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Hydrodynamic generators in relativistic kinetic theory
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We resum the nonequilibrium gradient corrections to a single-particle distribution function evolved by the
Boltzmann equation in the relaxation time approximation (RTA). We first study a system undergoing Bjorken
expansion and show that, for a constant relaxation time, the exact solution of the RTA Boltzmann equation
at late times (i.e., after the decay of nonhydrodynamic modes) generates the Borel resummed Chapman-Enskog
series. Extending this correspondence to systems without Bjorken symmetry, we construct a (3 + 1)-dimensional
hydrodynamic generator for RTA kinetic theory, which is an integral representation of the Chapman-Enskog
series in the limit of vanishing nonhydrodynamic modes. Relaxing this limit, we find at earlier times a set of
nonhydrodynamic modes coupled to the RTA Chapman-Enskog expansion. Including the dynamics of these
nonhydrodynamic modes is shown to control the emergence of hydrodynamics as an effective field theory
description of nonequilibrium fluids, which works well even for far-off-equilibrium situations where the Knudsen
number is initially large.
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I. INTRODUCTION

Viscous hydrodynamics is an effective field theory that
describes the nonequilibrium physics of macroscopic sys-
tems such as liquids and gases [1–3]. Conventional theory
considers viscous hydrodynamics to be a small-gradient ex-
pansion around local equilibrium, restricting its applicability
to near-equilibrium fluids [4]. The first-order approximation
yields the Navier-Stokes equations, which is widely used in
simulations of nonrelativistic fluids. In the relativistic regime,
the Navier-Stokes equations are acausal and therefore unsta-
ble [5]. To restore causality and stability, Israel and Stewart
introduced a set of second-order relativistic relaxation equa-
tions in which the dissipative flows do not respond to the gra-
dient forces instantaneously but relax to their Navier-Stokes
solution within the slowest microscopic time scales [6,7]. The
decay of nonhydrodynamic modes, which are governed by
microscopic processes, play an important role in the system’s
approach to hydrodynamics [8–10].

Causal second-order viscous hydrodynamics still as-
sumes that the gradients of the fluid are small [10]. This
raises concerns about its validity when applied to relativis-
tic fluids with large gradients [11–13]. One could try to
systematically improve the hydrodynamic equations with
higher-order corrections. However, one usually finds that the
hydrodynamic gradient expansion diverges, which is problem-
atic from a theoretical standpoint [14,15]. A classic example
of this problem is the Chapman-Enskog expansion in kinetic
theory [16]. Choosing for the collision kernel the relaxation
time approximation (RTA), the Boltzmann equation for the
single-particle distribution function1 f (x, p) without external

1The particles are massive and on-shell unless stated otherwise.

forces in Minkowski spacetime xμ = (t, x, y, z) reads

pμ∂μ f (x, p) = p · u(x)

τr (x)
( feq(x, p) − f (x, p)), (1)

where feq(x, p) = exp [−p · u(x)/T (x)] is the local equilib-
rium distribution,2 uμ(x) is the fluid velocity, T (x) is the
temperature, and τr (x) is the relaxation time3 [17]. The RTA
Boltzmann equation can be rearranged as

f (x, p) = feq(x, p) − sμ(x, p)∂μ f (x, p), (2)

where sμ(x, p) = pμτr (x)/[p · u(x)]. Solving this equation
iteratively generates a gradient series. One obtains the
first nonequilibrium gradient corrections to the distribution
function after truncating the series at some finite order,
establishing a connection between kinetic theory and hydro-
dynamics [18,19]. However, a truncated approximation for the
distribution function can take on unphysical negative values
at sufficiently high momentum, especially if the gradients are
large. As one attempts to include higher-order corrections,
the series typically diverges, even for small gradients [20,21].
The divergence of the Chapman-Enskog expansion is a long-
standing problem in kinetic theory. Fortunately, it is known
that the Chapman-Enskog expansion is asymptotic, indicating
that it is Borel resummable [22]. This has been done for RTA
kinetic fluids subject to Bjorken expansion, although the Borel
sum has only been computed for a large but finite number
of terms [23,24]. Still, it is interesting to note that the Borel
sum picks up a sequence of transient modes, all of which

2Here we neglect quantum statistics and conserved charges. The
degeneracy factor is set to g = 1.

3For simplicity, we take the relaxation time τr (x) to be momentum
independent but one may replace it with τr (x, p).
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have the same exponential damping factor but decay over
different time periods due to their different subleading power
law behavior [23,24].

Despite these theoretical issues, causal second-order vis-
cous hydrodynamics has proven to be a highly success-
ful model even for far-from-equilibrium systems such as
ultrarelativistic heavy-ion collisions [25–28]. In particular,
hydrodynamic simulations of small collision systems (e.g.,
p + p collisions at the Large Hadron Collider), which
throughout their short lifetimes feature both large longitudinal
and transverse gradients, have been able to reproduce the ex-
perimentally measured anisotropic flow coefficients and other
hadronic observables [29–31]. This unexpected string of suc-
cesses gave cause for researchers to reexamine the theoretical
foundations of fluid dynamics [32–36]. Recently, much effort
has gone into understanding the so-called hydrodynamic at-
tractor [37]. Various example studies on Bjorken expansion
have shown that normalized hydrodynamic quantities [e.g.,
the temperature τ∂τ ln T and shear stress π/(E+Peq)] with
different initial conditions all evolve towards an attractor
solution within a timescale on the order of the relaxation time,
which is much shorter than the thermalization time [35,38–
42]. This strongly supports the idea that hydrodynamics
can also be a valid description for far-from-equilibrium flu-
ids [35]. However, the underlying physical mechanism that
gives rise to this hydrodynamic attractor is not yet fully
understood.

