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Collective enhancements in the level densities of Dy and Mo isotopes
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Nuclear level densities in 94,96,98Mo and 160,162,164Dy isotopes are calculated using the single-particle spectrum
obtained with the Woods-Saxon potential. The level-density parameters, spin cut-off factors, and moments of
inertia are studied. Using the available experimental data at low excitation energies, the collective enhancements
of the level densities are calculated and compared with those of the phenomenological model. In Mo isotopes,
these semiempirical calculations agree better with the experiments in comparison to the phenomenological model
assuming a spherical shape.
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I. INTRODUCTION

Nuclear level density is of crucial importance in the cal-
culation of cross sections and survival probabilities in fusion
and fission reactions. There are several methods for the cal-
culation of nuclear level densities which are mainly based
on two, combinatorial and thermodynamical, approaches. The
combinatorial models are built either on nuclear mean-field
theory [1,2] or beyond mean-field methods which take into
account the effective nucleon-nucleon interactions [3,4] and
can provide exact level densities as a function of excitation
energy, spin, and parity. A recently developed combinatorial
method has been used to study pairing gaps, parity, and
angular-momentum distribution of nuclear level densities and
nuclear shape evolution [5,6]. The combinatorial models re-
quire large scale computations to estimate the number of ways
in which the nucleons can be distributed among the available
single-particle levels.

The thermodynamical models which are based on the
partition-function method provide simpler formulas for the
nuclear level density. The analytical expression of the Fermi-
gas model, proposed in the thermodynamical approach, is
widely used to calculate the level densities [7]. Although this
approach is not so sophisticated, it is convenient to use in
many applications of the level density. For the nuclei lighter
than Cf, the systematic studies of the free parameters in the
Fermi-gas model and a good compilation of the experimental
data are given in Refs. [8,9]. By treating the pairing and shell
effects in the frame of superfluid formalism [10,11], one can
keep the simplicity of the Fermi-gas model for more realistic
studies. This method was used to study the level densities of
superheavy nuclei and dinuclear systems [12,13].

Previously, the experimental data on the level density were
limited to near stable nuclei and very low energies where the
information about low-lying discrete levels and neutron reso-
nance spacing is accessible. Recently, new methods mainly
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developed by the Oslo group [14,15] provide experimental
data in a wide range of excitation energy and angular momen-
tum. Experimental level densities of Dy and Mo isotopes were
determined up to neutron separation energy [16–21].

Dysprosium isotopes in the rare earth region are well-
deformed and hence of interest for the study of collective
effects. Molybdenum isotopes are in the transitional region.
This mass region is characterized by a competition between
different shapes or low-lying configurations based on different
intrinsic deformations, that leads to the shape coexistence
phenomena [22]. Therefore, the study of shapes and collec-
tive excitations in this region provides important insights on
nuclear structure. The structure studies of shape coexistence
in molybdenum isotopes have recently received considerable
attention [23–25].

To compare the calculated level densities with the exper-
imental data, the collective effects should be taken into ac-
count. There is a phenomenological expression introduced by
Ignatyuk [26] for the collective effects in the form of a product
of vibrational and rotational coefficients. This expression is
not appropriate for soft or transitional nuclei. For an ideal
spherical nucleus with a rotational symmetry, only vibrational
collective excitations are expected. However, in the case of a
deformed nucleus, the rotational excitations can be observed.
One of the experimental indications of deformation in a
nucleus is the ratio of the energy of the first 4+ state to that
of the first 2+ state, known as the R4/2 ratio [27]. Generally, a
nucleus with R4/2 ≈ 3.33 is considered as a rotor with a rigid-
body moment of inertia. For instance, R4/2 = 3.27, 3.29, and
3.3 in 160Dy, 162Dy, and 164Dy isotopes, respectively [28–30].
Therefore, Dy can be considered as a rigid rotor in the
calculation of collective effects.

