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Reexamining an extended-mean-field approach in heavy-ion collisions near the Fermi energy
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Static and dynamical aspects of nuclear systems are described through an extended time-dependent mean-
field approach. The foundations of the formalism are presented, with highlights on the estimation of average
values and their corresponding dispersions. In contrast to semiclassical transport models, the particular interest
of this description lies on its intrinsic quantal character. The reliability of this approach is discussed by means of
stopping-sensitive observables analysis in heavy-ion collisions in the range of 20 to 120 MeV per nucleon.
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I. INTRODUCTION

One of the fundamental microscopic models in nuclear and
atomic physics is the time-dependent Hartree-Fock (TDHF)
approximation. Since the pioneer works in the nuclear field,
it has been largely applied to the description of collective
phenomena in heavy-ion collisions at incident energies below
10 MeV per nucleon [1]. Beyond this energy regime this
approximation turned out to be insufficient to correctly de-
scribe the dissipative processes observed in experiments. For
this reason, quantal and dynamical extensions have been
developed in order to account for those dynamical correlations
which are lacking in mean field approaches. In the range of
energies we are interested in, the so-called extended time-
dependent Hartree-Fock (ETDHF) approach, either quantal or
semiclassical, considers the residual interactions by the inclu-
sion of a collision term: The mean field evolution equation for
the one-body density matrix is complemented by a Boltzmann
(or Uehling-Uhlenbeck) term [2]. These models have been
shown to successfully describe the irreversible mean behavior
of nuclear systems towards equilibrium. Nevertheless, with
the improvement of the quality and completeness of experi-
mental data these extended theories attained their limits too
when they tried to describe, on one side, the variety of chan-
nels observed experimentally and, on the other, the dispersion
of observables. The essential problem of ETDHF theories was
the lack of density fluctuations large enough to account for
those phase space bifurcations giving rise to the observed
manifold of exit channels. Also the absence of small density
fluctuations needed to draw the statistical dispersions on one-
body observables is a drawback of these kind of descriptions.
The search of a convenient description of those aspects has
been a challenge for nuclear many-body theories for a long
time, and much work has been done in order to modelize
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the effects of many-body correlations in extended-mean-field
theories, namely by including a fluctuation force of the Lan-
genvin type [3]. The task of including a fluctuating term in
our ETDHF description is then mandatory and it is foreseen
for further publications. Nevertheless, before undertaking this
work it is imperative to provide an overview of the state of the
art of the model (the most recent developments, reviewing the
latest ideas and features), which constitutes the starting point
of next developments.

This work is organized as follows: in Sec. II the theoret-
ical formalism is presented: Subsection A is devoted to the
characteristics of the initial state, B and C to the fundamental
aspects of mean-field and dissipative dynamics, respectively.
In subsection D a scheme for the treatment of observable
dispersions is displayed. In Sec. III we present the results
concerning stopping power observables measuring the degree
of dissipation for different systems. Finally the conclusions
and perspectives are presented in Sec. IV.

II. THE ETDHF FORMALISM

In this section the bases of the model are revisited. The first
version of the model, which was initially called dynamical
wavelets in nuclei (DYWAN) dates back to 1998 [4]. In that
paper the theoretical background was presented starting from
the derivation of the quantal kinetic Boltzmann-like equation
of motion for the one-body density matrix by means of pro-
jection methods. Due to its complexity, solving this equation
is, however, a difficult task. Thus, the search for a convenient
resolution scheme is needful in order to establish an efficient
and reliable treatment of the evolution of states and relevant
observables. The wavelet theory has been considered with
the aim of obtaining an efficient and adaptive representation
of the physical space corresponding to the many body sys-
tem. In that work a biorthogonal spline basis was employed
to span single-particle (SP) wave functions in a harmonic
oscillator well. A one-to-one correspondence between the
level of the description (pure mean-field, extended-mean-field
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and beyond) and the level in a multiresolution analysis is
established and an iterative procedure is performed in order to
optimize the number of coefficients in the SP wave functions’
expansion. This procedure permits one to fix the optimum
number, location, and widths of wavelets in phase space. It
has been shown mathematically [5] that the spline wavelets
can be expressed as linear combinations of squeezed coherent
states (SCSs). The authors considered that property with
particular interest since it brings the opportunity to make a
more direct link with current dynamical models of heavy-ion
collisions which use Gaussian states as projection elements. A
set of spline wavelets were then implemented with the aim of
performing an analysis of wave functions and the subsequent
decomposition in SCSs [or simply coherent states (CSs)].
Coordinate representation of a three-dimensional CS is

α(�r) = αx(x)αy(y)αz(z), (1)

αx(x) = N exp{−λ(x − 〈x〉)2 + i〈kx〉(x − 〈x〉)}, (2)

with similar expressions for αy(y) and αz(z). Here N =
( 1

2πχ
)
1/4

, the quantity λ is defined as λ = h̄
2χ

(1 − i 2σ
h̄ ), χ =

〈(x − 〈x〉)2〉 is the spatial second moment, and σ = 〈(x −
〈x〉)(kx − 〈kx〉)〉 is the momentum-space correlation. SP wave
functions ϕλ and the one-body density matrix ρ then result in

|ϕλ〉(t ) =
mλ∑
i=1

cλ
i

∣∣αλ
i

〉
(t ), (3)

ρ =
N∑

λ=0

ηλ|ϕλ〉〈ϕλ| �
N∑

λ=0

mλ∑
i=1

nλ
i

∣∣αλ
i

〉〈
αλ

i

∣∣, (4)

where N is the number of nucleons, mλ is the number of CSs
for a given SP state, and cλ

i are constant coefficients, fixed at
the initial time as cλ

i = 1/
√

mλ, satisfying

nλ
i = ∣∣√ηλcλ

i

∣∣2
.

