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Measurement of the quadrupole moment of 185Re and 187Re from
the hyperfine structure of muonic X rays
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The hyperfine splitting of the 5g → 4 f transitions in muonic 185,187Re has been measured using high
resolution high purity germanium detectors and compared to state-of-the-art atomic theoretical predictions.
The spectroscopic quadrupole moment has been extracted using modern fitting procedures and compared to
the values available in literature obtained from muonic x rays of natural rhenium. The extracted values of the
nuclear spectroscopic quadrupole moment are 2.07(5) b and 1.94(5) b, respectively for 185Re and 187Re.
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I. INTRODUCTION

It is well known that muonic x rays can be used as a
sensitive means to determine the charge radius of a nucleus.
Moreover if the hyperfine structure (hfs) can be resolved,
then the distribution of the magnetic dipole (MD) and electric
quadrupole (EQ) moments in the nucleus can be investigated
as well. All stable elements and few unstable elements have
been studied by muonic x-ray spectroscopy. Rhenium is the
last stable element whose nuclear charge radius has not been
measured with muonic x rays [1]. Since Re is a strongly
deformed nucleus, the muonic x-ray spectrum is complicated
by the so-called dynamic hyperfine splitting [2,3]. This effect
is particularly sizable in muonic atoms and is due to the fact
that the quadrupole interaction between muon and nucleus
has nonvanishing off-diagonal elements which link the ground
state and low-lying excited states of the nucleus. The effect
leads to a mixing of the nuclear states due to the similar energy
scale between the atomic binding energies and the nuclear
excitation energies resulting in a dynamic hyperfine splitting
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even for nuclei which have zero spin in the ground state where
no hfs is to be expected. As a result of the dynamic hyperfine
splitting, the extraction of the nuclear charge parameters from
the 2p → 1s transition in deformed nuclei requires a more
elaborated analysis compared to spherical nuclei as shown
in [4–6] and references therein.

The only existing measurement of muonic x rays of rhe-
nium was performed on a natural rhenium target and aimed
at the extraction of the spectroscopic quadrupole moment
from the analysis of the hyperfine splitting of the 5g → 4 f
transitions [7]. The full muonic x-ray spectrum of isotopically
pure targets of 185Re and 187Re has been recently measured
by the muX collaboration at the Paul Scherrer Institut (PSI)
for the first time, with the aim to extract the main properties
of the nuclear charge distribution from muonic spectroscopy,
which are still missing in literature. In this paper we present
the analysis of the hyperfine splitting of the 5g → 4 f muonic
transitions yielding the spectroscopic quadrupole moment of
185,187Re. The analysis of the 2p → 1s and 3d → 2p muonic
transitions and the extraction of the nuclear charge radius will
be reported elsewhere.

The muonic x-ray spectra of the two isotopically pure
rhenium targets, a major improvement over the analysis pre-
sented in Ref. [7], analysed with state-of-the-art theoretical
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predictions and fitting procedures have shown that the fit
of the hfs of the 5g → 4 f transitions, and consequently the
extracted value of the quadrupole moment, is very sensitive to
the inclusion of weaker muonic transitions not included in the
analysis of Ref. [7]. Particular care has also been taken on the
determination of the peak shape of the germanium detectors
from muonic x-ray data, while in [7] off-line calibration runs
with sources were used. The measurements reported in this
article are part of a larger effort going on at PSI (muX project)
to perform muonic atom spectroscopy on radioactive elements
(usually available only in microgram quantities) aiming, as
first test cases, at the precise measurement of the nuclear
charge radius of 226Ra and 248Cm [8,9].

Section II reviews the theory of the muonic atoms in
order to establish the notation used in the hfs formalism and
also includes a discussion of the various corrections to the
energy levels beyond the predictions of the Dirac equation.
Section III A describes the apparatus used in obtaining the
x-ray spectra, Sec. III B describes the data-reduction meth-
ods and also includes the 208Pb muonic x-ray results which
where used as a calibration standard for the 185,187Re spectra.
Section IV details the fit of the 5g → 4 f transitions of the
185,187Re spectra using the hfs formalism of Sec. II B and the
extraction of the nuclear quadrupole moments.

II. THEORY

A. Fine structure

In order to predict the transition energies and probabilities
as well as their dependence on the nuclear quadrupole moment
theoretically, the bound muon is described as a Dirac particle.
As the mass of the muon mμ is about 207 times larger than
the electron’s mass me, the energy scale for muonic atoms is
a factor ≈207 larger than regular electronic atoms. The Bohr
radius of the muon is smaller than the one of the electron by
the same factor, which leads to a significant enhancement of
nuclear effects.

The bound muon is described by the Dirac equation

[α · p + βmμ + Vnucl(r)]|nκm〉 = Enκ |nκm〉, (1)

where α, β are the Dirac matrices, Vnucl is the electrostatic
potential caused by the nuclear charge distribution, and Enκ

and |nκm〉 are muonic energies and wave functions, corre-
spondingly. Here, n stands for the principal quantum number,
while the relativistic angular quantum number κ is introduced
as a bijective function of the orbital angular momentum l and
the total muon angular momentum j as κ = (−1) j+l+1/2( j +
1/2), and m is the z component of j. For a spherically
symmetric potential, the radial components Gnκ (r), Fnκ (r) and
the angular part �±κm can be separated, and therefore the
solution can be written as [10]

|nκm〉 = 1

r

(
Gnκ (r)�κm(n)

iFnκ (r)�−κm(n)

)
, (2)