After spherical 92Mo with a neutron shell closure, the shape
of molybdenum isotopes starts to change with increasing
mass number. In 94Mo, 96Mo, and 98Mo isotopes, R4/2 ≈
1.8–2 [31–33]. At energies less than pair-breaking all the
experimentally observed excitations can be considered as col-
lective states. In the microscopic calculations, the rotational
and vibrational bands of the deformed nucleus are in good
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TABLE I. Calculated values of deformation parameters β2 and β4, shell corrections δEsh, pairing energies Epair , and neutron �n and proton
�p pairing gaps in the ground state of nuclei are indicated. The deformation parameters and shell corrections are compared with those from
Ref. [47].

Nucleus β2 β4 δEsh (MeV) β2 [47] β4 [47] δEsh (MeV) [47] � (MeV) Epair (MeV)

160Dy 0.284 0.045 −1.2677 0.272 0.053 −2.30 �n = 1.06 2.19
�p = 1.31

162Dy 0.311 0.050 −2.2766 0.283 0.044 −2.88 �n = 0.96 1.89
�p = 1.26

164Dy 0.313 0.048 −2.9060 0.296 0.022 −3.47 �n = 0.97 1.65
�p = 1.22

94Mo 0.080 0.015 −2.8055 0.000 0.000 −1.24 �n = 1.15 3.82
�p = 1.80

96Mo 0.072 0.007 −0.5434 0.150 0.045 0.17 �n = 1.17 3.96
�p = 1.79

98Mo 0.035 0.013 1.3024 0.206 0.017 0.86 �n = 1.36 4.02
0.196 0.023 1.0082 �p = 1.65 3.21

agreement with the experimental data [34–38]. However, in
the case of transitional nuclei there is a discrepancy between
the calculated collective excitations and those obtained from
the experimental data [22]. In Ref. [5], using a combinatorial
model for the nuclear level density, the role of collective
enhancements has been investigated in several deformed,
transitional, and spherical nuclei. As shown, an account of
rotational excitations results in fairly good agreement with the
experiments for almost spherical 97,98Mo isotopes.

In this work, we use the Woods-Saxon single-particle
spectrum in the superfluid model to calculate intrinsic nuclear
level densities for Dy and Mo nuclei. Taking into account
pairing and shell-correction effects, the energy dependence
of the level density parameter and spin cut-off factor are in-
vestigated. Based on the available experimental data [28–33],
the semiempirical calculation of collective effects is proposed.
The validity of the macroscopic expression of collective en-
hancements [26] is especially examined for the transitional
Mo isotopes.

In Sec. II, the superfluid formalism is briefly outlined.
Energy dependences of the nuclear level density parameter
and spin cut-off factor are studied in Secs. III and IV, re-
spectively. The calculation of collective enhancements in the
macroscopic approach and from the available experimental
data is presented in Sec. V for deformed and spherical nuclei.
The results of calculations are compared with the experimen-
tal data [17–21] in Sec. VI.

II. INTRINSIC LEVEL DENSITY

Considering the nucleus as a system of independent quasi-
particles, the logarithm of the grand partition function is
written as [10,11,39]

� = −β
∑

τ=p,n

[∑
k

(ετk − λτ − Eτk )

+2
∑

k

log[1 + exp(−βEτk )] − β
�2

τ

Gτ

]
, (1)

where λτ and �τ are chemical potentials and pairing gap pa-
rameters for neutron (τ = n) and proton (τ = p) subsystems,
respectively. The inverse temperature is denoted by β = 1/T .
In Eq. (1), thermal equilibrium is assumed between neutron
and proton subsystems.

