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Conditions on the pion electroproduction and photoproduction form factors in the soft-pion limit
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Using the Bernard-Kaiser-Lee-Meissner (BKLM) parametrization of the hadronic vertex γ ∗N → πN ′, with
γ ∗ being a virtual photon, we analyze the restrictions imposed on the form factors (FF) in the limit at which the
pion three-momentum and mass go to zero, which is known as the soft-pion limit. We obtain information about
the normalization of the FF in this limit using current algebra methods and the hypothesis of partially conserved
axial-vector current (PCAC) which is a way to implement chiral symmetry. We relate these FF with those of
the W ±N → N ′ weak interaction. The present work provides a useful tool to decide whether a certain model is
better than another, checking whether the corresponding FF satisfy the conditions imposed in the soft-pion limit,
which are model independent.
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I. INTRODUCTION

The understanding of the baryon spectrum and the search-
ing for the missing nucleon resonances and new exotic states
are hot topics in hadronic physics. Several reactions on free
nucleons involving leptonic and hadronic probes excite the
�(1232)-MeV hadronic resonance as an intermediate state.
This resonance, being the first excited on the nucleon (N), is
the dominant degree of freedom in the pion (π )-production
processes at invariant masses of πN pairs decaying with the
� in the resonance region (m� − ��, m� + ��) until ≈1.4
GeV. A consistent model for including the � was success-
fully used for describing elastic (πN → π ′N ′) and radia-
tive (πN → π ′N ′γ ) πN scattering [1,2], π -photoproduction
(γ N → N ′π ) [3], and the single π -production in charged
(νN → lN ′π ) and neutral current (νN → ν ′N ′π ) neutrino
(ν)-N scattering reactions [4,5], in that region. Currently, the
experiments reach energies of the order of 2 GeV, and for this
reason other additional resonances belonging to the second
resonance region need to be included in the analysis. The
production of mesons in reactions induced by electromagnetic
and weak probes has been extensively used in the study of
the properties of nucleon resonances. These reactions are
complicated since the initial and/or final πN states are built
by the strong interaction. Particularly, we remark that all
processes mentioned above have an hadronic vertex of the
schematic form JN → πN ′, with J being the corresponding
hadronic current. This vertex includes all the form factors (FF)
allowed by the symmetries of the interaction to a determined
order in the involved momenta. From here on, for simplicity
and only to fix ideas, we will consider the case of pion
electroproduction process γ ∗N → πN ′ (with γ ∗ being the
virtual photon coming from the electron), which reduces to
the pion photoproduction γ N → πN ′ when the photon is real.

Several phenomenological models have been developed for
studying the properties of nucleon resonances: partial wave

analysis, isobar analysis, effective Lagrangian approach mod-
els, chiral effective Lagrangian models, etc. The theoretical
models developed in the literature to describe the mentioned
processes differ between themselves. The models for pion
photo and electroproduction differ mainly in the treatment of
the � resonance, particularly its propagator, the πN� vertex,
the interference between the background and the resonant
terms, etc. For example, some authors include only the on-
shell part of the propagator and the vertex [6] and others
consider the complete propagator, consistent with contact
transformations [4,5]. On the other hand, some authors use the
derivative coupling for the πNN vertex and others adopt only
the pseudoscalar one. In this way, we can see that comparing
different models means comparing the FF at a given finite
pion momentum. Alternatively, if it would be possible to get
information about the FF directly from the experiments, we
could compare them with the theoretical predictions within
each model (concerning the information about the FF from
the experiments see, e.g., Refs. [7,8]).

Certainly, it would be useful to have a tool that allows us
to decide if one model is better than another when trying to
reproduce experimental γ ∗N → πN ′ data and, in particular,
if it is consistent with the information we have about the
W ±N → N ′ axial-vector vertex. Several works were carried
out some years ago in order to relate pion electroproduction
with FF in weak interactions of nucleons, using methods
of current algebra and chiral perturbation theory [9–23]. In
these works, (i) the axial-vector constant is calculated within
the soft-pion limit and beyond including the so-called hard
pion corrections [23] and (ii) low-energy theorems relating
the axial-vector coupling with the electromagnetic pion form
factor are derived. However, (a) second class currents are
neglected and (b) the case with photon low moments (called
the “photon point” in Ref. [23]) is analyzed.