The angular part of the wave function is described by spherical
spinors �κm, and the radial wave functions are normalized

with an integral∫ ∞

0
dr

[
G2

nκ (r) + F 2
nκ (r)

] = 1. (3)

For a Coulomb potential V C
nucl(r) = −αZ/r, Eq. (1) can be

solved analytically and gives the well-known formula for the
Dirac-Coulomb energies

EC
nκ =

[
1 + (αZ )2

(n − |κ| +
√

κ2 − (αZ )2)2

]−1/2

, (4)

where α is the fine-structure constant and Z the nuclear
charge. However, predictions of the muonic spectra have to
include the finite size of the nucleus already in the Dirac
equation. The deformed Fermi distribution

ρcaβ (r) = N

1 + exp[(r − c[1 + βY20(ϑ )])/a]
(5)

has proven to be very successful in the description of the level
structure of heavy muonic atoms, see, e.g., [6,11,12], and is
also used in this work. Here, a is the skin thickness param-
eter, c the half-density radius, β the deformation parameter,
N a normalization constant, and Y20 the spherical harmonics.
The corresponding spherically symmetric part of the nuclear
potential is

Vnucl(r) = −α

∫
d3r′ ρcaβ (r′)

max(r, r′)
. (6)

It has been shown, that a = t/(4 log3), with t = 2.30 fm, is
a good approximation for most of the nuclei [13]. Then, c
and β are chosen such that the root-mean-square radius rrms

of the distribution agrees with the literature value [1] and
the quadrupole moment agrees with a given value, which is
obtained by fitting to the experimental data as described in
Sec. II E. The connection between the charge distribution of
Eq. (5) and the spectroscopic quadrupole moment is

Q = 2I (2I − 1)

(I + 1)(2I + 3)

∫
d3r′ r′2ρcaβ (r′)P2(cos ϑ ′), (7)

where I is the nuclear angular momentum number and Pl (x)
are the Legendre polynomials.

With the potential of Eq. (6), Eq. (1) can be solved only
numerically. For this purpose the dual-kinetic-balance method
[14] has been used in this work. For the muon in the 1s
state the binding energy including finite-size effect is almost
50% smaller than the value EC

nκ assuming a point Coulomb
potential. For the 4d states the reduction is on a level of 0.1%,
and even smaller for the 4 f and other considered states.

The order-α quantum electrodynamics contributions are
the self-energy (SE) and the vacuum polarization (VP) cor-
rections. For atomic electrons they are usually of the same
order of magnitude. For muons, however, the VP correction is
much larger as the virtual electron-positron pair production is
less suppressed due to their low mass compared to the muon’s
mass [15]. The dominant VP contribution (first order in α and
αZ) is called Uehling correction, and can be described by the
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potential [16]

VUehl(r) = −α
2α

3π

∫
d3r′ ρcaβ (r′)

∫ ∞

1
dt

(
1 + 1

2t2

)√
t2 − 1

t2

exp(−2me|r − r′|t ) − exp(−2me(r + r′)t )

4mert
. (8)

This potential can be directly included into the Dirac equation
of Eq. (1) by adding it to Vnucl(r), therefore directly accounting
all iterations [17] of the Uehling potential into the muonic
binding energies. In the same way, the higher-order contri-
butions to the VP correction, namely the Wichmann-Kroll
[order α(αZ )3] potential [18,19] in the point-like approxi-
mation and the Källen-Sabry [order α2(αZ )] potential [20]
for a spherically symmetric nuclear charge distribution were
included in the Dirac equation, using the expressions from
[17]. Since both the Wichmann-Kroll and the Källen-Sabry
corrections to the energy levels of muonic atoms are small,
the neglected nuclear model dependence was estimated to be
insignificant.

The recoil correction, i.e., the effect of finite nuclear mass
and the resulting motion of the nucleus, was accounted fol-
lowing the approach used in Refs. [15,21,22].

The effect of the surrounding electrons on the binding en-
ergies of the muon, commonly referred to as electron screen-
ing, was estimated following Refs. [22,23] by calculating an
effective screening potential from the charge distribution of
the electrons and using this potential in the Dirac equation
for the muon. The atomic electrons primarily behave like a
charged shell around the muon and the nucleus; thus every
muon level is mainly shifted by a constant term, which is not
observable in the muonic transitions. The main contribution
to the screening potential comes from the 1s electrons, since
their wave functions have the largest overlap with the muonic
wave functions.

The results of our calculations for rhenium for the total
binding energies and for the individual contributions are pre-
sented in Table I.

TABLE I. Contribution to the binding energy of the muonic
rhenium assuming the charge distribution of Eq. (5) with the parame-
ters c = 6.3500 fm, a = 0.5234 fm, β = 0.2343, which corresponds
to Q = 2.21 b and rrms = 5.3596 fm. For a given nuclear charge
distribution, the numerical uncertainties are estimated to be below
1 eV. EC

nκ are the point-like Dirac-Coulomb binding energies and
δEfs the finite nuclear size correction. δEuehl, δEks, and δEwk are
the corrections due to the Uehling Källen-Sabry, and Wichmann-
Kroll potentials, respectively. δEscreen is the nonconstant part of the
screening correction due to the surrounding 1s electrons. All energies
are in keV.

