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We have calculated a complete set of primary fission fragment mass yields, Y (A), for heavy nuclei across
the chart of nuclides, including those of particular relevance to the rapid neutron capture process (r process) of
nucleosynthesis. We assume that the nuclear shape dynamics are strongly damped, which allows for a description
of the fission process via Brownian shape motion across nuclear potential-energy surfaces. The macroscopic
energy of the potential was obtained with the Finite-Range Liquid-Drop Model (FRLDM), while the microscopic
terms were extracted from the single-particle level spectra in the fissioning system by the Strutinsky procedure
for the shell energies and the BCS treatment for the pairing energies. For each nucleus considered, the fission
fragment mass yield, Y (A), is obtained from 50 000 to 500 000 random walks on the appropriate potential-energy
surface. The full mass and charge yield, Y (Z, A), is then calculated by invoking the Wahl systematics. With this
method, we have calculated a comprehensive set of fission-fragment yields from over 3800 nuclides bounded
by 80 � Z � 130 and A � 330; these yields are provided as an ASCII formatted database in the Supplemental
Material. We compare our yields to known data and discuss general trends that emerge in low-energy fission
yields across the chart of nuclides.

DOI: 10.1103/PhysRevC.101.054607

I. INTRODUCTION

The description of nuclear fission has presented excep-
tional challenges to the theoretical modeling of heavy nuclei
since its discovery in the late 1930s [1]. One way to view
this complicated physical process is to consider the evolution
of the nuclear shape as it progresses from a compact form
through increasingly deformed shapes until the division into
two fragments occurs at the scission configuration [2,3], as
illustrated in Fig. 1. This general picture naturally leads to
the description of the fission process in terms of a potential-
energy surface (PES) as a function of the nuclear shape. The
accumulation of many fission events provides the primary
fission fragment yield whose appearance is sensitive to the
structure of the nuclear system. In this description, much is
still uncertain about the evolution of the nuclear shape and,
consequently, about the extracted fission yields. For example,
what are the most probable trajectories through the shape
configuration space? How do these paths depend upon the dis-
sipative coupling of the shape to the remainder of the system?
And, which microscopic properties impact the division of the
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nucleus at scission? Questions like these drive the current
research in fission dynamics. Our ability to calculate fission
fragment yields across the chart of nuclides has wide reaching
implications for a variety of applications, from nuclear secu-
rity and reactor operations to our understanding of the cosmos
in astrophysical explosions [4–10].

Many methods have been proposed for calculating fission
fragment yields. Phenomenological approaches [11–18] typ-
ically consist of simple models with fitted parameters with
varying degrees of refinement. The parameters of these mod-
els are determined by comparisons to mass or charge yields
or other fission observables in the actinide region. Simple,
yet insightful descriptions of observed phenomena can arise,
such as in the case with the unchanged charge distribution
of Ref. [19]. These approaches can reproduce experimental
or evaluated data when they are known, but the applicability
across the chart of nuclides outside the narrow fitting region
is still in question.

In contrast, microscopic models for the description of
fission are built upon the consideration of an effective energy
density functional (EDF), minimized in a chosen trial sub-
space of the full many-body Fock space while subject to exter-
nal constraints on the density distribution (e.g., the quadrupole
moment Q2 which governs the overall distortion away from
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FIG. 1. A schematic illustration of the fission process: The lower
panel shows the potential energy of the nuclear system along its most
probable path, while the upper panel shows the appearance of the
system at four stages along that path. The nuclear shape, which is ini-
tially located near that of the ground state, is strongly coupled to the
internal microscopic degrees of freedom and, as a result, it executes
a Brownian-like random walk on the multidimensional potential-
energy surface. After passing over the various saddle points, gener-
ally after multiple attempts, the system eventually acquires a binary
shape and reaches a necked-in scission configuration where it divides
into two fission fragments. The shown potential-energy profile is
representative of known actinides, and may differ qualitatively for
nuclei in other regions.

a sphere or the octupole moment Q3 which influences the
reflection asymmetry of the system) [20]. The self-consistent
Hartree-Fock (HF) equations arise from the minimization of
the EDF by assuming a system of independent nucleons, with
the trial space taken to be the set of Slater determinants of the
constituent nucleons. Pairing can be included self-consistently
by extending the trial space to quasi-particle Slater determi-
nants, leading to the Hartree-Fock-Bogoliubov (HFB) model
[21,22]. These treatments make it possible to calculate the
nuclear PES as a function of the constraints employed (Q2,
Q3, ...), and they have been widely used in fission studies
[23–26]. However, the required computational effort is con-
siderable, which imposes a practical limit on the number of
constraints that can be included, currently up to just two or
three [26–28]. As a consequence, the resulting energy surfaces
may exhibit spurious discontinuities and, importantly, the
fission barrier heights cannot be determined with confidence
[29–32]. Although methods exist for remedying this inherent
problem [31], the required computational cost is prohibitive.
The microscopic approach, at the present time, is therefore
best suited for studies of specific nuclei, but is not adequate
for large-scale, global studies of fission yields and their trends

across the chart of nuclides. A recent review covering the
progress of this approach can be found in Ref. [20].

The macroscopic-microscopic approach offers a simpler
and very effective framework for calculating the nuclear PES
[33]. This method was originally developed for the calculation
of nuclear masses because purely microscopic calculations
tend to have difficulty obtaining accurate absolute energies
due to the small but significant role played by many-body
correlations which are hard to treat. Nuclear masses exhibit
smoothly varying macroscopic trends, reflecting the energet-
ics of a charged droplet, overlaid with small-amplitude de-
viations reflecting the microscopic nuclear structure [34–36].
The nuclear potential-energy surface is therefore considered
to consist of a macroscopic liquid-drop like energy functional,
whose parameters (volume energy, surface tension, etc.) are
determined by global fitting to the measured masses, and a
microscopic contribution expressing the shell [37] and pairing
corrections [38], which can be calculated from the neutron
and proton level spectra in the deformed effective potential
well. This approach makes it possible to calculate the potential
energy of any nuclear system with Z protons and N neutrons,
(Z, N ), as a function of its shape (as well as its angular
momentum).

The above approaches can be used to not only provide
the static nuclear PES but also to obtain the temporal evo-
lution of the fissioning system. The HF and HFB Hamiltoni-
ans naturally lead to the time-dependent Hartree-Fock (TD-
HF) and time-dependent Hartree-Fock-Bogoliubov equations
(TD-HFB) [39–42]. However, these methods are not well
suited for processes that generate qualitatively different final
configuration, such as fission, because of the restriction to
a single Slater determinant. A more general approach con-
siders the time-dependent state as a superposition of many
microscopic states having time-dependent weights, leading to
the time-dependent generator coordinate method (TDGCM)
[43–46]. A recent attempt has been made to couple TD-HF
methods with TDGCM [47].

An alternative approach is to treat the evolution of the
shape degrees of freedom (whether the multipole constraints
Qλ used in the microscopic models or the shape parameters
χ used in the macroscopic-microscopic treatment) by means
of classical transport theory [48]. The most complete trans-
port treatment is provided by the Langevin equation [49–51]
which, in addition to the PES, also requires the associated
collective inertial-mass tensor as well as the dissipation tensor
describing the coupling of the collective variables to the
remaining system. Because the nuclear shape evolution is
strongly dissipative [42,52], substantial simplification may be
obtained by considering the strongly damped limit in which
the evolution is governed by the balancing of the driving
force from the PES and the dissipative force. The collective
coordinates then exhibit a Brownian-like motion which can be
simulated numerically as a random walk [53]. The simplicity
of this approach together with its remarkable agreement with
known data make it suitable for global studies of fission
yields [54,55]. We therefore employ this treatment of fission
dynamics in the present work.