In Ref. [4] nondiagonal matrix elements in ρ are shown to be
smaller and rapidly varying compared to diagonal ones and,
with a good approximation, they can be neglected. Since we
deal with a three-dimensional problem, both the superscript λ

and the subscript i in Eqs. (3) and (4) are in fact sets of three
numbers. Indeed,

|ϕλ〉(t ) = ∣∣ϕnx ϕnyϕnz

〉
(t ), (5)

then λ = {nx, ny, nz} represents the nucleon level or principal
nucleon quantum number. The CS expansion of these func-
tions gives

|ϕλ〉 =
∑

ix

∑
iy

∑
iz

cnx
ix

c
ny

iy
cnz

iz

∣∣αnx
ix

α
ny

iy
α

nz
iz

〉
, (6)

which can be put in the form of Eq. (3) with the following
definitions: i = {ix, iy, iz}, cλ

i = cnx
ix

c
ny

iy
cnz

iz
, and αλ

i = α
nx
ix

α
ny

iy
α

nz
iz

.
In the framework of heavy-ion collisions around the Fermi

energy, the dynamical evolution of the system is provided by
the ETDHF equation

ih̄ρ̇ = [h, ρ] + I(ρ) (7)

which presupposes that mean-field and residual interaction
timescales are well separated. The former is assumed to be
a slowly varying function of time compared to individual
collisions rates. Accordingly, the mean-field evolution and
the collision integral are both computed in a self-consistent
procedure but treated in a different manner from the numerical
point of view. These aspects, which constitute the foundations
of the model, are revisited in the following subsections.

A. The initial conditions

The primal point in transport models is the initial con-
dition: a trustworthy picture of the dynamics in heavy-ion
collisions (HIC) must rely on correct static conditions of
nuclear systems. In order to prepare nuclei in their ground
state, the Hartree-Fock (HF) equation

[h, ρ] = 0 (8)

is solved through an iterative self-consistent procedure. Here,
h is the one-body Hamiltonian t + U(ρ), where t is the kinetic
energy and U(ρ) the nuclear mean-field potential. In the
present version of the model, we implemented an effective
zero-range interaction of the Skyrme type, also accounting for
asymmetry and surface terms:

Uq = 3

4
t0ρ + (σ + 2)

16
t3ρ

σ+1 − σ t3
24

(
x3 + 1

2

)
ρσ−1ξ 2

− τq
t3
12

(
x3 + 1

2

)
ρσ ξ − τq

1

2
t0

(
x0 + 1

2

)
ξ

− 1

8

[
9

4
t1 − t2

(
x2 + 5

4

)]
�ρ

+ τq
1

16

[
3t1

(
x1 + 1

2

)
+ t2

(
x2 + 1

2

)]
�ξ. (9)

In this equation, q represents the isospin, ρ = ρn + ρp, ξ =
ρn − ρp, and τq = ±1, the upper symbol holding for neutrons
and the lower for protons. This implementation allows us
to use any parametrization of this type. However, in this
work for practical applications the parametrization of Ref. [6],
hereafter Skt5, has been carried out. Without entering into
technical aspects we point out that the descriptions of initial
states of nuclei are performed in three dimensions without
any symmetry assumption. Nevertheless, an approximation is
made at the level of the HF self-consistent procedure. In order
to economize the numerical effort, the mean field is fitted with
a one-dimensional harmonic well and extrapolated to the full
three-dimensional space.

The Wigner transform (T W ) of dynamical densities is
useful to obtain a classical-like representation of the dynamics
in phase space. The corresponding contribution of a given CS
|α〉 to the one-body density matrix (4) is given for simplicity
in one dimension by the following expression:

fα (x, kx ) = T W [|α〉〈α|](x, kx )

= 1

2π h̄
√

�
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FIG. 1. Each plot represents Pλ(z, kz ), which is the contribution
to the spatial density of a particular SP state λ given by Eq. (11)
corresponding to nz from 0 to 5 and nx = ny = 0, projected onto the
(z, kz ) plane. The scale of the z-color axis is the same for all panels.