EC
nκ δEfs δEuehl δEks δEwk δEscreen

4d3/2 1013.125 −1.175 3.547 −0.067 0.026 −0.062
4d5/2 1000.021 −0.478 3.374 −0.065 0.024 −0.064
4 f5/2 1000.021 −0.004 2.930 −0.064 0.021 −0.048
4 f7/2 993.697 −0.001 2.859 −0.063 0.020 −0.049
5 f5/2 640.055 −0.003 1.459 −0.035 0.010 −0.123
5 f7/2 636.806 −0.001 1.425 −0.034 0.010 −0.125
5g7/2 636.806 −0.000 1.215 −0.033 0.009 −0.098
5g9/2 634.883 −0.000 1.199 −0.033 0.009 −0.099

B. Hyperfine structure

The hyperfine splitting appears as a result of the interaction
of the bound muon with the magnetic dipole (MD) and electric
quadrupole (EQ) moments of the nucleus. In contrast to the
electronic atom, where the MD splitting dominates over the
EQ splitting (see, e.g., [24]), the muonic MD splitting is
suppressed because the magnetic moment of the muon is
mμ/me times smaller than the electronic one.

As the hyperfine splitting mixes the nuclear and muonic
quantum numbers, they are not conserved anymore and cannot
be used for a proper description of the energy levels. There-
fore, a combined mixed state with total angular momentum F
and its projection MF is introduced as

|FMF I nκ〉 =
∑

MI ,mj

CFMF
IMI jmj

|IMI〉|nκmj〉, (9)

where C jm
j1m1 j2m2

are the Clebsch-Gordan coefficients.
The diagonal matrix elements of the EQ hyperfine operator

ĤEQ [22,24,25] are determined by the formula

EEQ = 〈FMF Inκ|ĤEQ|FMF Inκ〉

= αQ(−1) j+I+F

{
j I F
I j 2

}

×
√

(2I + 3)(2I + 1)(I + 1)

4I (2I − 1)

×
√

(2 j + 3)(2 j + 1)(2 j − 1)

16 j( j + 1)

×
∫ ∞

0

[
G2

nκ (r) + F 2
nκ (r)

]FQD(r)

r3
dr. (10)

Here, FQD is the quadrupole distribution function, which
describes the deviations from a point-like quadrupole and
depends on a deformed charge distribution as

QFQD(r)

r3
= 2I (2I − 1)

(I + 1)(2I + 3)

∫
d3r′ ρ(r′)

r2
<

r3
>

P2(cos ϑ ′),

(11)
where r< = min(r, r′) and r> = max(r, r′). Similarly, the MD
hyperfine splitting can be calculated by the formula [22,24,25]

EMD = 〈FMF Inκ|ĤMD|FMF Inκ〉 (12)

= [F (F + 1) − I (I + 1) − j( j + 1)]
α

2mp

μ

μN

κ

I j( j + 1)

×
∫ ∞

0
Gnκ (r)Fnκ (r)

FMD(r)

r2
dr (13)

with the proton mass mp, nuclear magneton μN , nuclear mag-
netic dipole moment μ, and its distribution function FMD(r).
For the simple model of a homogeneous distribution of the
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dipole moment inside the nucleus, FMD reads

FMD(r) =
{(

r
RN

)3
r � RN

1 r > RN

, (14)

where for RN the nuclear charge radius is commonly used. In
practice, both the electric FEQ and magnetic FMD distribution
functions were calculated for several nuclear models to esti-
mate the model uncertainty using the values of the nuclear
magnetic moment μ/μN = 3.1871 for 185Re and μ/μN =
3.2197 for 187Re [26].

C. Dynamical splitting

For the 2p states in heavy muonic atoms, the EQ hyperfine
splitting, the fine-structure splitting, and the low-lying nuclear
rotational band can be on the same energy scale of few
hundreds of keV. This leads to a strong mixing of the muonic
and nuclear levels caused by the EQ hyperfine interaction,
commonly called dynamic hyperfine splitting [11].

For the analysis of the transitions from n = 5 to n = 4 in
this work, the hyperfine splitting is much smaller than the nu-
clear transitions between low-lying nuclear states, hence the
excited nuclear states do not need to be considered. However,
there is still a residual mixing of the muonic states of Eq. (9)
due to higher-order hyperfine interaction. This can be included
by rediagonalization of the EQ and MD interaction in the
considered initial and final states.

For the set of all considered initial/final states, the non-
diagonal EQ and MD matrix elements of the ĤEQ and ĤMD

operators have been calculated [25,27]. Then, the rediagonal-
ization has been performed separately for each value of F ,
since the MD and EQ interaction are diagonal in F . After
the rediagonalization, the unperturbed states |FMF I nκ〉 are
mixed and can be described as

|FMF , i〉 =
d∑

k=1

c(i)
k |FMF I nkκk〉, (15)

where d is the number of initial/final states, and the coeffi-
cients c(i)

k diagonalize the hyperfine interaction. The quantum
numbers F and MF , describing the total angular momentum
of the nucleus-muon system, are still well-defined. In this
work, the EQ matrix elements were also corrected with the
order α(Zα) VP contribution using the approach of [25].

D. Transition probabilities and line intensities

The muonic transition rates due to spontaneous emission of
a photon between states with defined total angular momentum
F from an initial state |FiMi, ii〉 to a final state |Ff M f , i f 〉,
summed over the projections Mi and M f (to simplify the
formalism M ≡ MF from now on), are [28]

A(λ)
J = 2α(2J + 1)(J + 1)

J
�Ei f

×
∑

M,Mi,M f

|〈Ff M f , i f |t̂ (λ)
JM |FiMi, ii〉|2. (16)

Here, �Ei f is the energy difference between the initial and
final state, J is the total angular momentum of the photon

and t̂ (λ)
JM [28] is the multipole transition operator. λ = 1 cor-

responds to an electric transition, whereas λ = 0 stands for a
magnetic transition.