In this paper we resum the divergent Chapman-Enskog
series of the RTA Boltzmann equation. First, we study a
system subject to (0 + 1)-dimensional Bjorken expansion [43]
where the analytic solution of the RTA Boltzmann equation is
well known [44,45]. For a constant relaxation time, excited
nonhydrodynamic modes decay completely at late times. In
this case we show that the expression for the exact distribution
function generates the Borel resummed Chapman-Enskog
series; we interpret this integral representation of the RTA
Chapman-Enskog series as a hydrodynamic generator. We
demonstrate (up to some finite order) that this correspondence
also holds for Bjorken expansion with a time-dependent re-
laxation time, as well as for (3 + 1)-dimensionally expanding
systems in Minkowski spacetime as long as the nonhydrody-
namic modes disappear at late times. At early times, when
the nonhydrodynamic modes are present, an expansion of the
hydrodynamic generator yields a Chapman-Enskog gradient
expansion whose terms are initially suppressed by nonhydro-
dynamic modes. The decay of these nonhydrodynamic modes
controls the onset of hydrodynamic behavior in nonequilib-
rium fluids.

II. CHAPMAN-ENSKOG EXPANSION
FOR BJORKEN FLOW

In Milne spacetime x̃μ = (τ, x, y, ηs), a transverse ho-
mogeneous system undergoing longitudinally boost-invariant
Bjorken expansion is static, i.e., ũμ = (1, 0, 0, 0). The RTA
Boltzmann equation (1) simplifies to

∂τ f (τ, p) = feq(τ, p) − f (τ, p)

τr (τ )
, (3)

where the local-equilibrium distribution is

feq(τ, p) = exp

[
− pτ (τ )

T (τ )

]
, (4)

with pτ =
√

p2
⊥ + τ 2(pη )2 + m2 . This equation can be solved

analytically [44,45]:

f (τ, p) = D(τ, τ0) f0(τ0, p) +
∫ τ

τ0

dτ ′D(τ, τ ′) feq(τ ′, p)

τr (τ ′)
,

(5)
where f0(τ0, p) is some arbitrary initial distribution and

D(τ2, τ1) = exp

[
−

∫ τ2

τ1

dτ ′′

τr (τ ′′)

]
(6)

is known as the damping function. One sees that the first term
of the exact solution (5), which is sensitive to the initial state,
dominates the early-time dynamics. For times τ − τ0 � τr ,
however, the initial-state term decays exponentially. Hence,
the second term in Eq. (5) describes the long-time behavior of
the system.

To analyze the role that hydrodynamics plays in the
evolution of this system, we turn to the Chapman-Enskog
expansion. For a (0 + 1)-dimensional system with Bjorken
symmetry, the Chapman-Enskog expansion of the RTA Boltz-
mann equation (3) takes the form

fCE(τ, p) =
∞∑

n=0

[−τr (τ )∂τ ]n feq(τ, p). (7)

In this gradient series, each linear operator −τr (τ )∂τ acts
on all of the terms to its right. Generally, the series will
contain derivatives of not only feq(τ, p) but also τr (τ ). This
causes the number of terms to grow like n!, which means the
gradient series is divergent, even for small Knudsen numbers
Kn ∼ τr∂τ � 1.4 One can try to resum the divergent series
using Borel resummation:

f B
CE(τ, p) =

∫ ∞

0
dz e−z

∞∑
n=0

zn[−τr (τ )∂τ ]n feq(τ, p)

n!
. (8)

Here the challenge is finding a closed analytic expression for
the Borel sum. Instead of computing the Borel sum directly,
we analyze the exact solution (5) to look for a representation
of the series. For the simplest case where the relaxation time
is constant, the exact distribution function simplifies to

f (τ, p) = exp

[
− (τ − τ0)

τr

]
f0(τ0, p)

+ 1

τr

∫ τ

τ0

dτ ′ exp

[
− (τ − τ ′)

τr

]
feq(τ ′, p). (9)

4Although the number of distinct gradient terms ∝ (Kn)n does not
grow like n!, their prefactors give them the combined appearance of
exhibiting n! growth, assuming they have the same magnitude and
sign [see for example Eq. (23)].
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We introduce the dimensionless coordinate z = (τ − τ ′) / τr

to rewrite Eq. (9) as

f (τ, p) = e−z0 f0(τ0, p) +
∫ z0

0
dz e−z feq(τ − τrz, p), (10)

where z0 = (τ − τ0) / τr , and Taylor expand the second term:

f (τ, p) = e−z0 f0(τ0, p)

+
∫ z0

0
dz e−z

∞∑
n=0

(−zτr )n f (n)
eq (τ, p)

n!
,

(11)

with f (n)
eq (τ, p) ≡ ∂n

τ feq(τ, p). Sure enough, one sees that the
expansion of the exact solution (11) reduces to the Borel re-
summed Chapman-Enskog series (8) in the limit z0 → ∞ (i.e.
τ → ∞) when all nonhydrodynamic modes have decayed.
With this insight, we conjecture that even for nonconstant
τr (τ ) the hydrodynamic generator5

fG(τ, p) =
∫ τ

τ0

dτ ′D(τ, τ ′) feq(τ ′, p)

τr (τ ′)
(12)

is, in the limit of vanishing nonhydrodynamic modes, an inte-
gral representation of the gradient series (7).6 If the conjecture
holds it should be possible to manipulate this expression,
as we did for τr = const, to obtain a hydrodynamic gradient
series. We use the coordinate transformation

z = h(τ ′, τ ) =
∫ τ

τ ′

dτ ′′

τr (τ ′′)
(13)

to rewrite Eq. (12) as

fG(τ, p) =
∫ z0

0
dz e−z feq(h−1(z, τ ), p), (14)

where

z0 =
∫ τ

τ0

dτ ′′

τr (τ ′′)
. (15)

Next, we compute the inverse function τ ′ = h−1(z, τ ). Phys-
ically, the relaxation time is positive and finite, which means
that z is a non-negative monotonic function of τ ′ ∈ [τ0, τ ].
Therefore, the function h(τ ′, τ ) has an inverse which we
expand as a power series:7

τ ′ = h−1(z, τ ) =
∞∑

n=0

cn(τ ) zn. (16)

5We call Eq. (12) the hydrodynamic generator since it generates the
hydrodynamic gradient series (7) in the limit z0 → ∞.

6This does not imply that the hydrodynamic generator and RTA
Chapman-Enskog series are equivalent in the late time limit. The
expansion of the hydrodynamic generator (12) may not have a finite
radius of convergence.