The single-particle energies ετk and the corresponding
quasiparticle energies Eτk = √

(ετk − λτ )2 + �2
τ are calcu-

lated within the quasiparticle-phonon model (QPM) [40,41]
with the mean-field potential in the Woods-Saxon form. The
pairing correlations are evaluated with the BCS approach.
The monopole pairing strength constants Gτ were adjusted
to reproduce the odd-even difference of experimental ground-
state nuclear masses [42,43]

�n(N, Z ) = − 1
2 [B(N − 1, Z ) + B(N + 1, Z ) − 2B(N, Z )],

�p(N, Z ) = − 1
2 [B(N, Z − 1) + B(N, Z + 1) − 2B(N, Z )],

(2)

where B’s are the binding energies of the corresponding nu-
clei. As in Refs. [44,45], the calculated shell corrections were
incorporated into the macroscopic-microscopic approach [46]
to define the equilibrium deformations.

In Table I, the calculated quadrupole β2 and hexadecapole
β4 deformations, shell corrections δEsh, and neutron �n and
proton �p pairing gaps are presented for 160,162,164Dy and
94,96,98Mo nuclei. As seen, the values of β2 and β4 are close
to those calculated in Ref. [47]. Dysprosium isotopes are
strongly deformed with quadrupole deformation parameters
larger than 0.2. The shapes of molybdenum isotopes are
changing from spherical to deformed with increasing mass
number. In the case of 98Mo, our calculations yield two
minima characterized by different deformations but similar
values of shell corrections. In this case, a shape coexistence
or deformed shape even at low excitation energies is expected
in agreement with the experimental observations [23,24]. In
the calculations of the deformed state the pairing constants
were taken from the nearly spherical results.

Assuming the nucleus in a thermal equilibrium state, the
BCS equations, which determine the temperature dependence
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TABLE II. The values of adjustable parameters in Eq. (11) for the level density parameter, calculated critical temperatures (Tcn for neutron
and Tcp for proton) and corresponding critical energies for 160,162,164Dy and 94,96,98Mo nuclei. The rigid-body �r.b. and experimental �exp =
3/E2+ moments of inertia adjusted to reproduce the energy of lowest 2+ states taken from [28–33].

Nucleus ã′ (MeV−1) E ′
D1 (MeV) E ′

D2 (MeV) Tcr (MeV) Ucr (MeV) �r.b. (h̄2/MeV) �exp (h̄2/MeV)

160Dy 13.40 2.22 4.30 Tcn = 0.60 10.44 65.46 34.56
Tcp = 0.77

162Dy 13.58 10.35 2.24 Tcn = 0.56 9.30 66.83 37.19
Tcp = 0.74

164Dy 13.77 10.71 2.04 Tcn = 0.56 8.58 68.21 40.87
Tcp = 0.71

94Mo 8.82 2.89 29.33 Tcn = 0.70 10.93 26.98 3.44
Tcp = 0.99

96Mo 9.23 0.42 6.82 Tcn = 0.70 12.08 27.94 3.85
Tcp = 0.98
Tcn = 0.81

98Mo 9.38 7.84 (β2 = 0.035) 2.96 Tcp = 0.91 12.46 28.92 4.08
10.85 (β2 = 0.196) 2.49 Tcn = 0.69 11.31

Tcp = 0.92

of �τ and λτ , are derived from Eq. (1):

2

Gτ

=
∑

k

1

Eτk
tanh

βEτk

2
,

Nτ =
∑

k

(
1 − ετk − λτ

Eτk
tanh

βEτk

2

)
, (3)

where Np = Z and Nn = N . Equations (3) must be valid at
each value of β. The calculated pairing gap is a decreasing
function of temperature. It reaches � = 0 at critical tem-
perature Tcr. The values of Tcr obtained for the considered
nuclei are presented in Table II. The corresponding excitation
energies are about Ucr = 10 MeV for Dy isotopes, and Ucr =
12 MeV for Mo isotopes (see Table II).

The excitation energy U = Un + Up is calculated as

Eτ (T ) =
∑

k

ετk

(
1 − ετk − λτ

Eτk
tanh

βEτk

2

)
− �2

τ

Gτ

,

Uτ (T ) = Eτ (T ) − Eτ (0), (4)

and entropy S = Sn + Sp,

Sτ (T ) = 2
∑

k

{
log[1 + exp(−βEτk )] + βEτk

1 + exp(βEτk )

}
.