Based on previous motivations, we adopt the covariant
Bernard-Kaiser-Lee-Meissner (BKLM) parametrization for
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the hadronic vertex in pion photo and electroproduction,
which includes all the FF allowed by the symmetries of the
interaction, and obtain information about the normalization
of the FF when the pion mass and three-momentum go to
zero (the so-called soft-pion limit) by adopting the partially
conserved axial-vector current (PCAC) hypothesis that is a
way of implementing chiral symmetry. We relate the FF
in this limit with those of the W ±N → N ′ interaction. The
restrictions obtained on the FF can be used to verify which of
the models available in the literature are consistent with them.

The paper is organized as follows. In Sec. II, we present
the BKLM parametrization of the vertex and we deduce the
conditions obtained in the soft-pion limit. Concluding remarks
are briefly drawn in Sec. III.

II. FORMALISM

A. Bernard-Kaiser-Lee-Meissner parametrization

The amplitude for the process γ ∗(q) + N (p) → π (k) +
N ′(p′) can be written as

M(γ ∗N → πN ′) = Eμ〈N ′(p′)π (k)|Vμ|N (p)〉
≡ Eμū(p′)�V

μu(p), (1)

with u(p) [u(p′)] being the Dirac spinor of the initial (final)
nucleon and Eμ representing the photon polarization vector,
εμ, for photoproduction, and the leptonic current, �μ/q2, for
electroproduction. �λ

V is the hadronic vertex compatible with
Lorentz covariance [note that only the vector (V) contribution
participates, without any axial-vector part]. We remark here
that we have four 4-momenta, p, q, k, and p′, and one
energy-momentum conservation condition: p + q = p′ + k.
Concerning the Lorentz scalars, we have at our disposal ten
scalars: p2, p′2, k2, q2, p · p′, p′ · q, p′ · k, q · k, p · q, and
p · k. Using the energy-momentum conservation, all of them
can be written in terms of the nucleon and pion masses,
m2

N = mN ′ 2 and m2
π , respectively, and the scalar products

q2, p · q, and p · k, as follows: p2 = p′2 = m2
N , k2 = m2

π , p ·
p′ = p · q − p · k + m2

N , p′ · q = p · k + q2

2 − m2
π

2 , p′ · k = p ·
q + q2

2 − m2
π

2 , and q · k = p · q − p · k + q2

2 + m2
π

2 . Thus, the
amplitude can be expressed in terms of three independent
scalars, which we have selected as p · q, p · k, and q2. In spite
of being q2 = 0 for pion photoproduction process, we will
keep in mind the q2 dependence because we are considering
here the electroproduction process, which will allow us to
analyze in Sec. II B the relation in the soft-pion limit with the
process W ±(q) + N (p) → N ′(p′), in which case we will have
q2 	= 0.

For the hadronic vertex, we will adopt the covariant BKLM
parametrization from Ref. [22]. From Eqs. (2.4) and (2.5) in
that reference, we can express the transition current matrix
element in terms of six independent form factors, convention-
ally denoted by Ai, (i = 1, . . . , 6), as follows:

MBKLM = iEμū(p′)γ5

(
6∑

i=1

AiMμ
i

)
u(p), (2)

with

Mμ
1 = 1

2 (γ μ/q − /qγ μ),

Mμ
2 = 1

2 (p + p′)μ(2q · k − q2) − 1
2 (p + p′) · q(2k − q)μ,

Mμ
3 = γ μq · k − /qkμ,

Mμ
4 = γ μ(p + p′) · q − /q(p + p′)μ − mNγ μ/q + mN/qγ μ,

Mμ

5 = qμq · k − kμq2,

Mμ
6 = qμ/q − γ μq2. (3)

We remark that (i) all these structures Mμ
i ’s are individually

gauge invariant (it is very simple to check that qμMμ
i = 0)

irrespective of whether q2 = 0 or q2 	= 0 and (ii) the BKLM
form factors, Ai, could be evaluated within a given model.