The present study requires several successive steps and we
discuss them in turn below. First, in Sec. II, we introduce the
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adopted nuclear shape family and then, in Sec. III, we describe
the calculation of the associated potential-energy surfaces.
The key assumptions about the shape evolution are reviewed
in Sec. IV and the details of the fragment yield calculations
are provided in Sec. V. Building upon past work [56], we
calculate, in Sec. VI, the primary fragment mass yields for the
entire region of nuclides bounded by 80 � Z � 130 and A �
330 and discuss the emerging global trends. The Supplemental
Material [57] provides the calculated fission yields in tabu-
lated ASCII format. Throughout we make several remarks on
the possible implications of these yields for the astrophysical
rapid neutron capture process (r process) of nucleosynthesis.

II. NUCLEAR SHAPES

An important lesson from the fission studies in recent
years is that it is critical to consider a sufficiently rich shape
family to allow the fissioning system to exploit the detailed
topographic features of the associated multi-dimensional
potential-energy surface, such as the height and character of
the barrier and the shell effects in the emerging fragments.
As covered in detail in Ref. [30], fallacies in finding saddle
points can ensue if only a limited number of shape degrees of
freedom are considered.

As first pointed out by Nix [33], it appears that a minimum
of five shape degrees of freedom are required for an adequate
description of low-energy fission, namely a measure of the
overall elongation of the system, the degree of indentation
between the two emerging fragments, the individual deforma-
tions of these fragments, and the overall reflection asymmetry.

A well suited parametrization is provided by the three-
quadratic-surface (3QS) shape family [58] in which those
shape characteristics are given respectively by the overall
quadrupole moment Q2, the neck radius c, the deformation
parameters εf1 and εf2, of the two spheroidal endcaps, and
the geometrical mass asymmetry αg. The shapes included
range from compact (even oblate) configurations (including
ground-state shapes) over intermediate shapes (such as saddle
and isomeric configurations) to the binary configurations near
(and at) scission and beyond. This parametrization has been
employed extensively, see Ref. [51] and references therein.
In particular, it has been used to calculate potential-energy
landscapes from which binding energies [59], fission barriers
[30,60], and other properties have been derived and bench-
marked against available data throughout the nuclear chart.

Several alternative shape parametrizations to 3QS exist;
e.g., see [61–63] and references therein. The difficulty for
any parametrization in describing fission happens where very
distorted shapes appear and where the microscopic effects in
the fledging fragments are essential. Other frequently used
shape parametrizations, for example, those used in early
studies by Nilsson et al. [64], employed perturbed spheroids,
but while these are well suited for shapes near the ground
state (see, for example, Ref. [30]), they generally grow ever
more inadequate (or impractical) for large deformations. In
their seminal work [35], Brack and collaborators introduced
a three-dimensional shape family that has been employed in
numerous studies ever since, but it lacks sufficient flexibility
and is more appropriate at higher energies where the micro-

scopic effects are minimal. Finally, the frequently employed
multipole expansion of the nuclear radius does not provide a
unique representation of the nuclear potential-energy surface
in the region of large deformations relevant to fission [65].

In the present work we shall therefore employ the 3QS
shape family. Accordingly, a particular shape is then char-
acterized by the five-dimensional shape coordinate χ =
(Q2, c, εf1, εf2, αg) and a corresponding Cartesian lattice was
constructed in Ref. [30]. We employ a similar discrete Carte-
sian lattice in the five-dimensional shape parameter space and
use the indices (I, J, K, L, M ) to identify the sites. The index
I = 1, . . . , 45 represents values of the quadrupole moment,
Q2; the index J = 1, . . . , 15 represents the neck radius, c;
the indices K, L = 1, . . . , 15 span endcap deformations ε

ranging from −0.2 to 0.5; and the index M = −33, . . . , 33
spans a sufficiently wide range of asymmetries. The values of
the quantities corresponding to the indices I, J, K, L are not
necessarily equidistant. This lattice contains over ten million
sites but, due to the fact that the site (I, J, K, L, M ) represents
the same physical shape as the site (I, J, L, K,−M ), except
for an overall reflection, there is no need to tabulate potential
energies for negative M values. The step size of αg gives a
fragment mass resolution of �A = 2.4 for 240Pu and �A ≈
3 for the heaviest nuclei considered in this work having a
fissioning mass number of A = 330. This tolerance is roughly
similar to the current experimental fragment mass resolution.

III. POTENTIAL-ENERGY SURFACES

The potential energy of an arbitrarily shaped nuclear sys-
tem, U (S), represents the lowest possible energy the system
can have at the specified geometric shape. This function can
be conveniently calculated by means of the macroscopic-
microscopic method, according to which the energy is a sum
of a smoothly varying liquid-drop-like macroscopic term and
an undulating microscopic term that accounts for the shell and
pairing energies,

U (S) = Emacro(S) + Emicro(S), (1)

where S denotes the specified shape. When χ replaces S,
this signals that a given choice of shape parameters, in our
case from the 3QS shape parametrization, has been used to
describe the geometry of the nuclear shape.

At a given total energy, E , the local excitation energy (i.e.,
the excitation energy of the nucleus at a specified shape S) is
given by E∗(S) = E − U (S). As the total energy is increased
[by increasing the kinetic energy of the incoming neutron
in (n, f ) reactions], the local excitation energies increase
correspondingly and, generally, the microscopic contributions
to the potential energy decrease. As a result the effective
potential energy surface experienced by the evolving shape is
modified, approaching Umacro(S) at high energies. This effect
will be taken into account by multiplying Umicro(S) by the
suppression factor S (E∗(S)) suggested in Ref. [55] and thus
using

UE (S) = Emacro(S) + Emicro(S)S (E∗(S)). (2)

This method has been extensively benchmarked and widely
applied in the context of fission studies [30,51,53–56]. When
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applied to studies of ground state properties via the Finite-
Range Droplet Model (FRDM), it also yields a very good
overall reproduction of measured nuclear masses throughout
the nuclear chart [59,66,67]. This is an incredible triumph of
this methodology, given that the parameters have varied very
little over the years, and the predictability with respect to new
measurements has remained rather constant.

The construction of the nuclear PES proceeds as follows:

(1) Specify a nuclear shape parametrization (in this work
the five shape coordinates).

(2) Calculate the macroscopic energy terms as outlined in
the next section.

(3) Calculate the single-particle levels using a folded
Yukawa potential as in Ref. [59].

(4) Calculate microscopic shell and pairing corrections.
(5) Add the macroscopic and microscopic correction

terms together using Eq. (1).

A collection of all the possible distinct nuclear shapes between
the ground state and scission configurations defines the com-
plete PES for the specified choice of shape parametrization.
The large choice of grid space can lead to some shape com-
binations that may produce unphysical results. We handle this
issue, as in past work, by making those points of the PES very
large (inaccessible) relative to the physical points. We now
review the macroscopic and microscopic terms that comprise
the PES.

A. Macroscopic energy

For the macroscopic energy, we adopt the Finite-Range
Liquid-Drop Model (FRLDM), Emacro(S) = EFRLDM(S).
While this model was described in Ref. [66], the actual
parameter values employed in Refs. [30,68] have not appeared
in an individual publication. We therefore assemble here the
different formulas and parameter values involved in the model
for completeness:

EFRLDM(S) = MHZ + MnN mass excess

− avEV(S) volume energy

+ asES(S) surface energy

+ a0A0BW(S) A0 energy

+ c1
Z2

A1/3
B3(S) Coulomb energy

− c4
Z4/3

A1/3
Coul. exchange corr.

+ f (kf rp)
Z2

A
prot. form-factor corr.