7For a given time τ , z = h(τ ′, τ ) is a smooth function of τ ′ when
evaluated with the exact solution (5); hence it can be Taylor expanded
around τ ′ = τ , which corresponds to a Taylor expansion of τ ′ =
h−1(z, τ ) around z = 0.

The coefficients cn(τ ) can be computed by Taylor expanding
Eq. (13) around τ ′ = τ :

z =
∫ τ

τ ′
dτ ′′

∞∑
n=0

(τ ′′ − τ )n

n!
∂n
τ

[
τ−1

r (τ )
]

= −
∞∑

n=0

(τ ′ − τ )n+1

(n + 1)!
∂n
τ

[
τ−1

r (τ )
]
. (17)

Inserting the power series (16) into Eq. (17), we can solve for
the coefficients order by order. The first coefficients are

c0 = τ, (18a)

c1 = −τr, (18b)

c2 = τr

2!
τ (1)

r , (18c)

c3 = − τr

3!

((
τ (1)

r

)2 + τrτ
(2)
r

)
, (18d)

where τ (n)
r ≡ ∂n

τ τr (τ ); they satisfy the recurrence relation8

c0 = τ, (19a)

cn = −τr∂τ cn−1

n
∀ n � 1. (19b)

With these coefficients, we can now evaluate the integral (14)
after Taylor expanding the integrand:

fG(τ, p) =
∫ z0

0
dz e−z

∞∑
n=0

[h−1(z, τ ) − τ ]n f (n)
eq (τ, p)

n!
. (20)

As a demonstration, we compute the series up to n = 3 and
truncate the expression at third order in derivatives:

fG ≈ (1 − e−z0 ) feq + [1 − �(2, z0)]δ f (1)

+
(

1 − �(3, z0)

2!

)
δ f (2) +

(
1 − �(4, z0)

3!

)
δ f (3),

(21)

where �(n+1, z0) = ∫ ∞
z0

dz e−zzn are the upper incomplete
gamma functions. After taking the limit z0 → ∞, Eq. (21)
reduces to

fG ≈ feq + δ f (1) + δ f (2) + δ f (3), (22)

where

δ f (1) = −τr f (1)
eq , (23a)

δ f (2) = τrτ
(1)
r f (1)

eq + τ 2
r f (2)

eq , (23b)

δ f (3) = −τr
(
τ (1)

r

)2
f (1)
eq − τ 2

r τ (2)
r f (1)

eq

− 3τ 2
r τ (1)

r f (2)
eq − τ 3

r f (3)
eq . (23c)

These are precisely the nonequilibrium corrections in the
Chapman-Enskog series (7). Using a computer-generated
code9 we verified that the series (21) works up to order

8Using symbolic computation, we checked the validity of Eq. (19)
up to n = 40.

9The codes used for this work can be downloaded; see Ref. [46].
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O(Kn40):

fG(τ, p) ≈
∫ z0

0
dz e−z

40∑
n=0

zn[−τr (τ )∂τ ]n feq(τ, p)

n!

=
40∑

n=0

(
1 − �(n+1, z0)

n!

)
[−τr (τ )∂τ ]n feq(τ, p).

(24)

This gives us a high degree of confidence that the expansion
of the hydrodynamic generator (12) reduces to the Borel re-
summed RTA Chapman-Enskog series (8) under the condition
that the nonhydrodynamic modes decay at late times. How-
ever, at this moment we have no formal proof that this holds
to all orders in the Knudsen number, due to the complexity of
the expansion scheme.

III. SERIES EXPANSION OF THE
HYDRODYNAMIC GENERATOR

In the limit of vanishing nonhydrodynamic modes, the
hydrodynamic generator (12) is an appealing representation
of the RTA Chapman-Enskog series. While the Chapman-
Enskog series may be divergent, the generator itself is finite,
even for large Knudsen numbers. It also satisfies the RTA
Boltzmann equation

∂τ fG(τ, p) = feq(τ, p)

τr (τ )
−

∫ τ

τ0

dτ ′D(τ, τ ′) feq(τ ′, p)

τr (τ )τr (τ ′)

= feq(τ, p) − fG(τ, p)

τr (τ )
, (25)

where we used the identities ∂τ D(τ, τ ′) = − D(τ, τ ′)/τr (τ )
and D(τ, τ ) = 1. However, this alone does not tell us how
much hydrodynamics contributes to the dynamics of the
system at finite times, before the initial state f0(τ0, p) has
completely decayed. As long as the nonhydrodynamic modes
contribute, the expansion of the exact distribution function

f (τ, p) = e−z0 f0(τ0, p) + fG(τ, p) (26)

around local equilibrium looks like10

f = feq + δ f (0)
G + δ f (1)

G + δ f (2)
G + δ f (3)

G + O(Kn4), (27)

where

δ f (0)
G = e−z0 ( f0 − feq), (28a)

δ f (n)
G =

(
1 − �(n+1, z0)

n!

)
δ f (n) ∀ n � 1. (28b)

The zeroth-order correction δ f (0)
G , which combines the initial-

state term with the first term in Eq. (21), is a purely nonhydro-
dynamic mode and is only present for a short period of time

10This expansion retains the same trans-series-like structure for
both early and late times. Transasymptotic solutions for the moments
of the distribution function have been studied for Bjorken expansion
and have been found to accurately reproduce the numerical solution
of the moments equations even when continued back to earlier
times [47,48].

∼τr . The other δ f (n)
G corrections are the usual hydrodynamic

gradient corrections, except they are initially suppressed by
their associated nonhydrodynamic mode. These nonhydro-
dynamic modes control the emerging strengths of the gra-
dient corrections to the distribution function as the particle
interactions drive the system towards hydrodynamics over
time (i.e., as z0 increases). In particular, as will be discussed
below, higher-order gradient corrections are suppressed more
strongly and for a longer duration than the lower-order terms.