B. Restrictions on form factors in the soft-pion limit

We will analyze here the behavior of the amplitude
(2) in the limit where the pion momentum and mass
go to zero (k → 0, mπ → 0) and we will refer to this
limit as the soft-pion limit (spl). This spl implies p′ −
p → q, E · (p′ − p) → E · q, q · (p′ − p) → q2, p · k → 0,
p′ · k → 0, q · k → 0, k · E → 0, p · p′ → m2

N − q2

2 , p · q →
− q2

2 , and p′ · q → q2

2 . Thus, the amplitudes can be ex-
pressed as a function of q2 in this limit. Using the def-
inition σμν = i

2 [γ μ, γ ν], the Dirac matrix properties, the
Dirac equations /pu(p) = mN u(p) and ū(p′)/p′ = mN ū(p′)
to write ū(p′)(/p′ − /p)γ5u(p) = 2mN ū(p′)γ5u(p), and the
Gordon identity ū(p′)(p + p′)μγ5u(p) = −iū(p′)σμν (p′ −
p)νγ5u(p), from (2) we obtain

MBKLM spl→ iEμū(p′)γ5

(
6∑

i=1

A
(spl)
i (mtN , mtN ′ )(Mμ

i )(spl)
)

× u(p), (4)

with

(Mμ
1

)(spl) = −iσμνqν,
(Mμ

2

)(spl) = q2

2
iσμνqν,

(Mμ
3

)(spl) = 0,
(Mμ

4

)(spl) = 0,(Mμ

5

)(spl) = 0,
(Mμ

6

)(spl) = −2mN qμ − γ μq2. (5)

Here (spl) refers to the soft-pion limit [A
(spl)
i (mtN , mtN ′ ) ≡

limk→0 Ai(k, mtN , mtN ′ )]. Additionally, we have indicated the
isospin dependence of the FF by adding explicitly the isospin
projection of the initial and final nucleons, mtN and mtN ′ ,
respectively. Then Eq. (4) can be more conveniently written as

MBKLM spl→ iEμū(p′)γ5

×
{[

q2

2
A

(spl)
2 (mtN , mtN ′ ) − A

(spl)
1 (mtN , mtN ′ )

]
iσμνqν

− A
(spl)
6 (mtN , mtN ′ )(2mN qμ + γ μq2)

}
u(p). (6)

This result indicates that the limit k → 0, mπ → 0 in the
process γ ∗(q) + N (p) → π (k) + N ′(p′) does not lead to the
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process γ ∗(q) + N (p) → N (p′), because this limit does not
mean to “annihilate” the pion. In fact, after taking this limit,
we have still information in Eq. (4) on the pion: It is in
the γ5 matrix which remind us that the interaction is “vector
like,” unlike the “axial-vector” W ±(q) + N (p) → N (p′) ver-
tex. Therefore, we can say that

M(γ ∗N → πN ′)
spl→ EμMμ(W ±N → N ′), (7)

where

Mμ(W ±N → N ′)

≡ i

{[
q2

2
A

(spl)
2 (mtN , mtN ′ ) − A

(spl)
1 (mtN , mtN ′ )

]
iσμνqν

− A
(spl)
6 (mtN , mtN ′ )(2mN qμ − γ μq2)

}
γ5u(p). (8)

Note that in the spl, the electroproduction amplitude is related
to the weak vertex, in which case is also q2 	= 0. Therefore,
the amplitude and the FF will depend on q2. In order to
carefully analyze the soft-pion limit, we will compare here
the limit k → 0, mπ → 0 of the vector vertex given in Eq. (2)
for pion electroproduction process, γ ∗(q) + N (p) → π (k) +
N ′(p′) [which, in spite of being a vector vertex, behaves as an
axial-vector one because of the “memory” about of the pion
which contributes with the γ5 in Eq. (4), as mentioned previ-
ously] with the usual parametrization of the axial-vector ver-
tex for the nucleon decay process, W ±(q) + N (p) → N ′(p′).
The matrix element for the axial-vector current Aμ is

