niter

× f (n)
q1

(
xq1

q1q2c p
)

f (n)
q2

(
xq2

q1q2c p
)

f (n)
c

(
xc

q1q2c p
)
. (20)

By using Eqs. (19) and (20), we can calculate momentum
distributions and ratios for the production of different charmed
hadrons. The factors AM and AB are determined by charm
quark number conservation in the combination process and
the charmed baryon-to-meson production ratio NBc/ND. Here
ND and NBc are the total number of all the produced D
mesons and that of singly charmed baryons. For the charm
quark number conservation, we need in principle to consider
the production of hadrons besides singly charmed ones such
as charmonia, doubly and triply charmed baryons, and even
exotic states. However, the production rates for them are very
small and they exhaust about less than 5% of total charm
quarks [40]. In the numerical calculations in the following
of this article, we neglect them so the charm quark number
conservation just takes ND + NBc ≈ Nc. In this approximation,
AM and AB are just determined by the ratio R(c)

B/M ≡ NBc/ND

that is taken as a parameter fixed by the experimental data of
one yield ratio such as �+

c /D0 in the calculations.

C. Decay contributions

To compare with the experimental data, we need to include
strong and electromagnetic decay contributions from short-
lived charmed resonances [41]. In our case, we need only to
consider decays of D∗ mesons, JP = (3/2)+ singly charmed
baryons, and �c baryons. They all decay into a D meson or
a JP = (1/2)+ singly charmed baryon with a light particle
such as a pion or a photon. In such a decay process, the
momentum of the light daughter particle is so small that can
be neglected compared to that of the heavy daughter charmed
hadron. We can approximately take the momentum of the
daughter charmed hadron equal to that of the mother charmed
hadron. In this approximation, we have, e.g., for D0 mesons,

f (fin)
D0 (p) ≈ fD0 (p) + Br(D∗0 → D0) fD∗0 (p)

+ Br(D∗+ → D0) fD∗+ (p), (21)

where Br’s are the decay branch ratios and 100% and 67.7%
for D∗0 and D∗+, respectively [41]. It follows from Eq. (19)
that

fD∗0 (p) = fD∗+ (p) = RV/P fD0 (p), (22)

where RV/P is the ratio of the production rate of vector to
pseudoscalar mesons with the same quark contents and is
taken as RV/P = 1.5 [35,42]. In this way, we obtain the result
for f (fin)

D0 (p) and similar results for other charmed mesons as
follows:

f (fin)
D0 (p) ≈ 3.516 fD0 (p), (23)

f (fin)
D+ (p) ≈ 1.485 fD+ (p), (24)

f (fin)
D+

s
(p) ≈ 2.5 fD+

s
(p). (25)

Similarly, we take the JP = (1/2)+ to JP = (3/2)+ singly
charmed baryon ratio as 2 [35] and obtain the following:

f (fin)
�+

c
(p) ≈ 5 f�+

c
(p), (26)

f (fin)
�0

c
(p) ≈ f�0

c
(p), (27)

f (fin)
�+

c
(p) ≈ f�+

c
(p), (28)

f (fin)
�++

c
(p) ≈ f�++

c
(p), (29)

f (fin)
�0

c
(p) ≈ 2.5 f�0

c
(p), (30)

f (fin)
�+

c
(p) ≈ 2.5 f�+

c
(p), (31)

f (fin)
�0

c
(p) ≈ 1.5 f�0

c
(p). (32)

From these results, we see clearly that contributions from
resonance decays are important for most of the charmed
hadrons. For example, for �+

c baryons, about 80% are from
decay contributions and only about 20% are directly produced
ones.

D. Ratios of different hadrons

We consider the production of charmed hadrons at midra-
pidity y = 0 and apply Eqs. (19) and (20) to obtain the
pT dependence. From them, we calculate ratios of different
charmed hadrons. In this case, the numbers of different flavor
quarks are just replaced by the number densities dNqi/dy at
y = 0.