− ca(N − Z ) charge-asym. energy

+ W EW(S) Wigner energy

+ �̄ avg. pairing energy

− aelZ
2.39, bound electrons

(3)

where we have

EV(S) = (1 − κvI2)A, (4)

ES(S) = (1 − κsI
2)B1(S)A2/3, (5)

EW(S) = |I|BW(S) +
{

1
A , Z and N odd and equal,
0, otherwise,

(6)

�̄ =

⎧⎪⎨
⎪⎩

+�̄p + �̄n − δnp, Z and N odd,
+�̄p, Z odd, N even,
+�̄n, Z even, N odd,
+0, Z and N even,

(7)

I = N − Z

A
, (8)

c1 = 3

5

e2

r0
, (9)

c4 = 5

4

(
3

2π

) 2
3

c1, (10)

f (x) = − r2
pe2

8r3
0

(
145

48
− 327

2880
x2 + 1527

1209600
x4

)
, (11)

kf =
(

9πZ

4A

) 1
3 1

r0
, (12)

�̄n = rmacBs(S)

N1/3
, (13)

�̄p = rmacBs(S)

Z1/3
, (14)

δnp = h

Bs(S)A2/3
. (15)

The shape-dependent coefficients are the relative surface
energy Bs(S), the relative generalized surface energy B1(S),
the relative Coulomb energy B3(S), and the relative Wigner
energy BW(S). These quantities are defined by integrals over
the geometry of the nuclear shape:

Bs(S) = A−2/3

4πr2
0

∫
S

dS, (16)

B1(S) = A−2/3

8π2r2
0a4

∫∫
V

(
2 − σ

a

)e−σ/a

σ/a
d3r d3r′, (17)

B3(S) = 15A−5/3

32π2r5
0

∫∫
V

d3r d3r′

σ

[
1 −

(
1 + σ

2aden

)
e− σ

aden

]
,

(18)

BW(S) =
{(

1 − S3(S)
S1(S)

)2
ad + 1σ2 � 0,

1, σ2 � 0.
(19)

In these expressions, σ = |r − r′|, S1(S) is the area of the
maximum cross section of the smaller one of the end bodies,
and S3(S) is the area of the geometric shape S at the neck
location.

The model parameters involved in these expressions are de-
composed into four categories. The first category corresponds
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to the fundamental constants and contains

MH = 7.289034 MeV,

Mn = 8.071431 MeV,

e2 = 1.4399764 MeV fm.

(20)

The second category is the set of parameters not con-
strained by atomic masses (e.g., with comparison to evaluated
data [69,70])

ael = 1.433 × 10−5 MeV,

rp = 0.80 fm,

r0 = 1.16 fm,

a = 0.68 fm,

aden = 0.70 fm.

(21)

The value of the parameters included in these two cat-
egories are unchanged since FRLDM1993 [66]. The third
category corresponds to the parameters that are chosen from
consideration of odd-even mass differences. Their values are

rmac = 4.80 MeV,

h = 6.60 MeV,

W = 0.68 MeV,

ad = 0.9.

(22)

In this category, only the value of the Wigner damping
constant ad has been modified from ad = 0 (FRLDM1993)
to ad = 0.9 as in Ref. [71]. The nonzero value of the ad

parameter plays a role in the preference of asymmetric shape
configurations near scission.

The fourth and last category contains the parameters that
are adjusted on evaluated masses as in Table I of Ref. [68],

av = 16.025 MeV,

κv = 1.932 MeV,

as = 21.330 MeV,

κs = 2.378 MeV,

a0 = 2.040 MeV,

ca = 0.097 MeV.

(23)

B. Microscopic energy

The calculation of the shape-dependent microscopic en-
ergy term, Emicro(S), is as described in FRLDM1993 [66], in-
cluding the details of the shell correction and Lipkin-Nogami
pairing along with all the associated parameter values.

Once a shape family has been adopted, the shape parameter
χ can be regarded as specifying a sharp generating density,
ρ̂χ(r), from which the corresponding diffuse effective neutron
and proton potentials can be generated by a convolution proce-
dure, using a kernel of Yukawa form; spin-orbit and Coulomb
potentials are subsequently added. The Schrödinger equation
then yields the associated single-particle level spectra from
which the shell energy is obtained by the Strutinsky subtrac-
tion procedure and the pairing energy is obtained by means
of the BCS treatment [36]. The resulting microscopic energy
then has an additive form in both the constituent neutrons and
protons:

Emicro(S) = Eshell(S) + Epair (S)

= E (n)
shell(S) + E (p)

shell(S) + E (n)
pair (S) + E (p)

pair (S). (24)

It is worth keeping in mind that, in the macroscopic-
microscopic approach, the effective single-particle potentials
as well as the neutron and proton density distributions ob-
tained from the corresponding wave functions generally have
multipole moments that differ slightly from those of the
specified generating density as well as from one another.

C. Typical features of potential-energy surfaces

Because it is difficult to visualize the features of the five-
dimensional potential energy surface, a reduction to two di-
mensions is often performed and these can be very instructive
for the analysis of fission yields. In order to illustrate the
typical character of the energy landscape, we show in Fig. 2
reduced landscapes in the Q2−αg plane for three varying
cases, namely (a) 236

92U, (b) 240
94Pu, and (c) 234

96Cm. These two-
dimensional visualizations have been obtained by minimizing
U (I, J, K, L, M ) over J, K, L for each combination (I, M ).

The left two panels show that both 236U and 240Pu exhibit
a distinct barrier ridge (�9 MeV) that inhibits symmetric
fission at low energies. These nuclei have their largest barriers
in scission trajectories on the order of 5 MeV. The higher
barriers shown here represent the variation in the potential
that can arise from the choice of other shape coordinates when
projecting down to two dimensions; a key point to remember
in our further discussions. Turning to panel (c), a symmetric
fission mode is likely in 234

96Cm as the fission path along αg =
0 shows no major hills to climb while a slight ridge between
(Q2/b)

1
2 ≈ 6 and 8 discourages more asymmetric paths.

The differences in the topography of these potential-energy
surfaces illustrate the importance of the microscopic effects
in determining the character of the resulting fission fragment
yields. A pedagogical example comes from the study of major
actinides, for which the heavy fragment tends to be near the
closed neutron shell at N = 82 and, consequently, tends to
have a spherical shape, while the lighter partner is moderately
deformed.

IV. SHAPE EVOLUTION

In the treatment of the fission dynamics, the shape param-
eter χ = (Q2, c, εf1, εf2, αg), is regarded as a classical vari-
able. Accordingly, its evolution may be described within the
framework of standard transport theory. The most important
physical ingredient in this treatment is the potential energy
landscape, U (χ), which provides the driving force acting on
the shape coordinate χ. The resulting “acceleration” of χ

will endow the system with a collective kinetic energy and
it is therefore generally necessary to also know the associated
collective inertial-mass tensor, M(χ).

Furthermore, the macroscopic degrees of freedom asso-
ciated with the nuclear shape are coupled to the remaining,
microscopic, degrees of freedom which can be regarded as a
thermal reservoir. As a consequence, the shape parameter χ

continually receives impulses whose effect can be described
by means of the collective dissipation tensor, γ (χ).

As of now, a microscopic calculation of the inertia ten-
sor M(χ) would involve the inversion of the Quasiparticle
Random-Phase Approximation (QRPA) matrix; see Ref. [20].
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FIG. 2. The projected potential energy surfaces for (a) 236
92U, (b) 240

94Pu, and (c) 234
96Cm are plotted versus elongation and asymmetry. The

asymmetric fission of U and Pu can be understood as a result of the primary barrier being symmetric; thus the yields exhibit an asymmetric
splitting at low excitation energy. In contrast, Cm has no such barrier and is therefore predicted to split symmetrically, as reflected in panel (c).