〈N ′(p′)|Aμ|N (p)〉 = ū(p′)�A
μu(p), (9)

where

�A
μ =

[
g1(mtN , mtN ′ )γμ + g2(mtN , mtN ′ )

2mN
iσμνqν

+ g3(mtN , mtN ′ )

2mN
qμ

]
γ5, (10)

with q = p′ − p. Note that this “axial-vector” vertex does
not satisfy the electromagnetic gauge invariance condition
qμAμ = 0, as is the case with Eq. (2). It is important to
mention that we do not neglect here the second-class currents,
as done in Eq. (12) from Ref. [11], where the authors take
g2 = 0. We remark here that this form factor is only required
to vanish by G parity (see, for example, Eq. (6.115) from
Ref. [24]).

In the following, we intend to find the relation of the FF
given in Eq. (2) in the soft-pion limit with those given in
Eq. (10), by looking at the quark content of the currents.
We have the following four pion electroproduction channels:
γ ∗ p → nπ+, γ ∗ p → pπ0, γ ∗n → pπ−, and γ ∗n → nπ0,
where the quark content of the involved baryons and mesons
is

|p〉 = |uud〉, |n〉 = |udd〉, |π+〉 = |ud̄〉,
|π−〉 = −|dū〉, |π0〉 = 1√

2
(|uū〉 − |dd̄〉). (11)

The current responsible for those processes is the electromag-
netic one (see Eq. (3.1) from Ref. [25]),

V e.m.
μ = V 3

μ + 1√
3

V 8
μ , (12)

where we have introduced the vector (V ) and axial-vector (A)
currents:

V k
μ = 1

2 q̄γμλkq, Ak
μ = 1

2 q̄γμγ5λ
kq. (13)

Here q = {
u
d
s

is the quark spinor and λk are the usual Gell-

Mann matrices (satisfying the conmutation relation [λi, λ j] =
2i fi jkλk , with f i jk being the totally antisymmetric SU(3)
structure constants).

Now, we follow the procedure of Sec. V from Ref. [25]
for the evaluation of matrix elements of processes involving
hadrons A and B: A → Bπa(k), a = 0, ±, using current
algebra methods. From Eq. (5.4) in that reference, after taking
the soft-pion limit for the pion electroproduction process, we
have

Mμ(A → Bπa)
spl→ − i

fπ

∫
d3xδ(x0)

× 〈
B|[Aa

0(x),V e.m.
μ (0)

]|A〉
, (14)

with Aa
0 given in Eq. (13). In the present calculation, we

assume the PCAC hypothesis, which relates the divergency
of the axial-vector current with the pion fields (see Eq. (4.4)
from Ref. [25]). Additionally, we use the current algebra
(commutation relations between charges and between charges
and currents; see, for example, Sec. III on pp. 18–23 in
Ref. [25]). The axial Aa

0 current in (14) comes from the PCAC
hypothesis.

Next, we analyze each one of the pion electroproduction
processes separately.

1. γ∗ p → nπ+ process

In particular, for the process γ ∗ p → nπ+ we can use
Eq. (14) and write [being π+ = |ud̄〉 = 1

2 q̄(λ1 − iλ2)q, we
made Aa

0 → 1
2 (A1

0 − iA2
0)]

Mμ(p → nπ+)
spl→ − i

2 fπ

∫
d3xδ(x0)

×〈n|
[

(A1
0(x) − iA2

0(x)),V 3
μ (0) + 1√

3
V 8

μ (0)

]
|p〉. (15)

Using the current algebra conmutators (see Eq. (3.14) from
Ref. [25]), [

Aa
0(x),V k

μ (y)
] = i f akd Ad

μ(x)δ(x − y), (16)

we get

Mμ(p → nπ+)
spl→ Mμ(W − p → n)

≡ − i

2 fπ
δ(x0)〈n|A1

μ(0) − iA2
μ(0)|p〉. (17)