We first consider yield ratios of strange to nonstrange
hadrons in the charm sector. We use the results given by
Eqs. (23)–(32) to build the corresponding ratios and obtain
the following:

D+
s

D0
= 0.711λs

f (n)
s̄

(
xs

sc pT
)

f (n)
c (xc

sc pT )

f (n)
d̄

(
xd

dc pT
)

f (n)
c

(
xc

dc pT
) , (33)

�+
c

�+
c

= 0.5λs
f (n)
d

(
xd

dsc pT
)

f (n)
s

(
xs

dsc pT
)

f (n)
c

(
xc

dsc pT
)

[
f (n)
d

(
xd

ddc pT
)]2

f (n)
c

(
xc

ddc pT
) , (34)

�0
c

�0
c

= 0.5λs

[
f (n)
s

(
xs

ssc pT
)]2

f (n)
c

(
xc

ssc pT
)

f (n)
d

(
xd

dsc pT
)

f (n)
s

(
xs

dsc pT
)

f (n)
c

(
xc

dsc pT
) , (35)

�0
c

�+
c

= 0.25λ2
s

[
f (n)
s

(
xs

ssc pT
)]2

f (n)
c

(
xc

ssc pT
)

[
f (n)
d

(
xd

ddc pT
)]2

f (n)
c

(
xc

ddc pT
) . (36)

We can use them to calculate these yield ratios numerically.
Here we see clearly that these ratios depend not only on the
strangeness suppression factor λs but also on the ratios of pT

distributions of different flavors of (anti)quarks.
To see the qualitative features more explicitly, we note

that, because mc is much larger than md and ms, it domi-
nates the sum of mc with other quark masses. We have that
xq1

q1q1c ≈ xq1
q1q2c ≈ xq1

q1c and xc
q1q2c ≈ xc

q1c ≈ xc
q2c, and the latter

should be much larger than the former. We take, in a rough
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approximation, the former as the same, and rewrite Eqs. (33)–
(36) in the following forms:

D+
s

D0
= 0.711λs

f (n)
s̄

(
xs

sc pT
)

f (n)
d̄

(
xd

dc pT
) f (n)

c

(
xc

sc pT
)

f (n)
c

(
xc

dc pT
) , (37)

�+
c

�+
c

≈ 0.5λs
f (n)
s

(
xs

dsc pT
)

f (n)
d

(
xd

ddc pT
) f (n)

c

(
xc

dsc pT
)

f (n)
c

(
xc

ddc pT
) , (38)

�0
c

�0
c

≈ 0.5λs
f (n)
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Here, we see clearly that, besides λs (or λ2
s ), these ratios

are proportional to the ratio of s- to d-quark spectrum (or
squared) and the ratio of c-quark spectrum at slightly different
pT values. Because the values of x involved here are all
quite small for d and s quarks, they should be sensitive
to the d- and s-quark pT spectra in the relatively low-pT

regions. The observed enhancement of strange to nonstrange
charmed hadron ratios does not necessarily come from the
enhancement of λs but can also come from the influence of
the pT spectra of quarks.

Similarly, for baryon-to-meson ratios, we obtain from
Eqs. (23)–(32) that
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We see again that, besides the strangeness suppression fac-
tor λs and AB/AM (determined by the charmed baryon-to-
meson ratio R(c)

B/M), these ratios depend also on the pT spectra

of quarks. Similarly, in the rough estimation with xq1
q1q1c ≈

xq1
q1q2c ≈ xq1

q1c, we can rewrite them as
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Here we see clearly that these ratios, besides λs andAB/AM ,
should be sensitive to the pT spectrum of d or s quarks
in the relatively small-pT region. Because the pT distribu-
tion f (n)

qi
(pT ) of d or s quarks in such pT regions typi-

cally exhibits “rise-peak-fall” behaviors, we expect that these
charmed baryon-to-meson ratios should have similar rise-
peak-fall behaviors. We also expect that these ratios should
have pT dependencies much stronger than those of strange
to nonstrange ratios given by Eqs. (33)–(36) because the
latter depends only on ratios of pT spectra of quarks but
the former depends on the spectrum itself. We would like
to emphasize that Eqs. (41)–(47) are characteristic results in
the equal-velocity quark combination (EVC). They can be
directly used to test the combination hadronization mecha-
nism of charm quarks and the validity of the EVC. They may
also provide special ways to probe the properties of the QGP
due to their close relationships to low-pT spectra of d and s
quarks.