× exp

{
− 1

2�
[φ(x − 〈x〉)2 + χ (kx − 〈kx〉)2

− 2σ (x − 〈x〉)(kx − 〈kx〉)]

}
, (10)

with � = φχ − σ 2 = 1
4 and φ = 〈(kx − 〈kx〉)2〉. The Wigner

transform of the one-body matrix density (4) is then

ρ(�r, �k) = T W [ρ](�r, �k) =
∑

λ

∑
i

nλ
i fαλ

i
(�r, �k),

where fαλ
i

= fαnx
ix

(x, kx ) fαny
iy

(y, ky ) fαnz
iz

(z, kz ). Solving Eq. (8)

with the above HF potential provides the complete set of SP
wave functions describing the initial conditions. In Fig. 1 we
show the contributions of the SP states corresponding to nz

from 0 to 5 to the projection onto the (z, kz ) phase-space plane
of ρ(�r, �k), multiplied by a normalization factor

Pλ(z, kz ) =
∫ ∫ ∑

i

nλ
i fαλ

i
(�r, �k)dx dkx dy dky. (11)

Let us now present some ground-state properties of nuclei,
typically studied in dynamical calculations, derived from the
iterative resolution of the HF equation (8). In Fig. 2 the bind-
ing energy Eb (top) and the mean square radius 〈R〉 =

√
〈r2〉

(bottom) obtained with the mentioned Skt5 parametrization
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FIG. 2. Ground state properties of nuclei addressed in this work
(red squares) compared with experimental values (black dots): top
panel, binding energy per nucleon, Eb; bottom panel, mean-square-
radius 〈R〉.

[6] are represented and compared with the experimental val-
ues [7]. We obtain an overall good agreement on a wide range
of mass number A. The relative errors are less than 5 and
10 percent, respectively, which is satisfactory in dynamical
models for HIC at the concerned energies. These examples
illustrate how the resulting static solutions constitute conve-
nient initial conditions for a sizable spectrum of nuclei.

B. The mean-field evolution

Let us now consider the equation of motion governing the
slowly varying part of the ETDHF equation (7),

ih̄ρ̇ = [h, ρ]. (12)

According to the adopted resolution scheme it is possible to
derive from (12) a TDHF-like equation of motion for the
|αλ

i 〉(t ) states, of the form

ih̄
∣∣α̇λ

i

〉
(t ) = h

∣∣αλ
i

〉
(t ). (13)

Equation (13) is solved by a variational principle giving the
following equations of motion for first and second moments in
phase space:

˙〈x〉 = h̄

m
〈kx〉, (14)

˙〈kx〉 = −1

h̄

∂

∂〈x〉U , (15)

χ̇ = 4h̄

m
γχ, (16)

γ̇ = h̄

8m

1

χ2
− 2h̄

m
γ 2 − 1

h̄

∂

∂χ
U , (17)

where γ = σ
2χ

and U = 〈α|U |α〉. The time integration of the
system of equations of motion of CSs is carried out through
the predictor-corrector method of second order, a procedure
which is appreciably faster than, e.g., a Runge-Kutta method
of the same level of numerical accuracy. The typical time step
in the dynamical calculation is 1 fm/c.
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FIG. 3. Time evolution of momentum (top) and spatial widths
(bottom) of an isolated coherent state contributing to the 120Sn
nucleus.

Figure 3 shows the evolution of first and second moments
of an isolated CS contributing to the description of the 120Sn
nucleus, followed up to several hundreds of fm/c. On top of
this figure is the trajectory of the centroid in the (x, kx ) plane,
the initial time being tagged by a small open circle. On the
bottom are the widths χ and φ corresponding, respectively, to
x and kx coordinates as a function of time. Since this particular
CS remains bound during its evolution, the widths oscillate in
a nearly harmonic-modulated way. This behavior is due to the
variation of the CS orientation all along the trajectory and to
the conservation of the correlation relation � = 1/4.

Let us concentrate now on the dynamical evolution of a
nuclear system in the limit of vanishing binary collisions. This
would be the case in HIC at low incident energies, where
two-body collisions are suppressed as a consequence of the
Pauli blocking. The present approach has not been designed to
work at extremely low energies; nevertheless, it is convenient
to control the performance of the model in a pure mean-field
evolution in order to ensure the correct transition from the
collisionless to the collision regime.

In order to illustrate the above delineated mean-field de-
scription, Eqs. (14) to (17) are solved for some typical nuclear
systems in the energy range we are concerned with. The time
evolution of the complete set of CS centroids projected on the
(z, kz ) phase-space plane (left column) and the configuration
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FIG. 4. The complete set of coherent-state centroids of the
129Xe + 120Sn collision at 20 MeV/nucleon and b = 3 fm projected
at selected times onto the (z, kz ) phase-space plane (left column)
and the density-profile contours projected onto the reaction plane
(z, x) in the configuration space (right column). The z axis is along
the incident beam. The color palette is normalized to correspond
to the number of system nucleons when integrated over the (z, kz )
plane.

space density projected onto the reaction plane (z, x) (right
column) is represented in Fig. 4 for the 129Xe + 120Sn collision
at 20 MeV/nucleon and impact parameter b = 3 fm. From the
left column one infers that the centroids are initially located in
shells corresponding to different single-particle energy levels
and, as time proceeds, they move in almost closed orbits
which are progressively deformed by the dynamics. These
phase-space trajectories are the projection on one dimension
of six-dimension orbits, the evolution of which generates
shape deformations and orbit crossings.

C. The dissipative behavior

In the ETDHF framework the mean-field flow provided
by Eqs. (14)–(17) is coupled to a master equation for CS
occupation numbers describing residual correlations. Indeed,
starting from the CS expansion (4) the collision term I(ρ)
ruling the evolution of SP occupation numbers ηλ can be
written in the form of a gain-minus-loss equation in terms of
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CS occupation numbers nμ
m:

η̇β =
∑
γ λμ

Wβγλμ

∑
i jlm

[
(1 − �i )n

β
i (1 − � j )n

γ

j �l n
λ
l �mnμ

m

−�in
β
i � jn

γ
j (1 − �l )n

λ
l (1 − �m)nμ

m

]
, (18)

where �m = 1 if αμ
m takes part in the SP state ϕμ expansion or

0 otherwise, so that

ημ =
mμ∑

m=1

nμ
m�m.