In the experimental spectra, the number of counts mea-
sured in the peak is proportional to the transition intensities,
which are the product of the transition probability and the
population of the initial states. The transition probability per
unit time can be calculated ab initio with Eq. (16). In this
work, the relative population of the muonic fine structure
states within a l state was assumed statistical, i.e., proportional
to (2 j + 1), whereas the relative population of the 5g and 5 f
states was left as free parameter and determined by fitting the
experimental spectra (see Sec. IV B).

E. Dependence of observables on quadrupole moment

After a muon is captured in a highly excited state and starts
cascading towards its ground state, there is an intermediate
region, (n ≈ 5) where finite nuclear size effects are still rather
small while the muon is not significantly influenced by the
surrounding atomic electrons. This intermediate region (in
our case n = 5 → n = 4) is well suited for the extraction of
quadrupole moments [29,30].

Four fine-structure states 5g9/2, 5g7/2, 5 f7/2, 5 f5/2 to-
gether with the nuclear ground state with I = 5/2 define the
initial states. The energies were calculated as described in
Secs. II A, II B, and II C; including finite size effects, VP
(Uehling, Källen-Sabry, Wichmann-Kroll in point-like ap-
proximation, quadrupole electronic-loop Uehling), SE, elec-
tron screening, and recoil effect; with the rediagonalization
of the EQ and MD hyperfine interaction. The same pro-
cedure was repeated for the final states with n = 4, i.e.,
4 f7/2, 4 f5/2, 4d5/2, 4d3/2, and I = 5/2. The transition prob-
abilities were calculated from each initial to each final state
with Eq. (16) for E1 (λ = 1, J = 1) and M1 (λ = 0, J = 1)
transitions, assuming a statistical initial population in Mi

and M f . With this approach, the entire spectrum of interest can
be calculated for a given spectroscopic quadrupole moment Q.

For the comparison of the theoretical predictions with the
measured experimental spectra, the full calculations for each
transition were performed for several values of the quadrupole
moment Q in the proximity of the expected value and a
quadratic function is fitted for every transition energy and
intensity as

�Ei f (Q) = �Ei f
0 + �Ei f

1 Q + �Ei f
2 Q2,

I i f (Q) = I i f
0 + I i f

1 Q + I i f
2 Q2.

In this way, the fitting coefficients, in addition to the first-order
EQ splitting, contain also the information about MD splitting
and higher-order EQ interaction, whereas in Ref. [7] only the
term linear in the quadrupole moment Q was considered. The
resulting dependencies for the transition energies and for the
relative intensities are given in Tables III and IV, respectively
for 185Re and 187Re, and in Table V.
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III. EXPERIMENTAL SETUP AND ANALYSIS

A. Setup

The experiment was performed at the HIPA facility of
the Paul Scherrer Institut and is part of the ongoing muonic
x-ray study of radioactive elements. The negative muon beam
was obtained from the decay of pions produced in the col-
lisions of 590 MeV protons on a thick graphite target. The
momentum-analysed muon beam was transported to the πE1
area and consisted mostly of muons and electrons. The elec-
tron contamination, which can be a source of background,
was efficiently removed using a Wien filter separator placed
at around 15 m before the target. As a result, a high purity
negative muon beam could be obtained. The energy of the
muon beam was tuned to a momentum of around 29 MeV/c
in order to maximise the stopping in the targets. The typical
intensity at the detection setup at the given momentum was in
the order of 104 μ− per second.

The beam exits the beam line through a 75 μm thick
mylar window and travels in air for around 10 cm before
being stopped in the target. The incoming negative muons
and electrons were identified before impinging on the tar-
get by the muon counting detector, a 500 μm thick plas-
tic scintillator with a 6 × 6 cm2 active area read out by
photomultipliers and placed in air in close vicinity to the
end of the beam line. Given the small thickness, the sig-
nals induced by the muons could be easily separated with
a threshold cut from the much smaller signals induced by
the electrons. The muon counting detector was used as start
detector for the coincidence measurements (see Sec. IV). In
addition, at the same position, a second scintillator 2 mm
thick with a 9 × 9 cm2 active area and a central hole of
45 mm, so that the muon beam was passing through this hole
before being stopped in the target, was used as veto detector
to produce anticoincidence conditions on the muonic x-ray
spectra.

Measurements were done with three isotopically pure tar-
gets of 185Re (97.6%), 187Re (99.4%), and 208Pb (99.6%). The
208Pb target was used for the energy calibration and served as
a means of checking drifts and possible malfunctions.

The isotopes were purchased in the form of a powder
(500 mg) in the case of rhenium and in the form of an
irregularly shaped ingot (1g) in the case of lead. The rhenium
powder was first finely ground in a mortar and then mixed
with 60 to 70 mg of epoxy on a Kapton foil. The mixture
was subsequently covered with a Teflon foil and, loaded
with some weights, slowly brought into a disk-like shape of
around 30 mm diameter. The lead piece was cold-pressed and
hammered into a disk of 40 mm diameter.

The targets were then glued onto a Kapton foil and
mounted on a PVC frame which was inserted in a target holder
at 45◦ with respect to the direction of the beam. A picture of
one of the rhenium targets mounted on the target holder can
be seen in Fig. 1. Typical muon stopping rates were 2500/s
for the 208Pb target and 900/s for the rhenium targets.

The muonic x rays following the muonic cascade were
detected by two single crystal high-purity germanium (HPGe)
coaxial detectors with relative efficiency of 20% and 75%
placed in close vicinity to the target at 90◦ (GeR) and −90◦

FIG. 1. Rhenium target (black disk) glued on a kapton foil (or-
ange) and mounted on the target holder at the center of the detector
arrangement.