III. APPLICATIONS IN Au-Au COLLISIONS AT RHIC

In this section, we apply the deduced results in Sec. II
to calculate the charmed hadron production at midrapidity in
Au-Au collisions at

√
sNN = 200 GeV. We first present the

normalized pT spectra of quarks and other related parameters.
We then give numerical results of hadron yield ratios. We
finally present predictions for pT spectra and pT -integrated
yield densities of different charmed hadrons.

A. The normalized pT spectra of quarks

In the midrapidity region of Au-Au collisions at high ener-
gies, we can neglect net quark contributions and take isospin
symmetric quark distributions. In this case, we only need the
three parameters λs, R(c)

B/M , and dNc/dy and normalized pT

spectra of d , s, and c quarks as inputs. In QGP in heavy-ion
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TABLE I. λs and parameters for quark distributions in different
centralities in Au-Au collisions at

√
sNN = 200 GeV.

Centrality 0–10% 10–20% 20–40% 40–60% 60–80%

λs 0.49 0.46 0.45 0.45 0.44
Td (GeV) 0.27 0.26 0.25 0.24 0.23
Ts (GeV) 0.34 0.34 0.34 0.33 0.32
αd 0.65 0.65 0.65 0.62 0.58
αs 0.65 0.65 0.65 0.62 0.58
αc (GeV−0.5) 11 10 9 7 6
Tc (GeV) 0.45 0.45 0.45 0.45 0.44
βc 3.65 3.45 3.20 2.85 2.80

collisions, λs takes values in the range 0.4–0.6 [37]. Here, we
use the yield ratio of antibaryons, such as �̄ to p̄ [37,43,44], to
fix the value of λs, and the results in different centralities are
shown in Table I. The R(c)

B/M and dNc/dy are given whenever
they are needed.

For f (n)
d (pT ) and f (n)

s (pT ), we take the modified-thermal
pattern,

f (n)
qi

(pT ) ∝ p
αqi
T exp

( −
√

p2
T + m2

qi
/Tqi

)
, (55)

and extract the parameters Tqi and αqi from data [44,45] on
the pT spectra of �− baryons and φ mesons under EVC. The
obtained results are given in Table I. We also plot f (n)

d (pT ) and
f (n)
s (pT ) in Figs. 1(a) and 1(b).
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FIG. 1. Normalized pT spectra of (a) down, (b) strange, and
(c) charm quarks in different centralities in Au-Au collisions at√

sNN = 200 GeV. In panel (d), we have ratios of pT distributions
of charm quarks in different centralities to the pT distribution in the
60–80% centrality.
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FIG. 2. Ratios of strange to nonstrange charmed hadrons (a)
D+

s /D0, (b) �+
c /�+

c , (c) �0
c/�

0
c , and (d) �0

c/�
+
c , as functions of

pT in Au-Au collisions at
√

sNN = 200 GeV. The solid circles and
squares are data that are taken from Ref. [15]. The solid triangles
denoted pp reaction data at LHC [47] are also plotted for comparison.
The dashed-dotted line in each panel represents the constant 0.711λs,
0.5λs, 0.5λs, or 0.25λ2

s at λs = 0.49, respectively. Dashed curves are
the numerical results for different centralities in Au-Au collisions.