The Wβγλμ are the transition probabilities obtained in the
Born and in the Markovian approximations and in the weak
interaction limit. In transport models they are usually formu-
lated in terms of the nucleon-nucleon cross-section

Wβγλμ = w
dσNN

d�
(�kβ, �kγ , �kλ, �kμ)δ(�kβ + �kγ − �kλ − �kμ)

× δ(εβ + εγ − ελ − εμ), (19)

where �kα and εα are SP momenta and energies and w is a
constant factor.

Taking advantage of CS dynamical properties, the reso-
lution scheme adopted for the collision term is based on the
philosophy of test-particles methods [4,8,9]. In CS diffusions
a normalized nucleon-nucleon cross section is implemented:

2σ
(|ci|2+|c j |2 ) , |ci|2 being the weights of the colliding CS in
Eq. (3). The Pauli principle is ensured by suppressing all
diffusions inside the same phase-space elementary volume
of size h̄3. This requirement can be simply related to a
minimum overlap condition of the scattered CS with all the
others. In Ref. [4] a preliminary resolution scheme of the
ETDHF equation was proposed and different aspects of the
description were analyzed. Applications to HIC at intermedi-
ate energies [10] and to nucleon induced collisions [11] have
been performed. An extension of the model adapted to the
description of the outer layers of neutron star crusts has also
been developed [12]. Since then, the modelization techniques
have evolved, improving the quality of the corresponding
phase-space representation while optimizing the numerical
framework [13]. In this sense the choice of the representation
basis is determinant because it guarantees the Pauli exclusion
principle at all times. The role of wavelets in this description is
restricted to the multiresolution analysis of SP wave functions
in the initial conditions in terms of a set of CSs, the latter being
the essential ingredient in this approach.

The expression of transition probabilities (19) reflects en-
ergy and momentum conservation of individual collisions. At
the macroscopic level there is no explicit energy conservation
constraint. As a consequence, the dynamical evolution of a
nuclear system is subjected to fluctuations of the overall mean
energy over the course of time, which is system dependent.
A systematic study of the total energy of the studied systems
allows us to assert that the corresponding mean uncertainty is
of the order of a few percent for several hundred fm/c.

As an usual test of the actual numerical implementation,
versus other existing approaches compared among themselves
in Ref. [14] (cf. Figs. 7 and 8 in [14]), in Fig. 5 we show
the number of accepted (“successful”) collisions per 100-
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FIG. 5. The collision rate integrated over 140 fm/c for the
197Au + 197Au reaction at 100 MeV/nucleon and b = 7 fm as a
function of c.m. energy

√
s. The errors are statistical, i.e., they are

the square root of the number of accepted collisions.

keV bin and per nucleon as a function of the center-of-mass
(c.m.) energy

√
s for the case of the Au + Au reaction at

100 MeV/nucleon and b = 7 fm. The observed behavior is
entirely compatible with the other theoretical approaches to
HIC compared in [14]. Let us finally mention that, besides
the CS basis, the implementation of other kinds of expansion
functions in order to improve the numerical treatment is an
open issue.

D. Fluctuations in dissipative processes

In order to estimate the dispersions of measured observ-
ables around their mean values, a procedure for untangling
many-body information from the ETDHF approach is manda-
tory. To this end let us consider the contingency of a model
to provide a complete many-body description of the system
through the N-body density matrix. Even if the system could
ideally be prepared in a noncorrelated initial state and, accord-
ingly, be described by a unique Slater determinant (SD) of
individual nucleon states, the dynamical correlations would
generate transitions between different states in a broad many-
body space. Since knowledge of the evolution of the relative
phase shifts is unattainable, the most general N-body density
matrix we could construct is of the form

ρ (N ) =
K∑
k

pk|�k〉〈�k|, (20)

where {�k} is a set of K nucleonic SDs (NSDs) contributing
to an incoherent admixture of states with probabilities pk .
According to the CS expansion of single particle states {ϕλ},
Eq. (3), the many-body density (20) is shown to be

ρN =
K∑

k=1

pk

N (k)
q∑

q=1

∣∣c(k)
∣∣2∣∣�(k)

q

〉〈
�(k)

q

∣∣, (21)
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where k corresponds to a set of nucleon quantum numbers k =
{λ1, . . . , λN }, q = {i1, i2, . . . , in, . . . , iN } is a collection of CS
labels participating in the decomposition of nucleonic states in
a given �k and, for A being the antisymmetrization operator,
|�(k)

q 〉 = A|αλ1
i1

α
λ2
i2

· · · αλN
iN

〉 is a SD of coherent states (CSSD).
In Eq. (21) K is the total number of NSDs and, since mλ is
the number of CSs contributing to a nucleon state |ϕλ〉, the
product N (k)

q = mλ1 × · · · × mλN represents the total number
of different CSSDs for a given k value. Since CS coefficients
are identical for a given SP state λ, then in Eq. (21) coefficients
c(k) = cλ1 × cλ2 × · · · × cλN only depend on label k.