(GeL), respectively, with respect to the direction of the in-
coming beam. Figure 2 shows the detector arrangement. Two
more HPGe detectors and a LaBr3 scintillator were also
operated but they are not used for the analysis presented
here. The typical energy resolution for 1.3 MeV γ radiation
was 2.1 keV and 2.9 keV (FWHM), for the 20% and 75%
detector, respectively. The absolute photopeak efficiency for
the 359.8 keV line, the most intense transition in the 5g9/2 →
4 f7/2 hfs observed in 185Re, was ≈0.2% and ≈0.5% for GeR
and GeL, respectively, for the given geometry. The efficiency
calibration was performed using standard sources of 137Cs,
60Co, 88Y, and 152Eu. Typical single rates in the germanium
detectors were 500 and 1000 counts per second, respectively.

FIG. 2. Detection setup and target holder mounted at the end of
the πE1 area of the HIPA facility at the Paul Scherrer Institut. The
last quadrupole of the muon beam line is visible at the back of the
detection setup. The four plastic scintillator counters are mounted
in a box-like structure surrounding the target holder. Four HPGe
detectors and a LaBr3 scintillator (top) were used to detect the
muonic x rays.
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FIG. 3. The γ -ray energy spectra obtained with the 185Re target
(a) and the 208Pb target (b) in GeR in prompt coincidence (0–400 ns)
with the muon entrance counter.

Finally four plastic scintillator counters 5 mm thick and
18 × 18 cm2 large were placed around the target in a box-like
structure. The signals from these plastic scintillator counters
were used in anticoincidence with the germanium detectors
signals and allowed removal of background events in the x-ray
spectra mainly produced by the electrons emitted in the muon
decay.

The readout system was based on the STRUCK SIS3316
digitizer and the MIDAS data acquisition system [31]. This
is a VME module providing 16 spectroscopic channels with
a 250 MHz 14 bits sampling ADC each. The signals from
each of the detector preamplifiers are passed directly to the
SIS3316 modules. The smaller signals from GeL were routed
through a fast amplifier in order to match better the dynamic
range of the digitizer. The filtering is performed digitally
using algorithms implemented on field programmable gate
arrays (FPGA) on the SIS3316 board, a fast filter being used
for triggering, timing, and pile-up rejection and a slow filter
for energy determination. With a data acquisition running
in trigger-less mode, time and energy were recorded for
all detector signals above a certain threshold. Additionally,
for the germaniums and LaBr3 scintillator, the traces were
also read out. Prompt and delayed muonic x-ray spectra of
the germanium detectors were built by imposing conditions
in the time difference between the germanium detector and
the muon counter. In a similar way the anti-coincidence
conditions of the germanium signals with the signal of the
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FIG. 4. Background γ -ray energy spectrum obtained in GeR.

other scintillator counters were built and applied to reduce
background in the x-ray energy spectra.

B. Calibration

The usual experimental sequence involved collecting data
from a rhenium target for 4 h (four runs), with two hours
calibration runs with the lead target directly preceding and
following each group of four runs with rhenium. The main
purpose of these calibration runs was to verify that there had
been no substantial gain shift during the target runs which
might cause loss of energy resolution.

Line shifts due to electronic instability were checked using
a 60Co radioactive source and the 2614.5 keV γ ray in
the natural radioactive background. The source was placed
near the target and its γ rays appeared in the muonic x-ray
spectrum. In order to sum all individual calibration runs, each
run must be corrected for any relative gain shift and shift of
the base line. This was done by first locating the centroids of
the 1332.5 and 2614.5 keV γ rays appearing in all runs. By
comparing the centroids of the peaks from these runs with a
preselected run, one can determine the gain shift and the shift
of the zero offset. To ensure sufficient statistics the spectra
were evaluated every two runs. After correcting gain shifts,
the spectra of the different runs were summed. Typical gain
shifts were in the order of 0.03%. In the energy calibration
the well-established energies of the muonic x rays in 208Pb,
16O, and 12C were used. Muonic x rays from oxygen and
carbon were observed in the prompt energy spectra due to the
accidental hit of the muon beam on materials surrounding the
targets.

IV. RESULTS

By applying time conditions in the coincidence events
between the Ge detectors and the entrance muon counter,
it was possible to select prompt Ge events such as muonic
x rays, where the muon stop and the subsequent atomic
x rays are instantaneous within the time resolution of the
detectors, and nuclear γ rays resulting from the muon-capture
process which exhibits a characteristic lifetime of about 80 ns
at Z ≈ 75 [32]. Figure 3 shows a portion of the γ -ray
spectrum in the energy region of interest measured in the
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TABLE II. Set of parameters resulting from the simultaneous fit
of four γ -ray transitions (see text).

Fit parameter GeL GeR

aσ 0.00024(1) 0.00034(1)
bσ (keV) 0.918(7) 0.466(4)
β (keV) 2.2(2) 5.0(8)
fgauss 0.893(6) 0.93(1)
A (1/keV) 0.0137(7) 0.010(1)

Ge detector positioned at 90◦ (GeR) with the 185Re (top) and
208Pb (bottom) targets in prompt coincidence (400 ns) with the
entrance muon counter. In addition Ge detector events not in
coincidence with the entrance muon counter within 2 μs were
selected to produce room background γ -ray spectra, as shown
in Fig. 4. In Fig. 3 the transitions belonging to muonic 208Pb
and 185Re are indicated together with the muonic x rays of
35Cl, 27Al, 16O, 14N, and 12C. The assignment of γ lines was
based on previously known transitions [33,34]. Other strong
lines in Figs. 3 and 4 come from the decay of nuclei produced
in the muon capture reaction or from room background. One
of the strongest lines in the spectrum is the 511 keV γ ray,
originating mainly from the annihilation of the positrons
produced in the electromagnetic cascade of the high-energy
electron emitted in the muon decay.