(5)

Then, employing the saddle point method [10], the intrinsic
level density ρi is obtained as

ρi = exp (S)

(2π )
3
2

√
D

, (6)

where D is the determinant of the matrix comprised of the
second derivatives of entropy with respect to β and μτ = βλτ

at saddle point:

D =

∣∣∣∣∣∣∣∣
∂2S
∂β2

∂2S
∂β∂μp

∂2S
∂β∂μn

∂2S
∂β∂μp

∂2S
∂μ2

p
0

∂2S
∂β∂μn

0 ∂2S
∂μ2

n

∣∣∣∣∣∣∣∣
. (7)

From the assumption of thermal equilibrium between neutron
and proton subsystems we obtain ∂S2/∂μn∂μp = 0.

The intrinsic level densities calculated for 160,162,164Dy and
94,96,98Mo isotopes are displayed in Figs. 1 and 2, respectively.
A comparison between the intrinsic level density of 98Mo
calculated with an almost spherical level scheme and the
one calculated with the deformed level scheme is displayed
in panel (c) of Fig. 2. As both spectra are obtained for
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FIG. 1. Calculated energy dependent intrinsic level densities in
160Dy, 162Dy, and 164Dy.
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FIG. 2. Calculated intrinsic level densities in 94Mo, 96Mo, and
98Mo. The dashed line (c) is obtained with the single-particle en-
ergies in the deformed state. The ratio of intrinsic level densities
obtained with the single-particle spectra at the deformed and almost
spherical states is shown (d).

close minima of the potential energy surface and the shell
corrections (see Table I) and the single-particle level densities
near the Fermi surface are similar, the close values of intrinsic
level densities are expected. Indeed, due to different dampings
of shell and pairing effects, the ratio of intrinsic level densities
at deformed and spherical states is about 1.2–1.6 at low
excitation energies [Fig. 2(d)].

III. LEVEL-DENSITY PARAMETER

In many applications, one can use the Fermi-gas prescrip-
tion of the level density [48]. For example, it is often used in
the phenomenological calculations of the survival probabili-
ties of excited nuclei [8,9]. In the case of the Fermi-gas model,
the connection between the nuclear temperature and excitation
energy is established by the level-density parameter a as

U = aT 2. (8)
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FIG. 3. Calculated energy dependent level density parameters in
160Dy, 162Dy, and 164Dy (blue solid lines) are compared with the
phenomenological expression (10) without (black dashed lines) and
with (red dash-dotted lines) pairing effect. The dotted lines indicate
the asymptotic values of the calculated level-density parameters.

To keep the simplicity of the Fermi-gas model in realistic
calculations, one can introduce the energy dependence of the
level density parameter. For that, the microscopic level density
ρi can be fitted with the Fermi-gas expression

ρFG =
√

π

12[a(U )]1/4U 5/4
exp (2

√
a(U )U ). (9)

The results obtained for 160,162,164Dy and 94,96,98Mo nuclei
are presented in Figs. 3 and 4, respectively. As seen, a(U )
increases with excitation energy and gradually reaches an
asymptotic value ã (see Table II). Assuming a linear depen-
dence of the level-density parameter on the mass number,
we have ã ≈ A/(12.4–12.6) MeV−1 for Dy isotopes, and
ã ≈ A/(10.3–11.0) MeV−1 for Mo isotopes. These results are
consistent with the average value a ≈ A/(8–13.5) estimated
in [49]. Note that in the model presented, the evolution of
deformation with excitation energy is not taken into account.
Therefore, as seen in Fig. 4(c), at higher energies (U > 10
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FIG. 4. The same as in Fig. 3, but for 94Mo, 96Mo, and 98Mo.
The microscopic calculations (blue solid lines) are compared with
the phenomenological expression (10) without (black dashed lines)
and with (red dash-dotted lines) pairing effect. The green curves in
(c) are the calculations (solid line) with the single-particle energies
in the deformed state and the corresponding results of Eq. (11)
(dashed line). The dotted lines indicate the asymptotic values of the
calculated level density parameters.