To study these new effects on the hydrodynamic gradient
expansion, we evolve a conformal fluid undergoing Bjorken
expansion with the exact solution of the RTA Boltzmann equa-
tion [45,49,50]. We initialize the system at τ0 = 0.25 fm/c
with initial temperature T (τ0) = 0.6 GeV and shear stress
π (τ0) = 0, where π ≡ 2

3 (P⊥−PL ) (by definition πeq = 0). For
the relaxation time we take τr = τπ with τπT = 5(η/S ) and
set the ratio of shear viscosity to entropy density to η/S =
3/(4π ). Using these initial conditions, we construct the tem-
perature T (τ ) by fixing the exact solution (5) to the Landau
matching condition E (τ ) = 3T 4(τ )/π2 or [45]

T 4(τ ) = D(τ, τ0) T 4(τ0)H
(τ0

τ

)

+
∫ τ

τ0

dτ ′

τπ (τ ′)
D(τ, τ ′) T 4(τ ′)H

(
τ ′

τ

)
, (29)

where

H(x) = 1

2

(
x2 + tan−1

√
x−2 − 1√

x−2 − 1

)
. (30)

The most straightforward way to solve this integral equation
is by using fixed-point iteration. After computing the tem-
perature, we evaluate the normalized shear stress11 π̄ (τ ) =
π (τ )/Peq(τ ), where Peq(τ ) = T 4(τ )/π2 is the equilibrium
pressure [45]:

π̄ (τ ) = D(τ, τ0)
T 4(τ0)

T 4(τ )

[
1

2
H⊥

(τ0

τ

)
−HL

(τ0

τ

)]

+
∫ τ

τ0

dτ ′

τπ (τ ′)
D(τ, τ ′)

T 4(τ ′)
T 4(τ )

[
1

2
H⊥

(τ ′

τ

)
− HL

(τ ′

τ

)]
,

(31)

where H⊥ and HL are defined in Appendix B.
The resulting exact evolution of the normalized shear stress

is shown as the solid black line in Fig. 1. This exact solution is
compared with various approximations discussed below. With
the exact temperature and shear stress at hand, we evaluate
and plot the contributions to the pressure anisotropy from the
δ fG corrections up to third order (see Appendices A and B):

π̄
(0)
G = e−z0

T 4
0

T 4

[
1

2
H⊥

(τ0

τ

)
− HL

(τ0

τ

)]
, (32a)

π̄
(1)
G = (1 − �(2, z0))

16τπ

15τ
, (32b)

11This differs from the traditional definition π̄ ≡ π/(E+Peq) which
reduces to π̄ = π/(4Peq) in the conformal limit.
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FIG. 1. The evolution of the pressure anisotropy for conformal
Bjorken expansion. The system is initialized at τ0 = 0.25 fm/c,
with T (τ0 ) = 0.6 GeV, π (τ0) = 0, and η/S = 3/(4π ) (see text for
details). We plot the contributions of the δ fG corrections to the exact
solution (solid black) and compare them to Navier-Stokes (solid
blue), Burnett (solid red), super-Burnett (solid green), and DNMR
(solid purple) viscous hydrodynamics. As defined in footnote 12, the
system “hydrodynamizes” around τ = 2.5 fm/c.

π̄
(2)
G =

(
1 − 1

2!
�(3, z0)

) −16τ 2
π

105τ 2
(15 + 49τ∂τ ln T ), (32c)

π̄
(3)
G =

(
1 − 1

3!
�(4, z0)

)
16τ 3

π

105τ 3

× (
τ∂τ ln T (135+182τ∂τ ln T ) + 77τ 2∂2

τ ln T
)
. (32d)

Here the energy conservation law and its time derivative

τ∂τ ln T = π̄ − 4

12
, (33a)

τ 2∂2
τ ln T = 4 − π̄ + τ∂τ π̄

12
(33b)

are evaluated numerically using the exact solution. We further
compare these δ fG corrections to π̄ to the first-order Navier-
Stokes, second-order Burnett, and third-order super-Burnett
solutions,

π̄ (NS) = 16τπ

15τ
, (34a)

π̄ (B) = 16τπ

15τ
+ 64τ 2

π

315τ 2
, (34b)

π̄ (SB) = 16τπ

15τ
+ 64τ 2

π

315τ 2
− 832τ 3

π

1575τ 3
, (34c)

as well as to the numerical solution of the causal second-order
viscous hydrodynamic DNMR (Denicol, Niemi, Molnar, and
Rischke) equations [10,51]:

τ∂τ ln T = π̄ − 4

12
, (35a)

∂τ π̄ = − π̄

τπ

+ 16

15τ
− 10π̄

21τ
− π̄2

3τ
. (35b)

At early times, the nonhydrodynamic mode δ f (0)
G dom-

inates the evolution of the pressure anisotropy and is re-
sponsible for the initial rise away from the local equilibrium
initial condition π̄0 = 0 (see Fig. 1). As the system hydrody-
namizes,12 the initial-state function decays and the first-order
gradient correction δ f (1)

G emerges as the leading correction to
the local-equilibrium distribution feq in Eq. (27). Already, we
see that the addition of δ f (1)

G nearly captures the exact pressure
anisotropy. This is in stark contrast to the Navier-Stokes
solution, which misses both δ f (0)

G in (32) and the prefactor
1 − �(2, z0) in (32b) and hence fails to reproduce the shear
stress for τ � 2 fm/c. The reader should also take note of the
similarity between the blue-dashed curve and DNMR viscous
hydrodynamics, where the δ f correction used to compute the
transport coefficients of the relaxation equation (35b) is first
order in the shear stress.

Compared to the second-order correction accounted for in
the Burnett solution (34b), the full δ f (2)

G gradient correction
to the shear stress is much weaker at early times since it is
strongly suppressed by the corresponding nonhydrodynamic
mode. By the time this nonhydrodynamic mode has decayed
by 90% (at around τ = 3.9 fm/c), the gradients character-
ized by the Knudsen number Kn = τπ/τ ≈ 0.2 have already
greatly diminished. As a result, the δ f (2)

G correction ends up
having little overall impact on the evolution of the system.
A similar observation holds for the third-order correction
δ f (3)

G . The combined low-order δ fG corrections to the local-
equilibrium distribution are seen to provide excellent agree-
ment with the exact solution; we have also checked this for
different initial conditions and shear viscosities (see auxiliary
materials of Ref. [46]). While we caution the reader that
this does not necessarily mean the rest of the series (27)
will converge, take this observation as justification to trun-
cate the new expansion scheme (27) at a low order: Fig-
ure 1 makes it clear that, at least for Bjorken flow, gra-
dient corrections beyond first order have almost negligible
influence on the fluid’s dynamics during the early stages
of evolution even though there the expansion rate is large.
This provides a plausible explanation for the empirically ob-
served “unreasonable effectiveness” [31,52] of causal second-
order viscous hydrodynamics (e.g., DNMR) even when ap-
plied outside of its conventional range of validity (e.g.,
when Kn ≈ 1).