Data for around 60 h were collected with muons on the
208Pb target, 38 h on the 185Re target, and 59 h on the 187Re
target.

A. Line shape

Since the hyperfine splitting is the result of the convo-
lution of many transitions, particular care has to be taken
in describing the experimental line shape of each transition.
The mathematical form of the line shape should represent the
response of the Ge detector plus a background term.

In this respect, the model used consists of a Gaus-
sian peak g(E ), a step-like shelf s(E ), and a HYPERMET

function t (E ) [35,36]. The latter is added to account for a
possible tail, which decays exponentially below the peak’s
centroid and is produced by incomplete charge collection and
ballistic deficits. The model function was fitted to the shape
of the peak by using ROOFIT [37]. ROOFIT implements its
data models in terms of probability density functions (PDFs),
which are by definition unit normalized. The model function
describing the number of counts in the peak at energy x0 may
be written as

f (E ) = Nsignal[ fgauss · g(E ) + ftail · t (E ) + s(E )] + B, (17)

where

g(E ) = 1√
2πσ

· exp

(
− (E − x0)2

2σ 2

)
,

t (E ) = 1

2β
· exp

(
E − x0

β
+ σ 2

2β2

)
· erfc

(
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2σ
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)
,

s(E ) = A

2
· erfc
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.
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FIG. 5. The 351.9 keV γ -ray line of 214Pb decay (natural back-
ground) observed in the spectrum of the GeR (a) detector and the
GeL (b) detector and the different components of the peak shape
model.

In these formulas x0 is the mean of the Gaussian, σ the
Gaussian width, and β the slope of the exponential tail.
fgauss denotes the fraction of the line shape having the Gaus-
sian form and ftail = (1 − fgauss) the fraction having the expo-
nential tail. The parameter A denotes the amplitude of the step
which is proportional to the number of events in the signal.
The parameter B is introduced to describe a constant back-
ground. This description was valid for most of the transitions
except for the few cases where a linear function provided a
better description.

The variables σ , x0, β, the number of events in the
signal Nsignal, fgauss, and the two amplitudes A and B are free
parameters of the model. Since the response of the germanium
detector is energy dependent, a consistent set of parameters
(σ , β, fgauss, A) describing the experimental line shape was
obtained by fitting four nuclear transition lines which lie close
in energy to the muonic transitions of interest. These are the
265.8 keV transition from muon capture in 208Pb observed in
the prompt spectrum with the 208Pb target and the 351.9 keV,
583.2 keV, and 609.3 keV transitions observed in the room
background. The natural line width of these lines is assumed
to be negligible compared to the experimental resolution. The
four transitions were fitted simultaneously with the Gaussian
width σ expressed as a linear function of the peak position
σ (E ) = aσ E + bσ [38]. The set of line-shape parameters
obtained with this procedure are reported in Table II. Figure 5
shows the 351.9 keV transition observed in the spectrum of
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TABLE III. Theoretical parameters describing the dependence upon the quadrupole moment Q (b) of the relative intensity I and energy
shifts �E (eV) of the individual members of the five hf complexes fitted in 185Re. For each transition the values of I0,1,2 and �E0,1,2 calculated
as described in Sec. II E are expressed relative to the most intense transition of each multiplet and reported, respectively, in subsequent rows.

5g9/2 → 4 f7/2 5g7/2 → 4 f5/2 5g7/2 → 4 f7/2 5 f7/2 → 4d5/2 5 f5/2 → 4d5/2

F f → Fi I0,1,2 �E0,1,2 I0,1,2 �E0,1,2 I0,1,2 �E0,1,2 I0,1,2 �E0,1,2 I0,1,2 �E0,1,2

7 → 6 100.0 0
0 0
0 0

6 → 6 8.045 −4.371 100.0 0
−0.115 −112.842 0 0
−0.011 0.435 0 0

6 → 5 78.602 8.166 100.0 0 10.899 12.537 100.0 0
0.383 374.540 0 0 1.664 487.383 0 0

−0.008 −3.999 0 0 0.722 −4.434 0 0
5 → 6 0.311 −8.601 10.234 −6.088

−0.002 −130.457 −0.401 −116.652
−0.000 0.008 −0.010 0.427

5 → 5 12.375 3.936 12.062 −6.088 68.235 6.449 12.106 −6.395 100.0 0
0.036 356.926 0.218 −116.652 −8.661 370.730 −0.307 −252.529 0 0

−0.012 −4.426 0.022 0.427 −0.117 −4.007 −0.041 2.357 0 0
5 → 4 60.644 20.395 72.591 15.161 15.636 22.909 72.304 −7.636 17.965 −1.242

0.214 385.392 0.360 397.303 −1.370 399.196 1.215 1142.401 3.914 1394.930
0.000 −0.001 0.036 −4.013 0.022 0.417 −0.106 −39.216 1.842 −41.573

4 → 5 0.669 0.596 0.730 −11.348 15.656 1.190 0.738 −14.947 16.736 −10.873
0.012 397.203 0.024 −124.867 −1.686 362.516 −0.002 −267.191 −1.155 −267.545

−0.001 −4.335 0.003 0.337 −0.009 −4.097 0. 0.007 −0.008 2.362
4 → 4 13.527 17.055 18.102 9.902 44.693 17.649 18.040 −16.188 56.816 −12.115