Assembling all CSSDs generated by the complete set of
NSDs contributing to ρN , one can simply write

ρN =
N∑
I

ωI |�I〉〈�I |, (22)

where N = ∑
k N (k)

q is the dimension of the complete set of
CSSDs and the definition of the weights ωI follows imme-
diately from Eqs. (21) and (22). Accordingly, the one-body
density matrix is

ρ = NTr2...N {ρN } =
∑

I

ωIρI , (23)

where the symbol Tr2...N represents the trace over the degrees
of freedom of 2, 3, . . . , N particles. Here

ρI = NTr2...3{|�I〉〈�I |}
is the one-body density matrix associated with the CSSD |�I〉.

The average value of any one-body observable B =∑N
n=1 b(n) can be calculated as

〈B〉 =
N∑

I=1

ωI Tr{ρI b} =
∑
I,i

ωI
〈
αI

i

∣∣b∣∣αI
i

〉
, (24)

where i spans all CS labels in the corresponding CSSD |�I〉.
For a finite NSD set, the probabilities of which are unknown,
the sums in Eq. (24) represent a huge amount of contributions.
In order to compute this equation, a simple sampling of CSSD
with uniform density random variable is then performed. In
this way Eq. (24) results in

〈B〉 � 1

Nsd

Nsd∑
l=1

bl (N ), (25)

bl (N ) = 〈
αl

i1

∣∣b∣∣αl
i1

〉 + · · · + 〈
αl

iN

∣∣b∣∣αl
iN

〉
, (26)

with Nsd the number of SD samples. The quantities 〈αl
i |b|αl

i 〉
are the mean values of the b observable for individual coherent
states |αl

i 〉. On the other side bl (N ) represent the correspond-
ing SD average values spreading out from 〈B〉 with a given
width. Although we will be only concerned here with one-
body type observables, a similar treatment can be shaped to
the estimation of many-body observables involving reduced
density matrices.

The above considerations endorse the fact that the one-
body density matrix can be viewed as a microcanonical en-
semble average of microscopic N-body configurations con-
stituted by individual CSSD buildup from ETDHF solutions.

0 50 100 150 200 250 300

time (fm/c)

0.2
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0.8

1is
o
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Xe+Sn@50 MeV/nucleon
b=3 fm

FIG. 6. The isotropy ratio Eiso as given by Eq. (27) for the
129Xe + 120Sn reaction at 50 MeV/nucleon and b=3 fm as a function
of time. The red dots show the results of the dissipative evolution
[Eq. (7)]. The bluish background is due to the dispersion over 1000
CSSDs according to Eq. (26).

These configurations, which may be called “events,” by con-
struction conserve the overall mean values of observables,
respect the Pauli principle, and, otherwise, they correspond to
the least biased N-body description compatible with the one-
and two-body information contained in the ETDHF approach.
Let us finally mention the fact that for the simulation measure
having the sense of a genuine one-body quantity, nucleon
aggregates which should not be experimentally detected must
not be computed in (25). The selection of relevant events is
performed through a cluster-recognition algorithm, which in
this work has been adapted from Ref. [15].

To illustrate the dispersion of N-body configurations
around the average values, we considered the time evolution
of the energy isotropy ratio Eiso defined as the quotient be-
tween the mean transverse kinetic energy E⊥ and the mean
longitudinal kinetic energy E‖:

Eiso = 〈E⊥〉
2 〈E‖〉 . (27)

Thus defined, this observable is of a one-body type. It has
been introduced experimentally [16,17] and widely studied
theoretically [18–25] and will be discussed in more detail in
Sec. III. In the example shown in Fig. 6 the full ETDHF cal-
culation has been performed for the 129Xe on 120Sn collision
at 50 MeV incident energy per nucleon Einc for an impact
parameter b of 3 fm and the free-space nucleon-nucleon (NN)
cross section. The average Eiso values (red dots) first strongly
increase with time and quickly stagnate tending towards the
value observed experimentally. The corresponding dispersion
resulting from a sample of 1000 CSSDs is shown in blue,
where the hue from lighter to darker blue denotes decreasing
statistics of CSSDs.

After presenting the main ingredients and features of the
model in the next section, we will focus on dynamical aspects
of HIC through the description of one-body observables that
strongly depend on the two-body dissipation.
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III. STOPPING OBSERVABLES

Several experimental observations are sensitive to the nu-
clear stopping power [16,17,26,27]. These observables have
recently been abundantly investigated by a number of model-
studies of HIC (IQMD [18–21], AMD [22], SMF [23],
UrQMD [24], LV [25], and BUU [28]) in order to constrain
the elastic NN cross section inherent to these models. In Fig. 6
we show the power of the present approach in extending the
model via a procedure which traces back statistical fluctua-
tions in a mesoscopic quantal system. However, at this stage of
the model, as already mentioned, the present paper is intended
to illustrate the immanent features of the model and not to
carry out a quantitative comparison with experimental results.

To this end we chose to confront qualitatively our model
with two stopping-sensitive experimental observables: the
isotropy ratio applied to hydrogenlike reaction products [17]
and the linear momentum transfer (LMT) [27]. Our choice is
additionally motivated by the fact that, from the experimental
point of view, these two observables are very different. LMT
is simple to extract for a given class of experimental events
whereas RE is not only highly sensitive to the details of event
selection but also appreciably depends on the choice of the
representative particles to be studied within selected events.