For c quarks, we adopt the hybrid pattern [46], i.e.,

f (n)
c (pT ) ∝ αc pT exp

(
−

√
p2

T + m2
c/Tc

)

+√
pT

[
1.0 + (√

p2
T + m2

c − mc
)/

0.6
]−βc

, (56)

based on the results after the propagation of charm quarks
in the QGP medium in a Boltzmann transport approach [46].
The parameters αc, Tc, and βc are fixed using the data on the
pT distribution of D0 [12] and are given in Table I. We also
plot in Fig. 1(c) f (n)

c (pT ) in different centralities in Au-Au
collisions at

√
sNN = 200 GeV. We see that there is a stronger

suppression in more central collisions, especially in the region
4 GeV < pT < 8 GeV. Shown in Fig. 1(d) are the ratios
of these distributions in different centralities to that in the
60–80% centrality. We see behavior very similar to that of
the nuclear modification factor RCP of D0 mesons measured
in Ref. [12]. In low pT < 2 GeV, pT distributions of charm
quarks are almost the same for different centralities.

Comparing the results in Fig. 1(c) to those given by
Figs. 1(a) and 1(b), we see that the pT dependence of f (n)

c (pT )
is much stronger than that of f (n)

d (pT ) or f (n)
s (pT ). We there-

fore expect that f (n)
c (pT ) should have large influences on both

the pT distributions of charmed hadrons and the ratios given
in the last section.

B. Ratios of strange to nonstrange hadrons

With Eqs. (33)–(36), we calculate yield ratios of strange to
nonstrange charmed hadrons in Au-Au collisions at

√
sNN =

200 GeV. The results denoted by different curves are shown
in Fig. 2. We see that the results are basically consistent with
the data [15]. We also see that the enhancement of D+

s /D0 in
Au-Au collisions compared to those in pp reactions at LHC
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FIG. 3. (a) �+
c /D0 as a function of pT and (b) the pT -integrated

�+
c /D0 in the pT range from 3 to 6 GeV as a function of Npart in

Au-Au collisions at
√

sNN = 200 GeV. Solid squares and stars are
the data from Ref. [14]. Different lines in panel (a) and open circles,
squares, and rhombuses connected with the dotted, solid, and dashed
lines to guide the eye in panel (b) are the calculated results with
different values of R(c)

B/M .

[47] comes mainly from the strangeness suppression factor λs

of the partonic matter in heavy ion collisions.
We also present the results for �+

c /�+
c , �0

c/�
0
c , and

�0
c/�

+
c in Fig. 2. To see the effects of quark spectra in

Eqs. (33)–(36) on these ratios, we plot also the constant
factors in the corresponding panel in Fig. 2, respectively.
We see that quark distributions slightly enhance these hadron
yield ratios at the intermediate-pT region, but just the opposite
at low-pT area.

C. Baryon-to-meson ratios

To calculate baryon-to-meson ratios in the charm sec-
tor, we need the parameter R(c)

B/M to determine AB/AM in

Eqs. (41)–(47). It was fixed as R(c)
B/M = 0.43 in pp and p-Pb re-

actions at the energies available at LHC [35,36]. In heavy ion
collisions its value may be larger due to the baryon-beneficial
environment. To study the effect of R(c)

B/M , we present results

of calculations on �+
c /D0 in Fig. 3 with R(c)

B/M = 0.43, 0.60,
and 1.00, respectively.

From Fig. 3, we see, just as expected, that �+
c /D0 shows a

quite significant pT dependence, and the qualitative feature
is consistent with the data available [14]. We also see that
R(c)

B/M = 0.60 seems to be a suitable result for heavy ion
collisions at top energies available at RHIC. In the following
calculations of this article, we show only results obtained with
this value.

To further study influences of quark distributions on baryon
productions, we calculate the pT dependence of �+

c /D0 in
different centralities in Au-Au collisions at

√
sNN = 200 GeV.