Standard approximations (e.g., the cranking model) used to
avoid calculating the full tensor are not well understood
[72]. Therefore, more complete dynamical treatments, such
as those based on the classical or quantal Langevin equation,
most often employ a fluid-dynamical mass tensor calculated
under the assumption of incompressible irrotational flow, even
though the resulting tensor is known to be incorrect, both
quantitatively and even qualitatively. In our present treatment,
we avoid this problem by working in the limit of strong
dissipation where the collective motion is so slow that the
inertia plays no role for the shape evolution [53,54].

A. Strongly damped limit

If the coupling of the considered shape degrees of freedom
χ to the residual nuclear system is sufficiently strong then the
resulting shape motion is so slow that the inertial effects are
negligible [73]. In this limit, the general Langevin equation
reduces to the Smoluchowski equation which expresses the
balancing of the driving force and the dissipative force,

Fpot (χ) + Fdiss(χ, χ̇) = 0, (25)

where χ̇ is the time derivative of the collective shape variables.
The driving force Fpot = −∂U (χ)/∂χ seeks to lower the
potential energy. The dissipative force Fdiss arises from the
coupling of χ to the remaining part of the system and it has
a stochastic character, so that it is necessary to consider an
entire ensemble of possible evolutions. The average of Fdiss

is the friction force, F fric = −γ · χ̇, which damps the shape
motion, while the residual part of Fdiss causes the evolution to
also be diffusive.

A general formal framework for treating the ensemble
of evolutions generated by the Smoluchowski equation is
provided by the Fokker-Planck equation which governs the
time evolution of P(χ), the probability distribution for the
system to have the shape χ = {χi}:

∂

∂t
P(χ, t ) = −

N∑
i=1

∂

∂χi
ViP +

N∑
i, j=1

∂

∂χi

∂

∂χ j
Di jP. (26)

The drift coefficient, a tensor of rank 1, V (χ) = {Vi(χ)},
determines the average evolution, while the diffusion co-
efficient, a tensor of rank 2, D(χ) = {Di j (χ)}, governs
the growth of correlated fluctuations. These roles of the
transport coefficients are most clearly brought out when
one starts from a sharply peaked distribution, P(χ, t =
0) ∼ δ(χ − χ0), in which case the mean shape parameters,
{χ̄i(t )} ≡ { ∫

χiP(χ, t )dχ}, and their covariances, {σi j} ≡
{ ∫

χiχ jP(χ, t )dχ − χ̄i(t )χ̄ j (t )}, evolve initially as follows:

∂

∂t
χ̄i = 〈Vi(χ)〉, ∂

∂t
σi j = 2〈Di j (χ)〉. (27)

The basic transition rates for the shape changes must
satisfy detailed balance. Thus the rate for the change χ → χ′
and the rate for the reverse change χ′ → χ must have a ratio
equal to that of the corresponding final-state level densities,
ρ(χ′) and ρ(χ), respectively:

λ(χ → χ′)ρ(χ) = λ(χ′ → χ)ρ(χ′). (28)

In the approximation where the shape-dependent level den-
sity ρ(χ) depends only on the local nuclear excitation energy
E∗(χ), i.e., ρ(χ) = ρ̃(E∗(χ)), the transport coefficients are
given by

V (χ) = μ(χ) · Fpot (χ), D(χ) = μ(χ) T (χ), (29)

where the mobility tensor, μ, is the inverse of the dissipation
tensor γ and T = 1/[∂ ln ρ(E∗)/∂E∗] is the local temper-
ature (see below). The relation (29) is consistent with the
fluctuation-dissipation theorem often referred to as the Ein-
stein relation.

When the parameter space is multidimensional (in the
present case, χ is five-dimensional), it is often impractical
to solve the Fokker-Planck equation, as both space and time
requirements grow overwhelming. Instead, it is preferable
to represent P(χ, t ) by a sample of dynamical trajectories,
{χ(n)(t )}, whose evolutions are simulated directly. Any desired
observable can then be readily extracted from these as easily
as from P(χ, t ).
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B. Brownian motion on the shape lattice

When the Smoluchowski equation is simulated directly, the
shape parameter χ executes a generalized Brownian motion.
Each change in χ consists of a deterministic term, caused by
the driving force from the PES [and resisted by the friction
force; see Eq. (25)], and a random term resulting from the
residual part of Fdiss. The change in χ accumulated over a
small time interval, �t , can be computed by diagonalizing the
mobility tensor, μ. In this basis, it reads

�χ =
5∑

n=1

e(n)
[
�t e(n) · Fpot +

√
2T �t ξn

]
, (30)

where {e(n)(χ)} are the five eigenvectors of the mobility ten-
sor, μ = ∑

n e(n)e(n), and {ξn} are five random numbers sam-
pled from a distribution having zero mean and unit variance
(such as a normal distribution) [54].

The above propagation procedure applies when the poten-
tial energy and the mobility tensor are known as functions
of the shape parameter χ. Further, χ is considered as a
continuous variable. However, in the present study we know
these quantities only on the discrete shape lattice described
in Sec. II. We therefore wish to replace the above continuous
Brownian motion governed by (30) with a random walk on the
lattice sites.

This is a difficult task because the mobility tensor is
generally not aligned with the lattice directions. However,
it was argued in Ref. [53] that the outcome of the strongly
damped nuclear shape evolution is not so sensitive to the
specific structure of μ, so that it may be replaced by an
isotropic tensor, μnn′ ∼ δn,n′ . This expectation was supported
by the subsequent studies in Ref. [54] and we shall adopt
this approximation in our present study even though we must
expect it to be occasionally less accurate.

It is then elementary to show [53,54] that the Brow-
nian shape evolution (30) can be performed on the lat-
tice by the simple Metropolis procedure [74], according
to which the shape is moved from the current lattice site
X = (I, J, K, L, M ) to a randomly chosen neighboring one
X ′ = (I ′, J ′, K ′, L′, M ′) with the probability

P(X → X ′) = ρ(X ′)/ρ(X ), (31)

where ρ(X ) is the local level density at the shape correspond-
ing to the lattice site X . The above relation (31) should be
understood to mean that the proposed shape change happens
with certainty whenever ρ(X ′) � ρ(X ).

In the present study, we employ the simplified Fermi-gas
level density, ρ(χ)FG(E∗(χ)) ∼ exp (2

√
aE∗), for which the

shape dependence enters only via the shape dependence of
the local excitation energy, E∗(χ) = Etot − U (χ), which is of
the form leading to Eq. (29). The parameter a = A/8 is the
typical constant level density for a system with A nucleons.
The spacing of the employed shape lattice is sufficiently
fine to allow a first-order expansion [54], so the Metropolis
criterion (31) then simplifies to

ρ(χ′)
ρ(χ)

≈ exp

[
∂ ln ρFG

∂E∗
∂E∗

∂χ
· �χ

]
≈ e−�U/T , (32)

where �χ = χ′ − χ is the proposed shape change and
�U = U (χ′) − U (χ) ≈ −Fpot · �χ is the associated change
in the potential energy, where the driving force is Fpot =
∂E∗(χ)/∂χ = −∂U (χ)/∂χ. The above expression (32) is the
form used in the original [53] and subsequent work. We shall
employ it here as well.

C. Features of the shape evolution

We discuss here the most interesting features of the Brow-
nian shape motion using the evolution across the 236

92U PES as
an example. We set the excitation energy to just above 5 MeV,
which is slightly higher than the highest fission barrier.