12We define hydrodynamization as the time when the leading
nonhydrodynamic mode π̄

(0)
G decays to 10% of its maximum value.

In Fig. 1 this occurs at τ = 2.47 fm/c (or z0 = 3.6).
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FIG. 2. An illustration of the path integral (36) (solid gray)
running from a point (t−, x−) on the hypersurface �− (solid black)
to the current position (t, x). The path is parallel to the particle
momentum pμ at point (t, x). (Note that x, x− in the figure stand
for three-dimensional spatial vectors.)

IV. HYDRODYNAMIC GENERATOR IN 3 + 1 DIMENSIONS

In (3 + 1)-dimensional Minkowski spacetime xμ =
(t, x, y, z) without Bjorken symmetry, the hydrodynamic
generator in the relaxation time approximation can be
further generalized as a path integral along free-streaming
characteristics:

fG(x, p) =
∫ x

x−
dx′ · s−1(x′, p)D(x, x′, p) feq(x′, p). (36)

Here the starting point xμ
− = xμ − (t − t−)pμ/E lies on a

hypersurface t− = �−(x, y, z) consisting of the initial-state
boundary �0 and the future light cone enclosing it (see
Figure 2), and the reciprocal vector13

s−1
μ (x, p) = p · u(x)

τr (x)
× pμ

p2
(37)

is constructed such that sμ(x, p) s−1
μ (x, p) = 1. Note that, in

contrast to Eq. (12), the (3 + 1)-dimensional generator is not
constrained by any symmetries and (after Landau matching)
can accommodate any flow velocity profile uμ(x), including
ones with nonvanishing vorticity (which for Bjorken flow
is forbidden by symmetry). The integral in (36) runs over
a straight timelike characteristic line parallel to the particle
momentum pμ, with a measure dx′ · s−1(x′, p) that [unlike
the one in Eq. (12)] depends on momentum. The fraction of
particles with momentum pμ emitted from the thermal source
feq(x′, p) that travel freely through the medium and arrive at

13This formula also works for massless particles. The p2 factor
drops out after parametrizing the path in Eq. (36) as x′μ(λ′) = xμ −
λ′ pμ [0 � λ′ � (t − t−)/E ] such that

dx′μs−1
μ (x′, p) = − p · u(x′(λ′))

τr (x′(λ′))
dλ′.

the current position xμ unscathed is given by the damping
function

D(x, x′, p) = exp

[
−

∫ x

x′
dx′′ · s−1(x′′, p)

]
. (38)

For short relaxation times this damping function decays very
rapidly, limiting the range of influence on the fluid’s dynamics
at position x to points x′ in the past light cone of x with small
spacetime separations x − x′.

Let us verify that the expansion of Eq. (36) reduces to
the more general Borel resummed RTA Chapman-Enskog
expansion (up to some finite order):

f B
CE(x, p) =

∫ ∞

0
dz e−z

∞∑
n=0

zn[−sμ(x, p)∂μ]n feq(x, p)

n!
.

(39)
Following the same steps outlined in the previous section, we
use the coordinate transformation

z = h(x′, x, p) =
∫ x

x′
dx′′ · s−1(x′′, p) (40)

to rewrite Eq. (36) as

fG(x, p) =
∫ z−

0
dz e−z feq(h−1(z, x, p), p), (41)

where

z− =
∫ x

x−
dx′′ · s−1(x′′, p). (42)

The inverse function h−1
μ (z, x, p) is now promoted to a four-

vector that can be expanded as a power series:

x′
μ = h−1

μ (z, x, p) =
∞∑

n=0

cn,μ(x, p) zn, (43)

which can be inserted in the Taylor expansion of Eq. (40):

z =
∫ λ′

0
dλ′′ g(x′′(λ′′), p)

=
∫ λ′

0
dλ′′

∞∑
n=0

(−λ′′)n pn · ∂ng(x, p)

n!

= −
∞∑

n=0

(−λ′)n+1 pn · ∂ng(x, p)

(n + 1)!
, (44)

where we used the parametrization

x′′μ(λ′′) = xμ − λ′′ pμ (0 � λ′′ � λ′), (45)

with λ′ = (x−x′) · p/p2 and g(x, p) = p · u(x)/τr (x). Using
the product rule identities

sμ∂νs−1
μ = −s−1

μ ∂νsμ, (46a)

sμ∂α∂νs−1
μ = −s−1

μ ∂α∂νsμ − (
∂αs−1

μ

)
(∂νsμ) − (

∂νs−1
μ

)
(∂αsμ),

(46b)

one obtains, after some algebra, the following first coefficients
of the series:

c μ
0 = xμ, (47a)

c μ
1 = −sμ, (47b)
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c μ
2 = 1

2! s
ν∂νsμ, (47c)

c μ
3 = − 1

3! [(s
α∂αsν )∂νsμ + sαsν∂α∂νsμ)], (47d)

analogous to the coefficients (18). They appear to satisfy the
recurrence relation

c μ
0 = xμ, (48a)

c μ
n = − sν∂νc μ

n−1

n
∀ n � 1, (48b)

but we have not made the effort to prove this relation beyond
n = 3. The integral (41) can then be Taylor expanded as

fG(x, p)=
∫ z−

0
dz e−z

∞∑
n=0

[h−1(z, x, p)−x]n · f (n)
eq (x, p)

n!
,

(49)
where f (n)

eq (x, p) = ∂n feq(x, p). The series expansion of the
hydrodynamic generator up to third order in the Knudsen
number is

fG ≈ (1 − e−z− ) feq + [1 − �(2, z−)]δ f (1)

+
(

1 − �(3, z−)

2!