0.109 425.669 0.088 389.089 −3.994 390.982 0.343 1127.739 −16.181 1127.385
−0.001 0.089 0.008 −4.104 0.101 0.327 −0.106 −41.565 0.792 −39.210

4 → 3 45.818 28.096 50.423 29.026 16.754 28.690 50.338 47.507 24.306 51.581
0.007 210.027 0.397 339.460 −3.201 175.340 0.381 940.730 −5.451 940.376

−0.002 −1.336 0.021 −2.673 0.210 −1.098 −0.007 −2.997 0.382 −0.643
3 → 4 0.837 14.338 1.642 5.738 16.889 13.486 1.639 −21.887 24.769 −21.950

0.019 494.007 0.009 440.624 −1.220 442.517 0.086 1239.448 −5.071 1153.201
−0.000 0.244 0.001 −4.259 0.019 0.172 −0.016 −40.816 0.130 −39.964

3 → 3 11.900 25.378 19.212 24.862 28.837 24.526 19.267 41.809 25.862 41.746
0.104 278.364 −0.046 390.996 0.243 226.875 0.330 1052.440 −1.881 966.192

−0.001 −1.181 0.012 −2.828 −0.120 −1.253 −0.002 −2.248 −0.002 −1.396
3 → 2 33.944 33.736 33.003 39.126 14.555 32.884 32.976 70.357 24.558 70.294

−0.102 −23.693 0.257 86.228 −2.527 −75.182 −0.188 231.453 −7.174 145.205
−0.002 −2.376 0.013 −1.619 0.149 −2.448 −0.019 −21.133 0.644 −20.280

2 → 3 0.619 23.393 2.192 21.687 14.624 21.351 2.206 37.497 24.986 34.411
0.013 350.541 −0.022 463.687 0.005 299.566 0.097 1208.901 −1.687 1124.796

−0.000 −1.215 0.002 −2.794 −0.054 −1.219 −0.001 −1.619 −0.017 −2.037
2 → 2 7.725 31.751 16.477 35.951 19.289 29.709 16.510 66.045 8.988 62.959

0.050 48.484 −0.097 158.919 1.893 −2.491 0.170 387.914 3.084 303.809
−0.001 −2.410 0.009 −1.584 −0.166 −2.414 −0.009 −20.504 −0.278 −20.921

2 → 1 25.000 36.560 19.797 46.222 9.296 34.518 19.773 68.493 20.127 65.408
−0.105 −218.448 0.094 −172.923 −0.887 −269.423 −0.275 −470.144 −3.215 −554.249
−0.001 −1.502 0.009 −2.478 0.015 −1.505 −0.018 −23.433 0.079 −23.851

1 → 2 1.829 33.776 9.265 27.534 1.836 63.578 19.702 57.663
−0.027 223.648 0.637 62.238 0.056 526.161 2.589 476.520

0.001 −1.365 −0.066 −2.195 0.0 −20.982 −0.351 −20.455
1 → 1 10.989 44.047 16.650 32.343 10.995 66.027 1.602 60.112

−0.078 −108.194 1.955 −204.695 0.009 −331.897 1.509 −381.538
0.004 −2.259 −0.128 −1.286 −0.010 −23.911 0.043 −23.384

1 → 0 10.262 49.292 10.257 73.024 10.821 67.109
−0.008 −312.574 −0.157 −869.153 0.943 −918.794

0.005 −3.979 0. 1.644 −0.122 2.170
0 → 1 10.510 57.410

3.105 −275.170
−0.154 −22.478
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TABLE IV. Theoretical parameters describing the dependence upon the quadrupole moment Q (barn) of the relative intensity I and energy
shifts �E (eV) of the individual members of the five hf complexes fitted in 187Re. For each transition the values of I0,1,2 and �E0,1,2 calculated
as described in Section II E are expressed relative to the most intense transition of each multiplet and reported respectively in subsequent rows.

5g9/2 → 4 f7/2 5g7/2 → 4 f5/2 5g7/2 → 4 f7/2 5 f7/2 → 4d5/2 5 f5/2 → 4d5/2

F f → Fi I0,1,2 �E0,1,2 I0,1,2 �E0,1,2 I0,1,2 �E0,1,2 I0,1,2 �E0,1,2 I0,1,2 �E0,1,2

7 → 6 100.0
0 0
0 0

6 → 6 8.044 −5.617 100.0 0
−0.114 −111.702 0 0
−0.011 0.163 0 0

6 → 5 78.607 8.349 100.0 0 10.737 13.966 100.0 0
0.379 374.490 0 0 1.815 486.192 0 0

−0.007 −3.988 0 0 0.686 −4.151 0 0
5 → 6 0.311 −10.053 10.229 −7.368

−0.002 −129.157 −0.396 −115.497
−0.000 −0.301 −0.011 0.151

5 → 5 12.377 3.913 12.060 −7.368 68.172 6.598 12.110 −7.010 100.0 0
0.034 357.035 0.219 −115.497 −8.597 370.695 −0.311 −252.030 0 0

−0.012 −4.452 0.022 0.151 −0.132 −4.000 −0.041 2.239 0 0
5 → 4 60.644 20.099 72.585 15.375 15.622 22.784 72.335 −1.431 17.855 5.579

0.214 385.870 0.366 397.289 −1.356 399.531 1.186 1136.395 4.016 1388.425
0.000 −0.116 0.035 −4.011 0.019 0.337 −0.099 −37.895 1.818 −40.134