On the right hand side, we have the axial-vector matrix
element for the W − p → n process given in (9), for which we
assume the form given in (10). Thus, comparing the results
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shown in Eqs. (8) and (17) [via Eq. (10)], both valid in the
soft-pion limit, we have that

i

{[
q2

2
A

(spl)
2

(
1

2
,−1

2

)
− A

(spl)
1

(
1

2
,−1

2

)]
iσμνqν

− A
(spl)
6

(
1

2
,−1

2

)
(2mN qμ − γ μq2)

}
γ5u(p)

= − i

2 fπ

[
g1

(
1

2
,−1

2

)
γμ + g2

(
1
2 ,− 1

2

)
2mN

iσμνqν

+ g3
(

1
2 ,− 1

2

)
2mN

qμ

]
γ5, (18)

which leads to the relations

q2A
(spl)
6

(
1

2
,−1

2

)
= − 1

2 fπ
g1

(
1

2
,−1

2

)
,

q2

2
A

(spl)
2

(
1

2
,−1

2

)
− A

(spl)
1

(
1

2
,−1

2

)
= − 1

2 fπ

g2
(

1
2 ,− 1

2

)
2mN

,

−2mN A
(spl)
6

(
1

2
,−1

2

)
= − 1

2 fπ

g3
(

1
2 ,− 1

2

)
2mN

.

(19)

2. γ∗n → pπ− process

Following the same procedure, in the soft-pion limit we
have [being π− = −|ud̄〉 = − 1

2 q̄(λ1 + iλ2)q, we made Aa
0 →

− 1
2 (A1

0 + iA2
0)]

Mμ(n → pπ−)
spl→ i

2 fπ

∫
d3xδ(x0)

×〈p|
[

A1
0(x) + iA2

0(x),V 3
μ (0) + 1√

3
V 8

μ (0)

]
|n〉. (20)

The current algebra commutators lead to

Mμ(n → pπ−)
spl→ Mμ(W +n → p)

≡ − i

2 fπ
δ(x0)〈p|A1

μ(0) + iA2
μ(0)|n〉. (21)

The axial-vector matrix element on the right-hand side,
〈p|A1

μ(0) + iA2
μ(0)|n〉, is given in Eq. (9). Comparing (8) with

(21) in the soft-pion limit will lead to the same relations shown
in Eq. (19), but with different isospin projections in the FF:

q2A
(spl)
6

(
−1

2
,

1

2

)
= − 1

2 fπ
g1

(
−1

2
,

1

2

)
,

q2

2
A

(spl)
2

(
−1

2
,

1

2

)
− A

(spl)
1

(
−1

2
,

1

2

)
= − 1

2 fπ

g2
( − 1

2 , 1
2

)
2mN

,

−2mN A
(spl)
6

(
−1

2
,

1

2

)
= − 1

2 fπ

g3
( − 1

2 , 1
2

)
2mN

.

(22)

3. γ∗N → Nπ0 process

Following the same procedure, in the soft-pion limit
we have [being π0 = 1√

2
(|uū〉 − |dd̄〉) = 1√

2
q̄λ3q, we made

Aa
0 → 1√

2
A3

0]

Mμ(N → Nπ0)
spl→ − i√

2 fπ

∫
d3xδ(x0)

×〈N |
[

A3
0(x),V 3

μ (0) + 1√
3

V 8
μ (0)

]
|N〉.

(23)

The current algebra commutators lead to[
A3

0(x),V 3
μ (0) + 1√

3
V 8

μ (0)

]
= 0, (24)

which gives

Mμ(N → Nπ0)
spl→ 0, (25)

leading to the relations (for mtN = ± 1
2 )

q2

2
A

(spl)
2 (mtN , mtN ) − A

(spl)
1 (mtN , mtN ) = 0,

A
(spl)
6 (mtN , mtN ) = 0. (26)

These relations, together with those given in Eqs. (19) and
(22) that can be written as

q2A
(spl)
6 (mtN ,−mtN ) = −g1(mtN ,−mtN )