)
δ f (2) +

(
1 − �(4, z−)

3!

)
δ f (3),

(50)

which has the same structure as Eq. (21). For spacetime
regions far in the future from the hypersurface �− in Fig. 2
we assume we can take the limit z− → ∞:

fG ≈ feq + δ f (1) + δ f (2) + δ f (3), (51)

where

δ f (1) = −sμ∂μ feq, (52a)

δ f (2) = (sν∂νsμ)∂μ feq + sνsμ∂ν∂μ feq, (52b)

δ f (3) = −[(sα∂αsν )∂νsμ]∂μ feq − (sαsν∂α∂νsμ)∂μ feq

− 3sμ(sα∂αsν )∂ν∂μ feq − sαsνsμ∂α∂ν∂μ feq. (52c)

As expected, these agree with the corresponding gradient
corrections from the RTA Chapman-Enskog expansion when
worked out to third order. Unlike the previous section, we have
not carried out the calculation (49) to higher orders, because of
its greater degree of complexity. We can, however, offer some
reassurance by checking that the distribution function fG(x, p)
given in (36) is a particular solution of the RTA Boltzmann
equation in Minkowski spacetime (2):

sμ(x, p)∂μ fG(x, p)

= feq(x, p) −
∫ x

x−
dx′ · s−1(x′, p)D(x, x′, p) feq(x′, p)

= feq(x, p) − fG(x, p). (53)

Here we used the identities sμ(x, p)∂μD(x, x′, p) =
− D(x, x′, p) and D(x, x, p) = 1.14

14Note that the directional derivative sμ∂μ does not act on the lower
limit of the path integral (36) since the current position xμ varies
infinitesimally only along the direction of sμ, which means that the
starting point xμ

− remains fixed.

The distribution function (36) approaches zero on the entire
initial-state surface �0 since, unlike Eq. (5), it does not
include any initial-state information. One can make use of
the diagram in Fig. 2 to construct and add such an initial-
state term. We know that the system is initialized at time
t0 as f0(x0, p), with xμ

0 ∈ �0. In addition, we assume that
f0(x0, p) = 0 at the edge of �0 so that f (x, p) vanishes on
its entire future light cone. Therefore, only characteristic lines
that are connected to the initial-state surface �0 as shown in
Fig. 2 will pick up an initial source that decays over time:

fI(x, p) = D(x, x−, p) f0(x−, p)�(t0 − t−). (54)

Here the Heaviside step function �(t0−t−) excludes those
characteristic lines that end on the light cones in Fig. 2 and
thereby enforces fI(x, p) = 0 if x− /∈ �0. The full (3 + 1)-
dimensional solution of the RTA Boltzmann equation (1)
is then

f (x, p) = fI(x, p) + fG(x, p). (55)

One can check that

sμ(x, p)∂μ f (x, p) = − fI(x, p) + feq(x, p) − fG(x, p)

= feq(x, p) − f (x, p), (56)

where we used the relation sμ(x, p)∂μD(x, x−, p) =
− D(x, x−, p). A more formal derivation of this solution can
be found in Appendix C.15 In the free-streaming limit τr → ∞
(z− → 0), the distribution function takes on the free-streaming
solution f0(x−, p)�(t0 − t−). In the ideal hydrodynamic limit
τr → 0 (z− → ∞), f (x, p) → fG(x, p), which reduces to
feq(x, p) since sμ∂μ fG(x, p) → 0 in Eq. (53).16

This completes our formal argument for the RTA Boltz-
mann equation in the (3 + 1)-dimensional case. We leave its
numerical implementation to future work but close this sec-
tion with some thoughts about how such an implementation
might look. Just like the Bjorken solution (5), the distribution
function (55) for (3 + 1)-dimensional expansion is an implicit
solution of the RTA Boltzmann equation since it depends on
the temperature T (x) and fluid velocity uμ(x). In principle,
the hydrodynamic fields can be reconstructed by matching the
solution to the Landau frame:

E (x) =
∫

p
[p · u(x)]2 f (x, p), (57a)

uμ(x) =
∫

p[p · u(x)] pμ f (x, p)∫
p[p · u(x)]2 f (x, p)

, (57b)

15Equation (55) generalizes the RTA Bjorken solution (5) to (3 +
1)-dimensional systems, by replacing the integration over the fluid’s
history in τ ′ with one over a path parameter λ′ along a set of
free-streaming past world lines. Each world line’s direction depends
on the momentum of the incoming particle, emitted by either an
initial source f0(x0, p) or a thermal source feq(x′, p). Macroscopic
observables at a given spacetime coordinate xμ are influenced by the
fluid’s history encoded in these world lines.

16In the ideal hydrodynamic limit, the local equilibrium density op-
erator can only accommodate flow profiles that are irrotational [53].
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where
∫

p = ∫ d3 p
E . Similarly to Eq. (29), these integral equa-

tions can then be solved numerically with a root-finding
algorithm such as fixed-point iteration. Starting with an ap-
proximate solution for T (x) and uμ(x), which can be pro-
vided, e.g., by a viscous hydrodynamic simulation, one would
repeatedly update the solution by evaluating the right-hand
side of Eq. (57). Since the initial guess and exact solution
share the same initial condition but may differ greatly for
later times, this numerical scheme is likely to converge faster
at times near t0 than at later times. Instead of computing a
single iteration across the entire evolution, as is commonly
done [45], it would here be more efficient to perform these
iterations at a given time step until the solution is within
the desired error tolerance, before proceeding to the next
time step. Faster rates of convergence might be achievable if
a more accurate hydrodynamic model is used to evolve the
initial guess for the fluid’s energy density and flow profiles.