MeV) the level-density parameters calculated for 98Mo with
the single-particle energies in almost spherical and deformed
states are slightly different.

The energy dependence of the level-density parameter can
be explained by the damping of the shell correction with
the excitation energy and described by the phenomenological
function [50]

a(U ) = ã

[
1 + 1 − exp (−U/ED)

U
δEsh

]
, (10)

where ED is the damping parameter which is adjusted along
with ã to reproduce the microscopic calculations.

The results obtained with Eq. (10) are shown in Figs. 3
and 4. As seen, the phenomenological expression does not
describe well the behavior of a(U ) for the isotopes with
|δEsh| < 1.5 MeV. Moreover, in the case of 98Mo which has

a positive shell correction, the microscopic results cannot be
fitted with Eq. (10). For the cases of small or positive shell
corrections, the phenomenological expression (10) is modified
by taking into account the damping of pairing effects

a(U ) = ã′
[

1 + 1 − exp (−U/E ′
D1)

U
δEsh

−1 − exp (−U/E ′
D2)

U
Epair

]
. (11)

Here, Epair is the pairing energy. For the isotopes considered,
the calculated Epair values are presented in Table I. The values
of adjustable parameters in Eq. (11) are presented in Table II.
As shown in Figs. 3 and 4, the account of the damping of pair-
ing effects results in a good agreement with the microscopic
results.

IV. SPIN CUT-OFF PARAMETER

Spin cut-off parameter σ 2 determining the level density
spin distribution is calculated as [51]

σ 2 = 1

2

∑
τ=p,n

∑
k

m2
τk cosh−2 (1/2βEτk ), (12)

where mτk are the single-particle spin projections. The cal-
culated energy dependencies of σ 2 for Dy and Mo isotopes
are shown in Fig. 5. As seen, σ 2 depends almost linearly on
excitation energy for all nuclei considered. However, at the
energy around 6–8 MeV the slopes of the curves change. This
change is more evident for Mo isotopes while for Dy it is
smeared out. Such a behavior is related to the phase transition
from the superfluid to normal phase. As seen from Table II,
the slopes of the curves change in the vicinity of the critical
excitation energy.

As shown in [52], the spin cut-off parameter is related to
the effective moment of inertia

� = h̄2σ 2

T
. (13)

The energy dependencies of σ 2/T for Dy and Mo isotopes are
displayed in Fig. 6. As expected, the σ 2/T which is equivalent
to the moment of inertia increases quickly at the energy range
from U = 5 MeV to U = 15 MeV and stays almost constant
afterwards. At high excitation energy, where the pairing is
damped out, the nuclear moment of inertia reaches the rigid
body value �r.b., while at lower excitations it can be estimated
from the energy of the lowest 2+ state as �exp = 3/E2+ (see
Table II). It is interesting that in Mo isotopes despite their al-
most spherical equilibrium shape (see Table I) the moments of
inertia quickly approach their asymptotic values at U > Ucr.
Therefore, in the calculation of total level density the rota-
tional enhancement cannot be excluded (see Sec. V).