It has been demonstrated in all previous investigations
[18–25,28] that, to agree with experimental results on stop-
ping, the cross section responsible for the two-body dissipa-
tion in Eq. (19) should be strongly reduced relative to the
free-space NN cross section σ free

NN in order to account for its
in-medium modification. To that aim we use the prescription
of Refs. [29] which, besides reducing σ free

NN , strongly dumps
its dependence on energy and introduces the dependence on
density ρ:

σ med
NN = σ0 tanh(σ free/σ0),

σ0 = ν/ρ2/3, (28)

where the factor σ0 is motivated by the assumption that the
geometric cross-section radius should not exceed the interpar-
ticle distance [29]. The recommended value for the parameter
ν has been 0.85 [29]. For Einc below 100 MeV/nucleon in
the recent publication it has been suggested that it is more
appropriate to use ν = 0.4–0.6 [28]. We adopt both of the
above recommended parameter values and add to our simu-
lations those with the unmodified free NN cross section σ free

NN .
For σ free

NN we take the phenomenological parametrization by
Chen et al. [30], which is based on the empirical isospin and
energy dependence of the free NN scattering. To enable the
comparison with the global in-medium modification factor F
extracted in [17],

F = σ med
NN

σ free
NN

, (29)

we adopt a constant value for the cross section of Eq. (28)
which, as mentioned above, washes out the dependence on
Einc. For ν = 0.85, σ med

NN varies from 27.7 to 25.6 mb at
energies between Einc = 17 and 115 MeV/nucleon, while
for ν = 0.6 it varies from 19.55 to 19.15 mb, and for ν =
0.4 it goes from 13.03 to 13.01 mb. As in [17] we take
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FIG. 7. The global cross-section reduction factor F of Eq. (29)
for ν = 0.85, 0.6, and 0.4, respectively as a function of Einc. The
heavy dots and the background gray zone are F values and attributed
uncertainties extracted from experiment [17]. The open squares stand
for the F values deduced in the LV semiclassical analysis of the
observable RE [25], which used the Zamick parametrization of the
nuclear equation of state [32].

ρ = 0.17 fm−3. The corresponding F values are shown in
Fig. 7. One plausibly infers from this figure that ν = 0.6 and
especially ν = 0.4 should be excluded according to the anal-
yses of Ref. [17]. Each simulation result and the associated
uncertainty shown in Fig. 8 (Figs. 9 and 11) are due to 1000
(100) events generated through the mentioned prescription
in Sec. II D with the cluster-recognition algorithm [15]. An
analysis of this kind has been carried out previously in the
framework of the semiclassical Landau-Vlasov (LV) approach
[25], which has been shown to provide a good description of
the dynamics of HIC at intermediate energies [31]. For the
sake of comparison with semiclassical approaches, in Fig. 7
(open squares) are the F values obtained in the mentioned
analysis of the observable RE with the LV model [25] and
a local nuclear potential in the Zamick parametrization [32].
Taking into account the uncertainties on the deduced F values
in both simulation and data, one may argue that a satisfactory
agreement prevails mainly at the highest Einc. Still, the general
steepness of the Einc dependence of F is not well reproduced.

A. Energy isotropy ratio

The isotropy ratio RE measures the magnitude of energy
transfers between longitudinal and transverse directions in a
reaction. This observable, defined in Eq. (27), can be com-
puted in a simulation on the same footing as in an experiment:

RE =
∑

i E i
⊥

2
∑

i E i
‖
. (30)

where Ei
‖ and Ei

⊥ are the longitudinal and transverse energy
components of the ith reaction ejectile. In the study of sev-
eral mass-symmetric reaction systems [17] the summation
in Eq. (30) runs over hydrogenlike products. In Fig. 8 the
corresponding RE values for the reactions 58Ni + 58Ni and
129Xe + 120Sn are shown in the upper and lower panels, re-
spectively. The heavy dots are from the experiment [17] and
the various line types are due to the simulation. According to
the results on the b distribution of the 129Xe + 120Sn collisions
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FIG. 8. Isotropy ratio RE of Eq. (30) for (a) 58Ni + 58Ni and
(b) 129Xe + 120Sn reactions as a function of Einc. Lines show simula-
tion results with varied parameter ν of Eq. (28). The value of impact
parameter b is chosen according to [25]. The dimmed background
stands for the estimated errors. Symbols represent experimental data
[17].

corresponding to the most violent subset of 0.02 σR,1 shown in
Fig. 4 of Ref. [25], the most contributing collisions are those
with b = 3 fm. This is why in the present qualitative study
for the 129Xe + 120Sn reaction we chose b = 3 fm and for the
58Ni + 58Ni one b = 1.5 fm.

To strictly follow the experimental procedure [17], the
reported Rtheo

E values are obtained by summing up the contri-
bution of the energy components of Z = 1 particles from all
the 1000 generated events. However, to extract the uncertainty
over the so-obtained Rtheo

E value (see dimmed background in
Fig. 8) a parallel analysis based on event-by-event application
of Eq. (30) was performed too.