The results are given in Fig. 4. We see that they all exhibit
similar rise-peak-fall behaviors. From central to peripheral
collisions, peak values decrease from about 1.3 to 1.0, and
the locations shift to lower pT . This is due to the centrality
dependence of pT distributions of quarks shown in Fig. 1,
especially charm quarks. Other models, such as the Catania
model [29] that includes coalescence and fragmentation, also
give the rise-peak-fall behavior of �+

c /D0 as the function of
pT . However, the Catania model [29] predicts much flatter
rising behavior at low-pT regions and almost no shift of peak
location from energies available at RHIC to those available
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FIG. 4. (a) �+
c /D0 as a function of pT and (b) the pT -integrated

�+
c /D0 as a function of Npart in Au-Au collisions at

√
sNN =

200 GeV. The data are taken from Refs. [14,18]. In panel (b), the
Au-Au data are for pT in the range from 3 to 6 GeV and the pp data
are for pT in the range from 3 to 4 GeV.

at LHC. Experimental measurements can distinguish these
different models and provide important insights into charm
quark hadronization in high-energy collisions.

Data of the pT -integrated �+
c /D0 from central to peripheral

Au-Au collisions at
√

sNN = 200 GeV show a decreasing
trend [14] that is different from in light sectors [48] where
baryon-to-meson ratios show little centrality dependence. We
see that the calculated results in the same pT range (open
squares in the figure) exhibit indeed such a trend consistent
with the data [14]. However, if we take pT integrated from
0 to 9 GeV (shown by the open crosses in the figure), this
trend disappears and the result is essentially independent
of the centrality and lower than those integrated from 3 to
6 GeV. Such properties come from the centrality dependence
of c-quark distributions given by Fig. 1, where we see a strong
dependence for larger pT but negligible dependence in the
small-pT region. The results for pT integrated from 0 to 9 GeV
are dominated by the small pT contributions.

Encouraged by the agreements with data available, we
make predictions for other similar baryon-to-meson ratios.
The results are given in Figs. 5 and 6.

In Fig. 5, we see that all the ratios exhibit similar rise-
peak-fall behaviors as functions of pT , and the peak locations
change from central to peripheral collisions similar to �+

c /D0.
In Fig. 6, we see similar trends for all these pT -integrated
ratios; i.e., they all show increasing tendencies for results
integrated in the pT region from 3 to 6 GeV but almost flat
tendencies if integrated from 0 to 9 GeV.

At the end of this part, we would also like to emphasize
that in our calculations, not merely �+

c , but all charmed
baryons are enhanced according to the overall ratio R(c)

B/M that
was taken as 0.60 in the calculations. This is different from
other coalescence models where diquarks were introduced to
intensely enhance the production of �+

c , but to less enhance
or even not enhance other charmed baryons [25]. Future
measurements of different charmed baryons should be very
helpful in distinguishing different models and understanding
the enhancement mechanism of charmed baryon production.

D. The pT spectra of charmed hadrons

Having the pT distributions of quarks, we not only cal-
culate the ratios presented above but also the pT spectra of
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FIG. 5. Different baryon-to-meson ratios (a) �0
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FIG. 6. Different pT -integrated baryon-to-meson ratios (a)
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FIG. 7. pT spectra of open charm mesons (a) D0, (b) D+, (c) D+
s ,

and (d) D∗+ in Au-Au collisions at
√

sNN = 200 GeV in different
centralities. The open symbols are data taken from Refs. [12,15].

charmed hadrons obtained under EVC. We present the results
in the following. To obtain not only the shape but also the
magnitudes, we need the rapidity density of charm quarks
dNc/dy (at y = 0) as an input. For this purpose, we estimate
it by extrapolating pp reaction data on the differential cross
section dσ

pp
c /dy and take dNc/dy = 〈TAA〉dσ

pp
c /dy, where

〈TAA〉 is the average nuclear overlap function and can be
calculated by the Glauber model [49,50]. We use dσ

pp
c /dy =

130 ± 30 ± 26 μb recently measured at midrapidity in pp
at

√
s = 200 GeV [14], and we obtain dNc/dy = 2.945 ±

0.680 ± 0.589 in the most-central 0–10% collisions in Au-
Au collisions at

√
sNN = 200 GeV. Considering the data of

D0 [12], we take dNc/dy = 2.45 for the centrality 0–10%.
For the other centralities, 10–20%, 20–40%, 40–60%, and
60–80%, we have dNc/dy = 1.54, 0.76, 0.24, and 0.055,
respectively.