Four distinct stages of the Metropolis implementation of
Brownian motion for 236

92U are shown in Fig. 3. This calcu-
lation begins in the ground state, panel (a), and proceeds via
stochastic steps towards scission, panel (d). Typically in fis-
sion calculations, the bulk of the computational effort is taken
up attempting to move out of the ground state minimum and
beyond the first major saddle point. However, along the path,
the density of the Monte Carlo steps is highest in the fission
isomer minimum between panels (b) and (c). The reason for
this is a biased potential employed between the ground state
and maximum saddle, which has been used extensively in past
work and is discussed further in Sec. V C. Once beyond the
outer saddle, between panels (c) and (d), the system quickly
proceeds downhill with relatively few steps required to reach
scission. Note the appearance of an asymmetric fission valley
only once the trajectory comes close to scission in panel (d).
The larger energy scale in this figure relative to Fig. 2 arises
due to the projection of the PES using the shape variables
(c, εf1, εf2) that are held fixed given the state of the system,
denoted by an orange circle, in each panel.

The large mountains of 60 MeV seen in Fig. 3 are never
reached in any stochastic random walks for the low-energy
fission considered here. To emphasize this point, we consider
the ensemble of many scission trajectories in Figure 4. The
averaged path across the PES never reaches above the fission
barrier around 5 MeV. The “funneling” that occurs near this
saddle point is also evident with a decrease in variance of
the energy along the path. For the majority of the random
walk, the fission path width is roughly on the order of a MeV.
Beyond the outer saddle the variation in the fission path ranges
several MeV, with the most probable fragments generated by
trajectories near the averaged path.

This type of calculation provides an alternative to immer-
sion methods for finding the most interesting PES features
along trajectories [30]. The main limitation of this procedure
is the number of events required to build sufficient statistics.
Figure 4 was constructed with 5000 trajectories. In contrast,
the full yields are typically evaluated with ten to one hundred
times more statistics. In this procedure, one does not obtain
information about the full shape configuration space, since
the calculation only requires the most commonly traveled PES
points confined to scission trajectories. It can be argued that
this last point is in fact a motivation for using the new method,
since it optimizes the time-consuming PES calculations on the
configuration space to only what is absolutely necessary. This
procedure may be particularly useful for fission calculations
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FIG. 3. The evolution of the projected potential energy surface for 236
92U along a trajectory starting (a) from the ground state and continuing

towards (b) the saddle point while (c) rattling around the second minimum until (d) scission. The orange circle denotes the current point in
the shape configuration with the black path denoting what has already been traversed and gray the path still to come. A lack of background
shading (white) means unphysical PES value given the other, fixed, shape coordinates.

which do not rely on discretization of the shape lattice space
or a precalculated PES.

V. FRAGMENT MASS AND CHARGE YIELDS

We now describe the calculation of the fragment mass,
Y (A), fragment charge, Y (Z ), and full fission fragment yields,
Y (Z, A).

A. Mass distribution

The ensemble of scission events, such as the one illustrated
in Fig. 3, is the basis for the creation of the mass yields
Y (A) for a fissioning system with Z0 protons and A0 nucleons.
We use a geometric property for the calculation of Y (A).
Specifically, for each scission configuration we tally the mass
asymmetry, αg, and convert this quantity to nucleon number,
A, via A = A0(1 − |αg|)/2 for the lighter fragment. Due to

the symmetry of primary mass yields, the heavier fragment
nucleon number can be computed via the conservation of nu-
cleon number. Naturally, this calculation does not produce in-
tegral values of A. We therefore evaluate the yield Y (αg) using
linear interpolation to construct Y (A). The resultant fragment
yields are over discrete integer values of A and we normalize
such that

∑
Z,A Y (Z, A) = 2, implicitly assuming that there is

no ternary fission. This choice provides consistency checks
on preserving the fissioning system nucleon number A0 =∑

Z,A AY (Z, A) and proton number Z0 = ∑
Z,A ZY (Z, A). The

construction of the full yield, Y (Z, A), in both mass and charge
is discussed in Sec. V B.

B. Charge distribution

The charge asymmetry is notably absent from the assumed
five-dimensional shape degrees of freedom. Our current calcu-
lations therefore only support the calculation of mass yields,

054607-8



PRIMARY FISSION FRAGMENT MASS YIELDS ACROSS … PHYSICAL REVIEW C 101, 054607 (2020)

FIG. 4. The averaged projected potential energy of 236
92U as a

function of elongation for a set of trajectories.

Y (A). This is not a limitation of the FRLDM model; rather, it
comes from an attempt to save storage space on a computer
with the grided approach to the nuclear PES. An additional
shape degree of freedom could be added to produce the
full fragment yields in both charge and mass, Y (Z, A) [75].
Conversely, other methods exist in the literature to obtain the
splitting configurations at scission [76]. We plan to explore
these methods in detail in future work.

For now, we apply the following technique to obtain the
full fragment yields. We assume that the results of our Markov
chain Monte Carlo provides the mass yield, Y (A). We use
the unchanged charge distribution, which is a scaling factor,
η = Z0/A0, where Z0 and A0 are the charge and mass of the
fissioning nucleus, to translate between the calculated mass
and charge yields, Y (Z ). Following the procedure of Wahl
[19], this description assumes a Gaussian form for the charge
yield as a function of A:

Y (Z|A) = 1√
2πσ 2

Z

exp
[−[Z − Zp(A)]2/2σ 2

Z

]
, (33)

where the mean Zp(A) is given by Zp(A) = A × η for a given
fragment mass A. To obtain the full yields, we perform an iter-
ative procedure to determine the variance parameter, σZ . The
variance σZ is determined for each fission system at a specified
excitation energy. We do not consider the systematics of σZ

with excitation energy in this work as we are evaluating the
yields at a single energy, as discussed in the next section.
A trial full fragment yield Yt (Z, A) = Y (A) × Y (Z|A) is used
with an initial guess for σZ until an appropriate threshold is
reached. The fit constraint for σZ satisfies the minimization of
Y (Z ) = ∑

A Yt (Z, A). The full fragment yields are then given
by Y (Z, A) = Y (A) × Y (Z|A) using the optimal σZ .

Figure 5 shows the fragment yield, Y (Z, A), for 236U
calculated with the above procedure. Experimental data of
Refs. [77,78], which have a greater than unity mass resolution,
are shown for reference in the top panel. The assumption of
unchanged charge distribution is employed using a value of

FIG. 5. (a) The primary mass yield of 236U. (b) The distribution
of daughter fragments in the chart of nuclides given the assumption
of unchanged charge distribution (UCD). Solid black denotes stable
nuclei, with light gray showing the extent of bound nuclei using
FRDM2012 masses.

σZ = 0.435 for this nucleus, leading to the distribution of
daughter fragments in the bottom panel. From the bottom
panel, one can draw a single straight line in the NZ plane
that pierces through the center of the distribution, from bottom
left to top right. In experimental data, an offset is often
seen between the light fragment and heavy fragment lobes
in relation to this line due to charge polarization [79]. Our
description using the Metropolis method to obtain Y (A) does
not include this effect, nor odd-even staggering often seen in
charge yields. Despite this shortcoming, as we shall see, the
method does very well when compared to known data.

C. Additional model assumptions

With the evolution of the Markov chains and calculation
of the fragment yields described in the previous sections, we
now detail several choices that may have leverage on the
Brownian-shape motion calculations.

1. Starting shape

The starting shape configuration for the random walk is
an open but critical choice in terms of computational cost of
the yield calculations. Possible starting positions include the
ground state, near the fission isomer -minimum or beyond
the outermost saddle point [51]. For all nuclei, we chose
to start as close to the ground state as possible given the
3QS shape parametrization. The reason for this is that we
can always isolate this position in the PES for every nucleus
across the chart of nuclides. The choice of the other starting
positions could be difficult to define, for instance, there may
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be only a single saddle point along the fission path or the PES
could be smooth and featureless in the region of moderate
elongation, thus making the choice of starting at the fission
isomer-minimum impossible. The choice of starting beyond
the outermost saddle point is also not without its problems,
as one must artificially produce a spread in the trajectories,
which arises from starting at a more compact configura-
tion; recall Fig. 4. These issues are discussed throughout
Refs. [51,54–56].