The experimentally deduced values Rexp
E first diminish with

increasing Einc up to about the Fermi energy EF . Above this
energy Rexp

E is nearly constant or very weakly rising with
Einc. In the simulation the overall behavior of Rtheo

E is similar
although the break in the Rtheo

E slope occurs at 10 to 20
MeV/nucleon higher Einc. Nevertheless, the dependence on
the parameter ν is very ambiguous to the point that at the
highest Einc the claim of the need, for the in-medium reduction
of σNN is uncertain. However, for the lighter 58Ni + 58Ni
reaction [see panel (a) in Fig. 8] and by considering the full
range of Einc, one may conjecture that the ν = 0.85 curve is
the closest to the ensemble of experimental Rexp

E values. In
contrast, for the heavier Xe + Sn reaction [see Fig. 8(b)] the

12.0% of total reaction cross section σR is the geometrical cross-
section equivalence for the fraction of the most central events se-
lected in the experimental study of isotropy ratio in Ref. [17].

discrepancy between Rtheo
E and Rexp

E is present at all but the
lowest and intermediate studied Einc. For Einc � EF , whatever
is the value of ν the simulation indicates the fusionlike behav-
ior characterized by RE � 0.9. It is worth noting that for the
Xe + Sn reaction incomplete fusion is present for Einc up to
about EF [33], in full agreement with the universal fusion ex-
citation function of Refs. [34]. According to this systematics,
for mass-symmetric systems the fusion extinguishes at Einc ≈
50 MeV/nucleon [34]. This is in apparent opposition to the
above experimental Rexp

E value, which is below 0.8 in this
energy range; see data dots in Fig. 8. The discrepancy comes
from the event selection essentially based on multiplicity cuts
assuming a biunivocal correspondence between the reaction
violence, i.e., the multiplicity, and the reaction centrality, i.e.,
the impact parameter b. On one side, it has been demonstrated
via model simulation that selecting events via multiplicity
strongly mixes events of different impact parameters over a
rather broad span in b [21,23,25]. That is the case even for
the experimental subset of events which corresponds to the
rather small fraction of the total reaction cross section σR.
Nominally, for the Rexp

E extraction used is the selection of the
most central collision events, which corresponds to 0.02 σR

[17]. On the other side, in this simulation the impact pa-
rameter together with Einc completely determine the reaction
mechanism. A more quantitative comparison should include
simulations with a wide impact parameter distribution and
an event analysis closely simulating the experimental one,
including the winnowing of simulation results by a filter of the
experimental device. This procedure, like the one performed
in Ref. [25], is rather tedious and unnecessary here because of
the already emphasized scope of the present paper.

One may argue that secondary emission due to the de-
excitation of hot fragments may influence the RE value. It is
expected that fragments are formed in thermal equilibrium.
Consequently, the secondary particles are emitted isotropi-
cally and, on the average, should not alter noticeably the value
of RE .

The simulation results on the stopping observable RE are
not conclusive about the characterization of a specific ν value.
The complex dependence of Rexp

E on Einc, especially its in-
crease for Einc > EF for heavier systems [16,17] could not be
explained in other simulation works either [18,24]. Because
of the subtle dependence of Rexp

E on details of event selection
and particle choice [16,17] it is of interest to look for another
observable sensitive to the stopping power and which is much
less event-selection dependent.

B. Linear momentum transfer

The robust LMT observable is nothing but the velocity
ratio of the in-beam component of the targetlike fragment
and center-of-mass velocities vTL

‖ /Vc.m.. Figure 9 displays
the LMT for the reactions 40Ar + 63Cu, 107Ag, and 197Au
in the top, middle, and bottom panels, respectively, at Einc

between 17 and 115 MeV/nucleon. The heavy dots are from
the experiment [27] and the various line types are the results
of the simulation. The representative impact parameter beff

is obtained as
√

2 bmax [28] assuming the equivalence of
the geometrical 0.08 σR, i.e., 8% of the total reaction cross
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FIG. 9. Linear momentum transfer for (a) 40Ar + 63Cu,
(b) 40Ar + 107Ag, and (c) 40Ar + 197Au reactions as a function of
Einc. Lines represent simulation results with varied parameter ν of
Eq. (28). The value of impact parameter b corresponds to beff for the
assumed geometrical 0.08 σR. The dimmed background stands for
the estimated errors. Symbols represent experimental data [27].

section, to the experimentally selected subset of the most cen-
tral collisions in Ref. [27]. Akin to the analysis of RE [17], to
evaluate the LMT in Ref. [27] the event selection is based on
multiplicity cuts and, as in the other case, it suffers a broad im-
pact parameter contribution much beyond the estimated bmax

of 0.08 σR. From Fig. 9 it appears that all predictions correctly
follow the general trend of the data. Simulation results endorse
the need for the in-medium reduction of the free-space NN
cross section. However, the degree of agreement between
the data and the simulation is both system-size and energy
dependent. Similarly to the results on the observable RE , the
simulation indicates higher fusion contribution at Einc � EF in
comparison to what is observed in the subset of central events
selected for the experimental analysis of LMT, an effect which
becomes stronger as the target mass increases. Consequently,
the ν = 0.85 curve closely follows experimental points in
the case of Ar + Cu reaction at all Einc whereas for the two
heavier systems, and depending on Einc, calculations with the
other ν values are also compatible with the data.
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FIG. 10. Same as Fig. 9 but as a function of Eavail. Each of the
colored zones is due to the simulation with the given value of the
parameter ν or for σNN = σ free. The broken line delimiting a given
zone corresponds to the simulation result including all three reactions
studied.