In Fig. 7, we present pT spectra of different D mesons
in Au-Au collisions at

√
sNN = 200 GeV together with data

TABLE II. Yield densities dN/dy of charmed hadrons in the
midrapidity in different centralities in Au-Au collisions at

√
sNN =

200 GeV.

Hadron 0–10% 10–20% 20–40% 40–60% 60–80%

D0 0.893 0.570 0.284 0.0898 0.0207
D+ 0.377 0.241 0.120 0.0379 0.008 74
D∗+ 0.381 0.243 0.121 0.0383 0.008 83
D+

s 0.261 0.151 0.0713 0.0223 0.004 95
�+

c 0.636 0.412 0.207 0.0655 0.0152
�0

c 0.106 0.0687 0.0344 0.0109 0.002 53
�++

c 0.106 0.0687 0.0344 0.0109 0.002 53
�0

c 0.129 0.0758 0.0360 0.0113 0.002 52
�+

c 0.129 0.0758 0.0360 0.0113 0.002 52
�0

c 0.0260 0.0139 0.006 26 0.001 94 0.000 419

054903-8



CHARMED HADRON PRODUCTION VIA EQUAL-VELOCITY … PHYSICAL REVIEW C 101, 054903 (2020)

10
-10

10
-8

10
-6

10
-4

10
-2

1

10

0 5 10

0-10%[×2]
10-20%[×1/2]

20-40%[×1/4]

40-60%[×1/8]

60-80%[×1/16]

(a)   Λc
+

pT  (GeV/c)

d
2 N

/(
2π

p
T
d

p
T
d

y)
  [

(G
eV

/c
)-2

]

10
-10

10
-8

10
-6

10
-4

10
-2

1

10

0 5 10

(b)   Σc
0

pT  (GeV/c)

d
2 N

/(
2π

p
T
d

p
T
d

y)
  [

(G
eV

/c
)-2

]

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

0 5 10

(c)   Ξc
+

pT  (GeV/c)

d
2 N

/(
2π

p
T
d

p
T
d

y)
  [

(G
eV

/c
)-2

]

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

0 5 10

(d)   Ωc
0

pT  (GeV/c)

d
2 N

/(
2π

p
T
d

p
T
d

y)
  [

(G
eV

/c
)-2

]

FIG. 8. Calculated results for pT spectra of singly charmed
baryons (a) �+

c , (b) �0
c , (c) �+

c , and (d) �0
c in different centralities in

Au-Au collisions at
√

sNN = 200 GeV.

available [12,15]. We see that the results agree reasonably
with the data. In Fig. 8, we show results for different charmed
baryons. In Table II, we also present pT -integrated yield den-
sities dN/dy of different charmed hadrons at the midrapidity
in different centralities. These results can all be used to test
the hadronization mechanisms, in particular EVC, in future
experiments.

IV. SUMMARY

Though not much data are available yet, charm hadron
production seems to provide an important test of different
hadronization mechanisms in heavy ion collisions. In this
article, we have derived the pT dependence of open charm
mesons and singly charmed baryons in the quark combination
model under the EVC in ultrarelativistic heavy ion collisions.
We present in particular analytic expressions of two groups of
hadron yield ratios, the strange to nonstrange charmed hadron
ratios and baryon-to-meson ratios in terms of normalized pT

spectra of quarks. We present normalized pT spectra of quarks
and numerical results for these hadron yield ratios using these
quark pT spectra. We found that the magnitude of the strange
to nonstrange charmed hadron ratios are mainly determined
by the strangeness suppression factor and have weak pT de-
pendencies. In contrast, there is an obvious pT dependence for
baryon-to-meson ratios determined by the quark pT spectra.
The different baryon-to-meson ratios have similar pT and
centrality dependencies sensitive to pT distribution of c quark.
We have compared the results obtained with the data available
and present predictions for future experiments. Further studies
along this line can provide more sensitive tests of charm quark
hadronization mechanisms and insight on properties of the
QGP in heavy ion collisions.
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