2. Bias potential

The choice of starting near the ground state configuration
is not itself without a drawback. The wall clock time of the
yields becomes substantially longer the closer to the ground
state the calculations are initialized. This unfortunate compu-
tational circumstance reflects the physical nature of fission.
In previous work, e.g., Ref. [56], a bias potential was used to
speed up the calculation of the stochastic random walk from
the ground state to roughly the first fission-isomer minimum.
For the limited nuclei studied in the previous work, this was
a good assumption as most always the maximum saddle point
was the first saddle point encountered in a scission trajectory.
However, systems with larger neutron excess may have more
complicated potentials. We have therefore replaced the bias
potential appearing in previous work with a quadratic form,

Ebias(Q2) =
{

Etilt

(
Q2−Qsa

2

Qgs
2 −Qsa

2

)2
, Q2 � Qsa

2 ,

0, Q2 > Qsa
2 ,

(34)

where Q2 is the current elongation between the ground state,
Qgs

2 , and maximum saddle, Qsa
2 , and the tilt parameter, Etilt , is

dependent on the height of the maximum saddle, allowing for
a smooth connection between the bias and nuclear potentials.
For elongations after Qsa

2 , the two potentials are exactly equal,
resulting in no modification to a given trajectory after this
point. This functional form serves to reduce the necessary
height of the bias potential, that was in previous works
typically set around 60 MeV, and minimize the variation of
trajectories through the maximum saddle point. In this work,
the maximum coefficient of the bias potential considered for
any nucleus is 10 MeV.

The impact of the bias potential is shown in Fig. 6 for four
example nuclei. These nuclei were chosen based off the dis-
tinct nature of their mass yields. The nucleus 227

90Th in panel (a)
exhibits mostly an asymmetric split with some tendency for a
symmetric split depending on the exact choice of Etilt . The
dependence of the bias potential here is the strongest amongst
the four nuclei because of the possible opening and closing of
the symmetric channel. The uranium isotope shown in panel
(b) has no symmetric mode at low excitation energy while
260
101Md in panel (c) shows a preference for asymmetric fission
along with an open symmetric path. An extreme neutron-rich
No isotope, panel (d), with a rather broad yield displays very
little dependence on the bias potential.

3. End configurations

The random walks continue until reaching a specified
critical neck radius c where the mass partition is assumed to

FIG. 6. The impact of the choice of bias potential for (a) 227
90Th,

(b) 236
92U, (c) 260

101Md, and (d) 277
102No. The coefficient for the bias

potential in this work is limited to Etilt = 10 MeV or less.

be frozen in. This happens well before actual scission where
the two emerging fragments are fully formed and separate.
Figure 7 shows the variation in the mass yield for various
values of the critical neck radius. Some nuclei exhibit a
relatively weak dependence on the neck radius, as shown
in panels (c) and (d). Other nuclei, such as 227

90Th, show a

FIG. 7. The dependence of the mass yield on choice of scission
configuration for (a) 227

90Th, (b) 236
92U (c), 260

101Md, and (d) 277
102No.
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FIG. 8. Mass yields calculated for various constant values of the
temperature, T = 0.5, 1.0, 1.5 MeV, for 227

90Th (a), 236
92U (b), 260

101Md
(c), and 277

102No (d). Also shown are the yields obtained by calculating
the local temperature on the basis of the macroscopic potential alone.

much stronger dependence that even shifts the peak of the
yield distribution multiple units in mass number. Mass yields
of certain nuclei therefore may benefit from a variation of
this number. However, it is not instructive to change this
number in an ad hoc manner without physical motivation
when considering a global calculation of mass yields across
the chart of nuclides. We therefore adopt the critical neck
radius to be c = 2.5 fm as the standard criterion for extracting
the mass yield. This value is based on the result of matching
select yield distributions of major actinides.

4. Nuclear temperature

The random walk depends on the local temperature, T (χ),
appearing in the Metropolis step criterion (32). As in past
work, we relate T to the local excitation energy E∗ by
the simple Fermi-gas relation E∗ = aT 2. Accordingly, the
temperature for a given shape χ is thus given by T (χ) =
{[E − U (χ)]/aA}1/2. Thus, the local temperature is initially
relatively large while the shape explores the region around the
ground state, and it is smallest as the shape passes through
the barrier region, beyond which it increases steadily as the
system drifts down the outer barrier. Figure 8 shows mass
yields calculated for various constant values of the tem-
perature. This simple example illustrates the importance of
the nuclear temperature in determining the fragment yields.
More recent treatments, e.g., that of Ward et al. [80], have
refined the treatment of the shape evolution by employing
shape-dependent microscopic level densities, which account
for pairing correlations and shell effects.

5. Excitation energy

The nuclear shape evolution depends on the total energy of
the system, E , which in turn depends on how the fissioning
nucleus is being prepared. For low-energy neutron-induced
fission, the initial compound nucleus is the result of the
target nucleus absorbing a neutron. If the incident neutron has
kinetic energy ε, the resulting compound nucleus excitation
energy is E∗

0 = Sn + ε, where Sn is its neutron separation
energy, and the total energy is E = E∗

0 + M0c2, where M0

is the ground-state mass of the compound nucleus. Many
measurements have shown that fission yields are energy de-
pendent [81–85]. For the major actinides, an increase of the
excitation energy leads to a gradual change from asymmetric
to symmetric fission. This general feature is a result of the
fact that the microscopic (shell and pairing) effects diminish
as the temperature grows. Recalling Fig. 8, we can interpret
the higher constant temperature evolutions as washing out
the shell effects. Our calculations utilize the shell suppression
term, S, to estimate the energy dependence of fragment yields
as in Ref. [55].

To provide a complete set of yields across the chart of nu-
clides, we set the excitation energy as close as possible to the
maximum saddle height. An additional amount of excitation
energy, ranging from 0 to 2 MeV, is needed for some nuclei to
achieve sufficient statistics. With this initial excitation energy
we can roughly approximate near-thermal incident neutron
energies for the actinides. For nuclei with extreme neutron
excess, this choice may produce excitation energies that tend
to be rather high for neutron-induced fission and rather low
for β-delayed fission. It is therefore important to note that
the calculated fission yields exhibit a rather weak energy
dependence in the range of astrophysical interest. Thus, for
low-energy applications that include those in astrophysics,
this choice of excitation energy appears to be suitable. On the
other hand, because we consider energies above the fission
barrier and cannot enter the classically forbidden regions,
the calculated fragment yields may not be appropriate for
spontaneous fission. Future work will study the systematics
of our fission yields as a function of excitation energy across
the chart of nuclides.

6. Space discretization

We end this section by revisiting the notion of the dis-
cretization of the shape configuration space. The lattice struc-
ture used in the present work was introduced at the end of
Sec. II. This grid consists of a uniform tessellation of the
canonical shape degrees of freedom with unique spacing in
each of these parameters. The original motivation for in-
troducing a lattice structure was to minimize the computer
storage required, which is substantial when thousands of
nuclei are being considered. The specific choice of lattice
does, however, play a role for both the computational effort
required and the physical assumptions made when performing
a Metropolis procedure using a discrete random walk.