As was noticed above, the global cross-section reduction
factor F of Eq. (29) deduced for the ν = 0.85 case, in contrast
to the other two studied ν values, closely corresponds to the
experimentally deduced F exp; cf. in Fig. 10 of Ref. [17] as
well as in Fig. 7. One should keep in mind that factor F is
connected with individual NN diffusion processes, therefore
with the c.m. energy of the interacting pair of nucleons or with
the so-called available energy of a system,

Eavail = Ec.m.

Asys
= Einc

ApAt

(Ap + At )2
, (31)

where Ap, At , and Asys are projectile, target and system mass,
respectively. In the case of mass-symmetric systems it scales
to Einc by a constant 4 so that the abscissa of Fig. 7 should be
multiplied by 0.25. In order to also consider mass-asymmetric
systems and conclude on factor F it is mandatory to express
the system energy in terms of Eavail for the different systems.
To this end Fig. 10 shows LMT as a function of Eavail.
From this figure it follows that for all systems studied the
observable LMT is best reproduced by ν = 0.85 if Eavail � 10
MeV/nucleon. That is exactly the range of confidence in the
extraction of F exp; cf. in Fig. 10 of Ref. [17].

Experimental values on LMT for the two studied mass-
symmetric reaction systems are not available. However, in
Fig. 11 are displayed the simulation results on the LMT
observable for the 58Ni + 58Ni reaction. From the figure one
infers that the overall behavior of LMT is not much af-
fected by the mass symmetry. In particular, at least for the
nonreduced or moderately reduced σNN and at Einc � EF , one
observes the strong fusionlike behavior in which the fusion
residue displaces at the c.m. velocity. It would be of interest
if the INDRA Collaboration could pay some attention to
this observable in order to investigate its sensitivity to the
details of the event selection. Also, it would be challenging
to explore how the two stopping observables are mutually
interconnected.

We remind that both studied observables are sensitive to
the choice of the impact parameter, a feature disregarded in
the present qualitative presentation of the model. In further
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calculations more elaborate confrontation of the model with
various experimental observations is contemplated in which
a true density dependence would be worth considering by
introducing the local density in Eq. (28).

IV. CONCLUSIONS

In this work we have revisited the bases of the extended-
mean-field-like model DYWAN and presented current results
in the framework of heavy-ion collisions in the range of
incident energies up to around a hundred MeV per nucleon.
Contrarily to the common usage of test-particles techniques in
solving the Boltzmann-type transport problem, the specificity
of our approach relies upon its intrinsic quantal background.
The static HF equation which serves to define the initial
conditions of a colliding system, discussed in Sec. II and
mostly in Sec. II A, is solved by expanding the system wave
functions onto a set of spline wavelets which, in turn, are
expressed as linear combinations of squeezed coherent states
(CSs). This treatment provides a compact representation of
SP wave functions and is illustrated in Sec. II A. Taking into
consideration the characteristics of the corresponding ground
states, i.e., the initial conditions for a one-body dynamical
description of nuclei, using zero-range forces, the agreement
with the respective experimental values is satisfactory. The
so-obtained wave functions are inputs into the dynamical
TDHF-like equation as described in Sec. II B. The stability
of the adopted numerical approach is proved by allowing
a ground state nucleus to evolve dynamically for several
hundreds of fm/c. For an application to HIC at intermediate
energies the one-body TDHF-like equation is complemented

by a two-body dissipation kernel leading to an ETDHF-like
equation as described in Sec. II C. This is performed via
a so-called collision term dealing with elastic scattering of
couples of CSs which are subject to Pauli blocking and, in
principle in-medium modified, elementary nucleon-nucleon
(NN) cross section. A procedure is proposed to retrieve the
N-body information contained in the extended-mean-field de-
scription of HIC. In other words, information on the nucleonic
level may be extracted by organizing CSs in Slater determi-
nants as described in Sec. II D. This allows for encompassing
the fragment formation and gives rise to genuine statistical
fluctuations of physical observables, as discussed in the same
subsection.

For the sake of illustration, in Sec. III the model is ap-
plied to the two observables sensitive to the nuclear-stopping
power: the energy isotropy ratio RE and the linear momentum
transfer. The need for the in-medium reduction of elementary
NN scattering is clearly confirmed. Some discrepancy ob-
served between simulation and experiment may be attributed,
among other aspects, to the limited exploration of the simu-
lation parameter space such as the role of impact parameter,
choice of nuclear effective interaction, and accounting for the
secondary emission of hot fragments.

The few existing intrinsically quantal approaches to the
nuclear transport problem are all contingent on improvements.
In our case, at the level of the initial conditions, the paving
of the phase space may be improved by achieving still better
homogeneity of nuclear density. It might be obtained by a
simple adjustment of the effective force used, but also by
implementing other kinds of decomposition bases. At the
level of the dynamics, besides exploring the influence of
the effective force chosen for the simulation, the collision
term leaves a broad space for improvements. Both the Pauli
blocking and the treatment of in-medium modification of ele-
mentary NN collisions are questions fairly open to discussion
and development. A vast advancement may also come from
further development of aggregation procedures. An important
upgrade of the model would be in the direction of inclusion of
a stochastic force describing large density fluctuations.
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