V. COLLECTIVE ENHANCEMENTS

The total level density, which includes collective states,
must be calculated to be compared with the experimental
data. With the assumption of a decoupling between intrinsic
and collective degrees of freedom, the excitation energy of a
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FIG. 5. Energy dependence of the spin cut-off parameters for
160,162,164Dy (a) and 94,96,98Mo (b) calculated with the microscopic
expression (12).

nucleus can be written as a sum of intrinsic Ui and collective
Uc excitation energies U = Ui + Uc. The total level density is
then written as

ρtot (U ) =
∫

ρi(Ui )ρcoll(U − Ui )dUi, (14)

where the collective level density is

ρcoll(U − Ui ) =
∑

c

δ(U − Ui − Uc)τc(Uc). (15)

The degeneracy of a collective state with the angular momen-
tum Ic is τc(Uc) = 2Ic + 1. Using Eq. (15), we obtain

ρtot (U ) =
∑

c

ρi(U − Uc)τc(Uc). (16)

The energies Uc can either be taken from the experiment or
calculated using a collective model. Assuming that the most
important collective modes are the quadrupole and octupole
vibrations, the spectrum of collective excitations in deformed
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FIG. 6. Energy dependence of σ 2/T in 160,162,164Dy (a) and
94,96,98Mo (b).

nucleus is given as

Uc = h̄ωβ (nβ + 1/2) + h̄ωγ (2nγ + |K|/2 + 1)

+ h̄2

2� [Ic(Ic + 1) − K2], (17)

where K is the projection of Ic on the symmetry axis, and
nβ and nγ are the quantum numbers of harmonic oscilla-
tor energies. Since the octupole deformation stabilizes with
angular momentum [53] we can assume for simplicity that
the nucleus has stable octupole deformation and each state
with K �= 0 is twofold degenerate τc(Uc) = 2(2Ic + 1). For
K = 0, the octupole deformation leads to the appearance of
1−, 3−, 5−,... excitations, which again can be approximately
taken into account by factor 2 in τc(Uc). The values of h̄ωβ and
h̄ωγ in Eq. (17) are taken to reproduce the experimental data
on the lowest 0+ and 2+ band heads [28–33]. The moments
of inertia are taken as � = �exp (see Table II). The number
of collective levels calculated with Eq. (17) for 164Dy is dis-
played as a function of excitation energy in Fig. 7(a). As seen,
the calculations are in a good agreement with the available
experimental data at low energies [30]. The values of h̄ωβ and
h̄ωγ are taken as 1.27 MeV and 0.74 MeV, respectively. Since
the lowest 0+ band is most likely not a β vibrational band
head the value of h̄ωβ is taken as for 160Dy.
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FIG. 7. (a) The number of collective levels in 164Dy calculated
with the semiempirical expression (solid line) as a function of
excitation energy, in comparison with the available experimental data
at low energies (symbols) [30]. (b) The same as (a), but for 96Mo. The
experimental data are taken from [32].

Similar calculation for 96Mo is presented in Fig. 7(b). In
this case, h̄ωβ = 1.15 MeV and h̄ωγ = 1.24 MeV. On the
contrary to Dy isotopes, the ground-state band calculated with
the moment of inertia �exp is not in good agreement with the
experimental data at low energies in Mo isotopes [31,32]. Our
calculations show that at low energies, the moment of inertia
is not constant but depends on I values. We found that the
moments of inertia of the yrast bands in 94,96Mo can be fitted
with the following expression:

� = �r.b
(
1 − a1 exp[−a2I (I + 1)]

)
, (18)

where the parameters are a1 = 0.89 and a2 = 0.006. The
moments of inertia obtained give a good agreement with the
asymptotic values of the σ 2/T curves displayed in Fig. 6 at
large values of I . As seen from Fig. 7(b), the calculations are
in good agreement with the available experimental data at low
energies [32].