If the grid is too dense it may take many steps to proceed in
a given direction relative to another, while offering little to no
improvement in predictive capability. In our case, one variable
that could benefit from grid refinement would be the mass
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dij

(a)

(b)

FIG. 9. (a) A uniform tessellation versus a (b) nonuniform tessel-
lation of the plane given two coordinate variables. Both methods are
applicable to nuclear potential-energy surfaces so long as the notion
of distance, di j , between different configurations is well defined.

asymmetry, αg, whose step size controls the mass resolution
when using the macroscopic nuclear geometry condition for
scission. On the other hand, sparsity of lattice spacing for a
given variable may cause a miss of important features and
could prevent the Metropolis procedure from ever selecting
the step if the corresponding jump in the potential is too
high. It is clear that a proper notion of distance, di j , between
lattice sites is needed when considering the tessellation of the
nuclear PES, as illustrated in Fig. 9. Nonuniform tessellations,
such as those constructed by a Voronoi diagram or Delaunay
triangulation, are useful for constraining the parameter space
to physically relevant points with variable grid density. This
method coupled with the technique discussed at the end of
Sec. IV C could have significant ramifications for the compu-
tational tractability of fission.

Another aspect of using a discrete random walk is that,
inherently, the choice of relative lattice step sizing encodes a
principal physical assumption regarding the isotropic nature
of the mobility tensor. In our case, the particular griding
results in equal probability for being the next candidate step
in the random walk, as discussed by Randrup and colleagues
[54]. It is important to remember in a discretized approach,
such as the one implemented here, the likelihood of movement
between two lattice sites is distinct from the candidate shape

choice probability. The probability of movement between two
lattice sites is controlled by the Metropolis procedure and
dependent on the difference in potential energy of the two
sites. For the next lattice candidate there are three choices for
each canonical shape degree of freedom: to remain at the same
location, to move forward in the grid to the nearest neighbor,
or to move backward to a grid point with lower index. With
five shape degrees of freedom, this results in 35 − 1 = 242
equally possible candidate points for the current step in the
random walk, where the possibility of staying at the exact
same grid point has been removed. Previous studies have
shown that the exact choice of the candidate shape choice
probability has a minor impact on the calculations [51,54,56].
Studies that commission a continuous shape space, for ex-
ample, those based off Smoluchowski or Langevin, bypass
these considerations altogether as they remove the direct
dependence on the candidate shape choice probability.

In summary, when using a discretization approach a bal-
ance must be struck between adequate tessellation, physical
assumptions, and computational tractability. The adopted lat-
tice reasonably satisfies all of these considerations. The study
of nonuniform tessellation procedures will be the subject of
future work.

VI. RESULTS

We begin the discussion of our results by starting with a
comparison of our yield calculations to relevant data of several
actinides. We follow with a study of the global trends that arise
in the fragment yields across the chart of nuclides.

A. Comparison of yields with data

We benchmark our discrete random walk (DRW) code
(version 1.0) with comparison to experimental data. Caution
must be issued here as model output is not exactly a one-
to-one comparison with experiment or evaluation. It is so-
called independent fission product data (i.e., after prompt
neutron and γ -ray emission) that are generally measured in
an experiment, due to the fast timescale of prompt particle
emission. Often, these data are transformed back to a state
of fragment mass yields (prior to prompt particle emission)
which is suitable for comparison with the output of our
random walk, with the caveat that a model has been used to
construct such data.

One could imagine comparing product mass yields di-
rectly; however, this introduces several more theoretical mod-
els in calculating the deexcitation of the nascent fragments
[86–88]. Chiefly among the concerns is the calculation of av-
erage fragment kinetic energy and the degree of excitation en-
ergy of each individual fragment which significantly affect the
number of neutrons evaporated and hence the mass number of
the resulting product nucleus. Current fission event generators
obtain these quantities from phenomenological parametriza-
tions [89,90]. A comparison of charge yields would not suf-
fer from this problem because the neutron emission leaves
the charge number unaffected. But the charge yields exhibit
significant odd-even staggering and this effect has not yet
been included in current shape evolution treatments which
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FIG. 10. Comparisons of our model mass fragment yield predictions (red) with experimental data (gray). Experimental data (respectively,
[94], [95], [83], [94]) have been interpolated and normalized to compare with predictions.

provide charge yields by a simple rescaling of the mass
yields. An additional problem arises due to the high excitation
energies associated with such experiments that may open
multichance fission channels [91]. Other experimental setups
that ascertain charge yields may have low resolution of the
excitation energy, resulting in yields that depend on a spread
of energies [92]. For a review of experimental fission methods
see Ref. [93]. With these caveats established, we proceed with
comparing fragment yields in both charge and mass.

Figure 10 compares the calculated mass yields to mea-
sured yields for several (nth, f ) cases. The data for these
comparisons can be found from (a) Ref. [94], (b) Ref. [83],
(c) Ref. [95], and (d) Ref. [94]. For these actinides, the mass
yields are asymmetric. The positions of the asymmetric peaks
are reproduced to a satisfactory degree. The widths of the
distributions are also well reproduced, except for the last case
where the peaks come out somewhat too wide.

Several years ago, the Metropolis-walk method was suc-
cessfully benchmarked against 70 measured fragment charge
yields in Ref. [56]. To demonstrate that the present slightly
modified treatment does equally well, we show in Fig. 11
similar comparisons for eight typical cases selected from
the entire range. The agreement with the experimental data

across this range is remarkable. In particular, the calculations
reproduce the transition from symmetric fission below Z ≈
90 to asymmetric fission above Z ≈ 90. The experimental
conditions were such that a range of excitation energies are
combined and the calculations were carried out using the
reported average excitation, E∗ ≈ 11 MeV. At these energies
the pairing effects giving rise to an odd-even staggering in
the charge yields have been largely been damped out and are
still visible in only a few of the cases. Further comparisons
of calculated fragment yields to experimental data have been
made in previous work [53–56]. More recent comparisons
of independent yields have also been undertaken for some
actinides [7,97].

Here we add several comparisons for nuclei with Z = 100,
shown in Fig. 12. The nuclei are so short-lived that only
spontaneous fission can be observed, whereas the calculations
were carried out at excitations within 2 MeV above the barrier.
The two fermium cases, 256,258Fm, are well-known examples
where some model calculations deviate from experimental
data [101–103]. More recent calculations, Refs. [104,105],
have successfully reproduced this transition. The origin of this
transition has long been debated [106,107]. Improvements to
model calculations can be made by increasing the smoothing

FIG. 11. Comparisons of our model charge yield predictions (red) with experimental data (gray) from the thesis of Steinhäuser [96].
Excitation energy quoted as 11 MeV.
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FIG. 12. Comparisons of our model mass fragment yield pre-
dictions (red) with the JENDL-4.0 evaluation of independent yields
[98,99] (top panel) and experiment [100] (bottom panel) for the
sharp transition between the asymmetric distribution of (a) 256Fm and
symmetric distribution of (b) 258Fm.

range of the Strutinsky shell-correction procedure [108,109]
or by applying Langevin dynamics [110].

B. Global mass yield trends

Understanding the trends of fission yields across the chart
of nuclides is of particular interest to the astrophysical r pro-
cess of nucleosynthesis [111,112]. To this end, we introduce in
what follows three key metrics to classify a given mass yield,
Y (A).

1. Number of peaks, Np. The fission fragment mass number
distribution Y (A) is always symmetric around the midpoint,
1
2 A0, due to nucleon number conservation AL + AH = A0, but
it may exhibit any number of peaks. Purely symmetric fission
leads to a single centrally located peak, while single-mode
asymmetric fission leads to two peaks located at opposite
sides of the midpoint. Bimodal fission also occurs. For ex-
ample, 226Th(n, f ) exhibits both symmetric and asymmetric
components (with comparable peak heights), 235U(n, f ) has
two nearly coinciding asymmetric components, in addition
to an increasingly prominent symmetric component as the
energy is increased, and some nuclei are predicted to have two
widely different asymmetric components. In order to assign
the value of the peak index Np, we proceed as follows. (1)
We first spline interpolate the Y (A) curve, creating Ys(A),
to smooth out any minor bumps that may exist which can
be misinterpreted as a peak. (2) Next, we count the max-
ima by computing the first derivative Ẏs(A) = 0 and second
derivative Ÿs(A) < 0. (3) Since large features are typically
spread out in A, we prevent the algorithm from finding major
peaks within 10 mass units of another feature. The proce-
dure yields a reasonable result for most nuclei, but when
there are several subtle inflections in the yield curve it may
lead to a too high value of Np. Fortunately, this problem
is limited to a relatively small subset of the nuclei under
consideration.