Due to the momentum dependence of the characteristic
lines and their associated damping functions, solving the
integral equations (57) is much more involved than for the
Bjorken case. Unfortunately, there does not seem to be a way
of reducing the momentum-space integral without invoking
additional symmetries as in Eq. (29). This leaves us with
the computationally intensive task of numerically evaluat-
ing a four-dimensional integral for each spacetime point:
three for the momentum and one for the path parameter
along the associated characteristic line. One possible way to
reduce the computing time is to parallelize at each time
step the computation over the spatial grid points. Doing
this on a GPU, however, still faces memory limitations:
for a uniform spacetime grid, the memory required to do
a full calculation of the distribution function grows rapidly
with the volume of the future light cone, V ∝ t4. For
short relaxation times, rapid damping will reduce the need
for RAM to only a fraction of the fluid’s evolution his-
tory. Still, the task looks formidable and will likely re-
quire a highly advanced algorithm and significant computing
resources.

Based on the structure of our formal (3 + 1)-dimensional
solution we anticipate that effects qualitatively similar to those
described in Sec. III will also be found for RTA kinetic
fluids without Bjorken symmetry: at early times, the dynamics
of the fluid is dominated by the nonhydrodynamic mode
associated with the initial state f0(x0, p). As time moves away
from the initial-state surface �0 the local-equilibrium distri-
bution feq(x, p) and first-order gradient correction δ f (1)(x, p)
quickly take over, with the higher-order corrections emerging
more slowly. A quantitative analysis of the contributions from
the nonequilibrium corrections δ fG to macroscopic observ-
ables will need to wait until the corresponding codes have
been developed. Intermediate studies of systems with reduced
symmetry (for example undergoing spherical expansion) may
be useful for developing intuition and computational tools.

V. CONCLUSIONS

In this work we formulated a hydrodynamic generator that
resums the Chapman-Enskog series of the RTA Boltzmann

equation. For a system with a constant relaxation time subject
to Bjorken flow we have shown that the Taylor expansion of
the hydrodynamic generator reduces to the Borel resummed
RTA Chapman-Enskog series in the late time limit. We then
generalized the form of this hydrodynamic generator in the re-
laxation time approximation to Bjorken systems with a time-
dependent relaxation time, as well as to (3 + 1)-dimensionally
expanding fluids in Minkowski spacetime without additional
symmetries, outlining the methodology for reducing it to the
Borel resummed RTA Chapman-Enskog series in the limit of
vanishing nonhydrodynamic modes. The mathematical proof
of this correspondence to all orders in the Knudsen number is
left for future work.

Our formula (55) for the (3 + 1)-dimensional solution of
the RTA Boltzmann equation in Minkowski spacetime has
the nice features of being positive-definite and finite for both
small and large values of the Knudsen number. It is also causal
since it only depends on the present and past hydrodynamic
fields. While it is not immediately obvious how to numerically
implement this solution, it can potentially serve as a reference
to test the validity of known viscous hydrodynamic approx-
imations, as well as the new expansion scheme described in
this work, in the relaxation time approximation without the
need for Bjorken symmetry.

Most importantly, we found that the hydrodynamic gen-
erator in RTA kinetic theory also generates a sequence
of nonhydrodynamic modes that are coupled to the RTA
Chapman-Enskog expansion. In RTA kinetic theory we see
that these nonhydrodynamic modes, which decay over differ-
ent time periods,17 provide the mechanism that controls the
emergence of hydrodynamics in nonequilibrium fluids. As the
initial-state memory decays, the local-equilibrium distribution
and its first-order gradient correction emerge as the leading
contributors to the fluid’s dynamics. Higher-order gradient
corrections to the particle distribution function are suppressed
during the hydrodynamization process, especially at early
times. This means that even if the fluid has initially large
gradients, these higher-order corrections are not as severe as
traditionally thought.

At least for systems described by the RTA Boltzmann
equation discussed in this work, this extends the range of
validity of causal second-order viscous hydrodynamics be-
yond what was traditionally assumed. It must be noted, how-
ever,18 that the Boltzmann collision term (especially in the
relaxation time approximation) ignores multiparticle corre-
lations and thereby completely misses the stochastic mi-
croscopic fluctuations of the fluid and the microscopic
correlations they generate [54]. Such microscopic corre-
lations are expected to be largest in small collision sys-
tems, such as proton-proton collisions, which also exhibit
large gradients. To account for these correlations the sim-
ple damping function D(x, x′, p) in Eq. (38) must be re-

17We believe that these nonhydrodynamic modes are related to
those identified in Refs. [23,24] using resurgence theory since the
upper incomplete gamma functions �(n+1, z0) have the same expo-
nential damping e−z0 but different subleading polynomial factors.

18We thank an anonymous referee for this comment.
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placed by a significantly more complex Green’s function,
perhaps derived from a Kadanoff-Baym type equation. It
remains an open question what role these stochastic mi-
croscopic fluctuations [54–56] play for the process of hy-
drodynamization in 3 + 1 dimensions, especially in small
collision systems, and to what extent the concept of a
hydrodynamic generator survives in such a more general
setting.
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APPENDIX A: STANDARD GRADIENT CORRECTIONS

Here we compute the standard gradient corrections to the
normalized shear stress for a conformal system undergoing
Bjorken expansion:

π̄ = π̄ (1) + π̄ (2) + π̄ (3) + O(Kn4). (A1)

Before proceeding, we make a change in variables w = τ 2 pη

to rewrite the local-equilibrium distribution (4) as

feq(τ, pT ,w) = exp

⎡
⎣−

√
τ 2 p2

⊥ + w2

τT (τ )

⎤
⎦. (A2)

The first-order gradient correction to the distribution function
is

δ f (1) = −τr∂τ feq = −τπ feq

τ 2T

(
w2

v
+ vτ∂τ ln T

)
, (A3)

where we set τr = τπ = 5(η/S )/T (taking η/S as a constant)
and v =

√
τ 2 p2

⊥ + w2 . The first-order correction to the shear
stress is then

π̄ (1) = 2π2

3T 4

∫
p

(
p2

⊥
2

− w2

τ 2

)
δ f (1), (A4)

where
∫

p = ∫ d2 p⊥dw

v(2π )3 . After inserting δ f (1) in Eq. (A4) and
substituting the spherical coordinates

τ px = v sin θ cos φ, (A5a)

τ py = v sin θ sin φ, (A5b)

w = v cos θ, (A5c)

one obtains

π̄ (1) = 16τπ

15τ
. (A6)

The δ f (2) and δ f (3) corrections are too cumbersome to list
here. We simply state the results for the second- and third-
order shear corrections (for the derivation see the auxiliary
materials available in the GitHub repository of Ref. [46]):

π̄ (2) = − 16τ 2
π

105τ 2
(15 + 49τ∂τ ln T ), (A7a)

π̄ (3) = 16τ 3
π

105τ 3

[
τ∂τ ln T (135+182τ∂τ ln T ) + 77τ 2∂2

τ ln T )
]
.