Alternative way to take into account the collective en-
hancement of nuclear level density is to use an adiabatic
approximation [26]

ρtot (U ) = ρi(U )Kcoll, (19)

where

Kcoll = KrotKvib. (20)

The enhancement due to rotational degrees of freedom is
expressed as [8,26]

Krot =
{

1, for spherical nuclei
�⊥T, for deformed nuclei, (21)

where �⊥ = �r.b f (β2, β4) is the moment of inertia with re-
spect to the axis perpendicular to the symmetry axis. Here,

f (β2, β4) = 1 +
√

5/16πβ2 + (45/28π )β2
2

+ (15/7π
√

5β2β4), (22)

where β2 and β4 are quadrupole and hexadecapole defor-
mation parameters of the nucleus. The liquid-drop model
estimation for the vibrational enhancement [8,26] is

Kvib = exp(0.0555A2/3T 4/3). (23)

The collective enhancement Kcoll can also be obtained from
the experimental data or from Eq. (17). Expanding the right-
hand side of Eq. (16) to the first order in Uc at U � Uc [54],
we obtain

ρtot (U ) 	
∑

c

[
ρi(U ) − Uc

∂ρi(U )

∂U

]
τc(Uc)

=
∑

c

[
ρi(U ) − Uc

T
ρi(U )

]
τc(Uc).

(24)

Here, we use ∂ρ(U )
∂U = ρ(U )

T . One can calculate this derivative
using the Fermi-gas expression (9), taking into account the
energy dependence of the level density parameter. Equation
(24) is considered as the Taylor expansion of the following
expression:

ρtot (U ) 	 ρi(U )
∑

c

exp

(
−Uc

T

)
τc(Uc), (25)

to the first order of Uc/T [54]. Based on Eq. (25), the
vibrational-rotational collective enhancement is obtained as

Kcoll =
∑

c

exp

(
−Uc

T

)
τc(Uc). (26)

The comparison between the collective enhancement fac-
tors calculated with Eqs. (20)–(23) and Eq. (26) is presented
in Fig. 8 for Dy isotopes. In the approach presented in this
paper, only quadrupole and octupole vibrational degrees of
freedom are taken into account. However, in the macroscopic
approach [26] the vibrational excitations of higher multipolar-
ities are also counted. Therefore, at low energies, where only
quadrupole and octupole excitations can be excited, the results
of two approaches are close to each other. At higher energies
after damping of pairing, where the intrinsic and collective
excitations are mixed, the assumption of all higher orders
collective effects in the macroscopic approach leads to an
overestimation of the collective enhancement. Therefore, the
difference between two approaches increases with excitation
energy.

In the macroscopic expression of collective enhancements
in spherical nuclei, the rotational coefficient is taken as unity.
This is applicable if the nucleus is assumed to be ideally
spherical. In order to examine validity of this assumption for
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FIG. 8. Calculated collective enhancement factors with
Eqs. (20)–(23) (red dashed lines) and Eq. (26) (blue solid lines) for
160,162,164Dy.

Mo isotopes, we calculated the collective enhancements with
the semiempirical expression (26). The results are shown in
Fig. 9 for 94,96,98Mo isotopes. For 98Mo, the values of a1

and a2 in Eq. (18) are taken as the same for 94Mo and 96Mo
because of the lack of data. As seen, taking into account only
the vibrational coefficient for Mo isotopes, we underestimate
the collective enhancement factors. This result is consistent
with the behavior of effective moment of inertia which sharply
increases to the rigid-body value at critical excitation energy
[see Fig. 7(b)].
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FIG. 9. Collective enhancement factors calculated with
Eqs. (20)–(23) with Krot(red dashed lines) and without Krot (red
dash-dotted lines) are compared with those from Eq. (26) (blue solid
lines) for 94,96,98Mo.

VI. COMPARISON WITH EXPERIMENTS

Taking into account the average spin distribution of the
levels, the nuclear level density ρ(U ) is calculated as

ρ(U ) = ρtot (U )√
2πσ 2

. (27)

The results are presented in Fig. 10 for 162,164Dy together
with the corresponding experimental data [17–19]. The total
level density was calculated with the collective enhancement
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FIG. 10. Energy dependent total level densities with collective
enhancements obtained using the macroscopic expressions (21) and
(23) (red dashed line), and semiempirical calculations (26) (blue
solid line) are compared with the corresponding experimental data
(the green symbols are taken from Refs. [17,18] and the black
symbols are taken from Ref. [19]) for 164Dy and 162Dy. The inserted
panels show the ratio of the latest experimental data from Ref. [19] to
the total level densities with collective enhancements obtained with
macroscopic expressions (red line), and semiempirical calculations
(blue line).