2 fπ
, A

(spl)
1 (mtN ,−mtN ) − q2

2
A

(spl)
2 (mtN ,−mtN )

= g2(mtN ,−mtN )

4 fπmN
,−2mN A

(spl)
6 (mtN ,−mtN ) = −g3(mtN ,−mtN )

4 fπmN
, (27)

establish all the conditions that the matrix elements should sat-
isfy in the unphysical point k2 = m2

π = 0 obtained after taking
the soft-pion limit. The physical point with k2 = m2

π 	= 0 will
be determined within a particular model (effective Lagrangian
approach, chiral perturbation theory, etc.) and the relations
(26) and (27) give a condition that the FF should satisfy. In
fact, the FF that describe the γ ∗N → πN ′ process depend

on several variables at finite values of the pion momentum.
However, our Eqs. (26) and (27) show that in the soft-pion
limit the FF are related to the weak vertex of the nucleon (in-
cluding second class currents). For completeness, we mention
here that one can find experimental information on g1 and g3

in the literature (see, for example, Ref. [24] and references
therein). Otherwise, g2 is suppressed by isospin symmetry and
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also because the difference between momentum is not so big.
However, there exist theoretical information on g2 (see also
Ref. [24]). In other words, the pion electroproduction FF must
be normalized in such a way to be consistent with the relations
(26) and (27) in the soft-pion limit.

III. CONCLUDING REMARKS

We have analyzed the behavior of the hadronic ver-
tex γ ∗N → πN ′. Adopting the Bernard-Kaiser-Lee-Meissner
parametrization of the hadronic vertex, we have considered
the soft-pion limit k → 0, mπ → 0 in the process γ ∗(q) +
N (p) → π (k) + N ′(p′) and we have learned that it does not
lead to the process γ ∗(q) + N (p) → N ′(p′) because the ver-
tex is vectorial in the first case and axial-vector in the second
one, due to the “memory” about the pion which contributes
with the γ5 in Eq. (4). For this reason, we have analyzed
carefully the soft-pion limit using current algebra methods.
We obtained information about the normalization of the FF
when the pion mass and three-momentum go to zero by
adopting the PCAC hypothesis that is a way of implementing
chiral symmetry. The FF in this limit were related with
those of the W ±N → N ′ interaction, including second-class
currents, through Eqs. (26) and (27). These relations should
be understood as conditions “independent of the model” that
the form factors A1, A2, and A6 should satisfy in the soft-pion
limit. They will allow us to decide if a given model is better
than another to reproduce the experimental data. We remark
here that soft-pion limit does not impose any condition on the
form factors A3, A4, and A5.

In conclusion, if it were possible to determine the ex-
perimental value of Ai(

√
s, cosθ ) [which we will refer to as

A
exp
i (

√
s, cosθ )] as a function of

√
s and the c.m. angle θ

between π and N ′, we could proceed as usual, analyzing
which model including the dominant resonances participating
up to a certain scale of energy is able to better reproduce
A

exp
i (

√
s, cosθ ) but looking at the same time if the relations

(26) and (27) are satisfied in the soft-pion limit. On the
other hand, even if we do not have experimental values
A

exp
i (

√
s, cosθ ) at our disposal, we can use the obtained

relations to verify if different analytical calculations of the
amplitudes A1, A2, and A6, obtained within different the-
oretical models, are consistent with the known values of
the gi form factors when we analyze those amplitudes in
the soft-pion limit. In this sense, if the soft-pion limit of
those amplitudes obtained within different theoretical models
(for example, with a different treatment of resonance �)
is different, the relations obtained in (26) and (27) will be
useful for distinguishing which of the models is better, simply
observing which of the theoretical limits best reproduces the
experimental data of the axial form factors gi.

In summary, we have discussed how we can use the con-
ditions (26) and (27), valid in the soft-pion limit, to guarantee
that a given model can reproduce the experimental data when
they are available and/or to compare different alternative
theoretical models with the purpose of discarding those that
are not consistent with those conditions. Thus, our relations
(26) and (27) provide a tool to compare alternative models for
pion photo and electroproduction.
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