(A7b)

Here we used the relation ∂τ τπ = −τπ∂τ ln T to eliminate
time derivatives of the shear relaxation time. At late times,
the gradients Kn = τπ/τ ∼ τ−2/3 become small. Hence, the
asymptotic solutions for the energy conservation law and its
time derivative (33) are

τ ∂τ ln T = −1

3
+ 4τπ

45τ
+ O(Kn2), (A8a)

τ 2∂2
τ ln T = 1

3
+ O(Kn). (A8b)

The shear corrections (A7) then reduce to

π̄ (2) ≈ 64τ 2
π

315τ 2
− 448τ 3

π

675τ 3
, (A9a)

π̄ (3) ≈ 128τ 3
π

945τ 3
. (A9b)

Finally, the nonhydrodynamic modes in the exact solu-
tion (27) decay at late times since z0 ∼ τ 2/3. Using this,
the second- and third-order corrections in Eq. (A9) can be
regrouped as

π̄ (2) → 64τ 2
π

315τ 2
, π̄ (3) → − 832τ 3

π

1575τ 3
, (A10)

which appear in the Burnett and super-Burnett solutions (34b)
and (34c).

APPENDIX B: LEADING NONHYDRODYNAMIC
MODE CORRECTION

Here we compute the shear stress correction from the
leading nonhydrodynamic mode δ f (0)

G = e−z0 ( f0 − feq):

π̄
(0)
G = 2π2e−z0

3T 4

∫
p

(
p2

⊥
2

− w2

τ 2

)
f0(τ0, pT ,w), (B1)

where the second term ∝ feq(τ, pT ,w) vanishes by symmetry.
The code [45,49,50] that evolves the RTA Bjorken solution (5)
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gives the user the option to initialize the distribution as [45,49]

f0(τ0, pT ,w) = exp

⎡
⎣−

√
τ 2

0 p2
⊥ + (1 + ξ0)w2

τ0�0

⎤
⎦, (B2)

where

�0 = T0 H((1 + ξ0)−1/2)−1/4 (B3)

is the effective temperature and ξ0 is an anisotropy parameter
that deforms the longitudinal momentum space. After substi-
tuting the spherical coordinates

τ0 px = v0 sin θ cos φ, (B4a)

τ0 py = v0 sin θ sin φ, (B4b)

(1 + ξ0)1/2w = v0 cos θ, (B4c)

where v0 =
√

τ 2
0 p2

⊥ + (1 + ξ0)w2 , Eq. (B1) can be rewritten
as

π̄
(0)
G = e−z0

�4
0

T 4

[
1

2
H⊥

(τ0αL0

τ

)
−HL

(τ0αL0

τ

)]
, (B5)

where αL0 = (1 + ξ0)−1/2 and the hypergeometric func-
tions [45]

H⊥(x) = x
∫ 1

−1

d cos θ (1 − cos2 θ )√
1 + (x2−1) cos2 θ

, (B6a)

HL(x) = x3
∫ 1

−1

d cos θ cos2 θ√
1 + (x2−1) cos2 θ

(B6b)

are

H⊥(x) = 1

1−x2
[x2 + (1−2x2) T (x−2−1)], (B7a)

HL(x) = x2

1−x2
[−x2 + T (x−2−1)], (B7b)

with T (y) = tan−1 √
y√

y . In Sec. III, we had initialized the shear
stress to π (τ0) = 0 so that ξ0 = 0 and �0 = T0. Then Eq. (B5)
reduces to Eq. (32).

APPENDIX C: SOLUTION OF THE RTA BOLTZMANN
EQUATION IN 3 + 1 DIMENSIONS

In this Appendix we derive the (3 + 1)-dimensional solu-
tion of the RTA Boltzmann equation in Minkowski spacetime.

First, we rewrite Eq. (1) as

sμ(x, p)∂μ f (x, p) + f (x, p) = feq(x, p) (C1)

and multiply both sides by the function

q(x, p) = exp

[∫ x

x�

dx′′ · s−1(x′′, p)

]
, (C2)

where the path integral runs over a straight line that is parallel
to pμ; the coordinate xμ

� is a fixed point on the characteristic
line (see Fig. 2)

x′μ(λ′) = xμ − λ′ pμ, 0 � λ′ � λ−, (C3)
with λ− = (t − t−)/E . Equation (C1) can be rewritten as

sμ(x, p)∂μ[q(x, p) f (x, p)] = q(x, p) feq(x, p). (C4)

Now we integrate this equation along the characteristic
line (C3):∫ x

x−
dx′ · s−1(x′, p) sμ(x′, p)

∂[q(x′, p) f (x′, p)]

∂x′μ

=
∫ x

x−
dx′ · s−1(x′, p) q(x′, p) feq(x′, p). (C5)

The left-hand side of Eq. (C5) can be parameterized in terms
of λ′: ∫ 0

λ−
dλ′ d[q(x′(λ′), p) f (x′(λ′), p)]

dλ′

= q(x, p) f (x, p) − q(x−, p) f (x−, p), (C6)

where we used the relations dx′ν = −pνdλ′ and ∂
∂x′μ =

− pμ

p2
d

dλ′ . For the distribution function on the hypersurface �−
(see Fig. 2) we take

f (x−, p) = f0(x−, p)�(t0 − t−). (C7)

The solution of the RTA Boltzmann equation is then

f (x, p) = q(x−, p)

q(x, p)
f0(x−, p)�(t0 − t−)

+
∫ x

x−
dx′ · s−1(x′, p)

q(x′, p)

q(x, p)
feq(x′, p). (C8)

After using the identity D(x2, x1, p) = q(x1, p) / q(x2, p), one
arrives at Eq. (55).
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