2. Degree of asymmetry, Sf . A second property of the mass
yield curve is the degree of asymmetry, Sf . This quantity
indicates how many units the mass number of the maximum
in the mass yield, Amax, differs from symmetry, Sf = |Amax −
1
2 A0|. Because we are considering primary fragment yields,
we can use either the heavy or light fragment mass peak.
Superasymmetric mass yields will have large values of Sf,
while those centered at 1

2 A0 will have Sf = 0. For example,
Sf (236U) = 18 and Sf (240Pu) = 17.

3. Overall width, Wd. A third useful characteristic of a mass
yield Y (A) is its overall width, Wd. The calculation of this
quantity requires some care. The full width at half maximum
(FWHM) is useful only for single-peak distributions, while
the standard definition of FWHM may not yield meaningful
results for multipeak yield functions. We therefore employ
a simple definition of the width, Wd = ∑

A θ (Y (A) − 0.01),
i.e., the width is the number of A values for which Y (A)
exceeds 0.01. Thus, the larger the value of Wd is, the more
spread out is the mass yield. For example, Wd(236U) = 40
and Wd(240Pu) = 48, while very heavy nuclei may have Wd >

100. Values above 100 are attainable because the yield is
normalized to 2:

∑
A Y (A) = 2.

An overall impression of the calculated mass yields can be
gained from Fig. 13 showing the three classification metrics
for each nucleus in the NZ region considered. A striking
structure emerges as one moves across the nuclear chart, and
we now discuss several particularly interesting features.

An inspection of the number of yield peaks, shown in
panel (a), suggests that the bulk of the nuclei situated between
N ≈ 140 and N ≈ 180 undergo asymmetric fission. This is
confirmed by comparison with the degree of asymmetry,
shown in panel (b). The width of these yield functions tends to
grow with both increasing Z and N . The reason for this comes
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FIG. 13. The (a) number of peaks, (b) asymmetry factor, and (c) distribution width for the primary fragment mass yield, Y (A), for the
heavy fissioning systems with Z protons and N neutrons. For reference, black bounding boxes indicate extremely long-lived and stable nuclei
up to Z = 83, and closed shells are shown by sold parallel lines.

from a preferential flattening of the potential energy surfaces
after the last saddle point as more nucleons are put into the
system. This in turn spreads our random walk calculations in
the asymmetry coordinate, making a wide range of splitting
configurations comparatively favorable.

A transition from predominantly asymmetric to predom-
inantly symmetric yields occurs around N ≈ 170 for Z ≈
90. This region is of interest for β-delayed and neutron-
induced fission channels in nucleosynthesis simulations of the
r process [113,114]. We find a diverse set of mass yields in
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FIG. 14. The placement of the peak of the fragment distribution in mass number. For reference, black bounding boxes indicate extremely
long-lived and stable nuclei up to Z = 83, and closed shells are shown by sold parallel lines.

this region, especially for Z ≈ 85 to Z ≈ 95 and N ≈ 170
to N ≈ 190. One consistent feature of these mass yields is
that they are all relatively wide, with Wd ≈ 70 (whereas major
actinides typically have Wd ≈ 45). Thus, the exact division
into an asymmetric or symmetric fission branch could be less
important for r-process simulations as these features will be
washed out due to the wide nature of the fragment yields. The
yields with the largest width, Wd � 100, in our model occur
near A ≈ 315.

In early liquid-drop-based theoretical studies of fission it
was suggested that a correlation exists between the mass
asymmetry and the parameter Z2

0 /A0 [115]. The variation
in panel (b) of Fig. 13 clearly dispels this suggestion,
showing that, across the chart of nuclides, the details of

microscopic effects are more important in shaping the yield
functions.

In Fig. 14 we show the placement of the peak of the
fragment distribution in A for either the symmetric or heavy
fragment peak. Generally, this quantity is increasing with
notable exception when yields transition from symmetric to
asymmetric or vice versa.

C. Fission Q values

Effective fission Q values may be estimated from the
fragment yields via the relation

Qfiss ≈ M∗(Z0, A0) −
∑
Z,A

Y (Z, A) M(Z, A), (35)

FIG. 15. The trend in estimated fission Q-values along the isotopic chains where we have calculated the fragment mass yields. Binding
energies of the participating nuclei are calculated with FRDM2012 [59,67].
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where M∗(Z0, A0) is the mass of the fissioning nucleus (in-
cluding excitation energy), M(Z, A) is the mass of a fragment,
and Y (Z, A) the yield of this fragment species. This relation is
exact for spontaneous fission, when the nucleus is not excited
and fission occurs in the ground state. It is only slightly
modified for neutron-induced or β-delayed fission due to the
existence of additional particles or change in target (parent)
nucleus. Figure 15 shows this effective fission Q value along
isotopic chains where the fragment yields have been cal-
culated. The flat trend along each isotopic chain indicates
that the dependence of N0 is rather weak, while the spacing
between the isotopic chains reveals a stronger dependence on
Z0. A sudden jump along an isotopic chain may arise when a
yield function exhibits a substantial change relative to those
of the neighboring isotopes. For this calculation, the nuclear
binding energies were obtained from the latest (2012) version
of FRDM [59,67].

VII. SUMMARY

We have used the well established Finite-Range Liquid-
Drop Model (FRLDM) to explore fission fragment yields
across the chart of nuclides bounded by the region between
80 � Z � 130 and A � 330. The fragment yield of each
fissioning system is calculated using a discrete random walk
across a static potential energy surface under the assumption
of strong dissipation. Our procedure produces over 3800
fission yields at excitation energies suitable for possible appli-
cations of neutron-induced and β-delayed fission. We find that
individual fragment yields exhibit a prominent behavior with
both the mass (A0) and charge (Z0) of the fissioning system,
indicating the importance of including microscopic effects
in the calculation of this quantity. The width of fragment
distributions show a propensity to expand with increasing
neutron excess of the fissioning system. For these superheavy
systems, the difference between splitting symmetrically ver-
sus asymmetrically is not as crucial as the spread of fragments
across a large mass region in the N-Z plane. This result is
likely to have significant consequences for the formation of
the heavy elements in the astrophysical rapid neutron capture
process. Our yields also permit the estimation of fission Q
values across the chart of nuclides. A visible flat trend arises
across isotopic chains, indicating a primary dependence on
the charge of fissioning system. The authors look forward to

the use of these yields in applications including the study
of astrophysical phenomena, and note that further model
enhancements of FRLDM are under way at Los Alamos that
seek to improve the microscopic description of fission.
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APPENDIX: SUPPLEMENTAL DATA

We provide as Supplemental Material [57] the calculated
fragment yields in individual ASCII formatted files. The
ASCII filenames list the proton number, Z0, and nucleon
number, A0, of the fissioning system. Therefore, for use in
neutron-induced fission, the target nucleus would be (Z0, A0 −
1). When using the yields for β-delayed fission, the parent is
(Z0 − 1, A0).

The ASCII files themselves are formatted in three columns:
fragment proton number (Z), fragment nucleon number (A),
and fragment yield Y (Z, A). The yields are on an integer
grid and normalized such that

∑
Z,A Y (Z, A) = 2, providing

consistency checks for preservation of the fissioning system
nucleon number, A0 = ∑

Z,A AY (Z, A), and proton number,
Z0 = ∑

Z,A ZY (Z, A). Additional FRLDM-based calculations,
for instance, yields at a given excitation energy, are available
upon request.
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