factor from Eq. (26). Our calculations show that the total
level density obtained in this way is almost the same as the
one calculated with the general expression (16). The nuclear
temperatures in the calculation of collective enhancements are
obtained from Eq. (8) with the calculated level density pa-
rameters and excitation energies. The level densities obtained
with the macroscopic expression for Kcoll are also plotted. In
the macroscopic calculations, the spin cut-off parameter is
taken as from Eq. (13) assuming rigid-body moment of inertia
(�r.b.) and Eq. (12) is used in the microscopic calculations.
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FIG. 11. Energy dependent total level densities with collective
enhancements obtained with macroscopic expressions (21) and (23)
(red dashed line), and in the semiempirical calculations (26) with
spin dependent moment of inertia (blue solid line) are compared
with the corresponding experimental data (the green symbols are
taken from Ref. [20] and the black symbols are taken from Ref. [21])
for 96Mo and 94Mo. The inserted panels show the ratio of the latest
experimental data from Ref. [21] to the total level densities obtained
with the semiempirical collective enhancement.

As seen in Fig. 10, both macroscopic and semiempirical
calculations generally describe well the total level densities in
162Dy and 164Dy. An account of higher orders deformations
in the semiempirical calculation of collective excitations is
expected to improve the results at higher energies.

The comparison between the total level densities calculated
with the macroscopic and semiempirical expressions for the
collective enhancement and the corresponding experimental
data [20,21] is shown in Fig. 11 for 94Mo and 96Mo. As seen,
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assuming 94Mo and 96Mo as spherical isotopes, we fail to
describe the experimental data. However, the spin dependent
moment of inertia obtained with Eq. (18) in the microscopic
calculation of vibration-rotational enhancement allows us to
describe well the experiment. This implies that in the Mo
isotopes with increasing excitation energy the shape changes
from spherical to deformed and the nuclear system reverts to
a rigid rotor with the rotational excitations. The same phe-
nomenon is observed in σ 2/T curves of molybdenum isotopes
presented in Sec. IV. Therefore, the use of the vibrational
coefficient only is not enough to describe the energy depen-
dent total level density in these isotopes. This observation is
consistent with the analysis performed in Ref. [5].

VII. SUMMARY

The intrinsic level densities of well-deformed 160,162,164Dy
and almost spherical 94,96,98Mo isotopes were calculated using
the superfluid model with the single-particle energies taken
from the QPM. The role of shell and pairing effects in the
level density as well as their quenching with excitation energy
are studied. The energy dependent level-density parameters,
spin cut-off factors, and nuclear temperatures are calculated
with the BCS model and their energy dependencies are
studied. Collective effects are taken into account using the

phenomenological macroscopic expression and semiempirical
approach. Comparisons with the experimental level densities,
show that both macroscopic and semiempirical approaches
work well in Dy isotopes. However, the macroscopic approach
with the assumption of an ideal spherical shape for Mo
isotopes fails to describe the experimental data. In this case,
a spin dependent moment of inertia was suggested based
on the available experimental data of the yrast band. The
semiempirical calculations with this moment of inertia are in
a good agreement with the experiments. Despite the almost
spherical equilibrium shape of Mo isotopes, the rotational
enhancement should be taken into account. In 98Mo, the
Woods-Saxon single-particle spectra obtained in two minima
(one spherical and another deformed) of the potential energy
surface result in the close shell-correction values and in the
intrinsic level densities. However, due to different dampings
of shell and pairing effects, the ratio of the intrinsic level
densities at deformed and spherical states is about 1.2–1.6 at
low excitation energies.
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