4 → 5 0.669 0.966 0.730 −12.772 15.645 1.194 0.738 −15.399 16.732 −11.561
0.012 396.905 0.024 −123.626 −1.674 362.566 −0.002 −266.904 −1.151 −267.018

−0.001 −4.265 0.003 0.041 −0.012 −4.110 0.00 −0.060 −0.009 2.238
4 → 4 13.528 17.153 18.100 9.970 44.663 17.380 18.062 −9.820 56.521 −5.982

0.108 425.741 0.090 389.160 −3.960 391.402 0.323 1121.521 −15.900 1121.406
−0.001 0.071 0.008 −4.122 0.092 0.226 −0.101 −40.194 0.726 −37.896

4 → 3 45.817 27.876 50.419 29.285 16.779 28.104 50.337 48.678 24.330 52.516
0.008 210.497 0.401 339.549 −3.222 176.158 0.381 939.615 −5.470 939.500

−0.002 −1.449 0.020 −2.695 0.215 −1.294 −0.007 −2.835 0.387 −0.537
3 → 4 0.837 15.137 1.642 6.278 16.880 13.688 1.642 −15.415 24.721 −15.924

0.019 493.385 0.009 440.205 −1.209 442.446 0.084 1233.082 −5.024 1147.222
−0.000 0.392 0.001 −4.161 0.017 0.188 −0.015 −39.410 0.119 −38.650

3 → 3 11.901 25.860 19.210 25.593 28.806 24.412 19.268 43.083 25.858 42.574
0.103 278.141 −0.045 390.593 0.276 227.203 0.329 1051.176 −1.875 965.316

−0.001 −1.129 0.012 −2.733 −0.128 −1.333 −0.002 −2.050 −0.004 −1.290
3 → 2 33.943 33.737 33.001 39.600 14.578 32.288 32.972 69.846 24.615 69.336

−0.101 −23.380 0.260 86.218 −2.547 −74.318 −0.184 232.325 −7.222 146.464
−0.002 −2.451 0.012 −1.616 0.154 −2.655 −0.020 −21.357 0.655 −20.597

2 → 3 0.619 24.606 2.192 23.133 14.616 21.952 2.206 38.935 24.982 35.315
0.013 349.601 −0.022 462.572 0.015 299.181 0.096 1207.441 −1.680 1123.770

−0.000 −0.993 0.002 −2.529 −0.056 −1.129 −0.001 −1.375 −0.019 −1.897
2 → 2 7.725 32.482 16.475 37.140 19.277 29.829 16.509 65.698 9.017 62.078

0.050 48.080 −0.096 158.196 1.909 −2.339 0.170 388.590 3.057 304.919
−0.001 −2.315 0.009 −1.412 −0.170 −2.451 −0.009 −20.681 −0.272 −21.203

2 → 1 24.999 36.969 19.796 46.935 9.305 34.316 19.772 68.716 20.090 65.097
−0.104 −218.487 0.095 −173.098 −0.894 −268.907 −0.274 −469.540 −3.176 −553.210
−0.001 −1.492 0.009 −2.436 0.016 −1.628 −0.019 −23.521 0.070 −24.043

1 → 2 1.829 35.625 9.264 28.313 1.836 63.322 19.709 56.966
−0.027 222.276 0.639 61.741 0.056 526.719 2.585 477.406

0.001 −1.039 −0.067 −2.077 0.0 −21.132 −0.350 −20.684
1 → 1 10.987 45.420 16.655 32.800 10.996 66.341 1.641 59.985

−0.077 −109.018 1.954 −204.827 0.009 −331.411 1.473 −380.724
0.004 −2.063 −0.127 −1.255 −0.010 −23.972 0.052 −23.523

1 → 0 10.261 50.343 10.257 73.031 10.826 66.675
−0.008 −313.047 −0.157 −868.097 0.940 −917.410

0.005 −3.865 0. 1.478 −0.122 1.926
0 → 1 10.558 57.409

3.062 −274.499
−0.144 −22.583
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TABLE V. Theoretical parameters describing the dependence upon the quadrupole moment Q (b) of the energy �E (eV) of the most intense
hyperfine transitions in each of the five hf complexes fitted in 185,187Re. For each transition the values of the parameters �E0,1,2, calculated
as described in Sec. II E, are reported, respectively, in subsequent rows. The relative intensities are taken from cascade calculations [40] with
initial statistical distribution at N = 20 and a width of the K-shell refilling process of 25 eV.

5g9/2 → 4 f7/2 5g7/2 → 4 f5/2 5g7/2 → 4 f7/2 5 f7/2 → 4d5/2 5 f5/2 → 4d5/2

7 → 6 6 → 5 6 → 6 6 → 5 5 → 5
I = 0.333 I = 0.257 I = 0.0095 I = 0.020 I = 0.001

185Re
�E0,1,2 �E0,1,2 �E0,1,2 �E0,1,2 �E0,1,2

360.214 364.663 358.280 364.417 361.141
−0.174 −0.160 −0.178 −0.440 −0.448
0.0 0.004 −0.000 −0.002 −0.004

187Re
�E0,1,2 �E0,1,2 �E0,1,2 �E0,1,2 �E0,1,2

360.215 364.663 358.280 364.412 361.136
−0.175 −0.160 −0.178 −0.439 −0.448
0.0 0.004 −0.000 −0.002 −0.004

the GeR and the GeL detectors together with the fit function
described in Eq. (17). Similar fits were obtained for the 265.8,
583.2, and 609.3 keV transitions.

It is important to note that by determining the line shape
from the set of data collected with beam on target, we ensure
the appropriate representation of the detector response in the
presence of beam. In previous analyses [7,39] the line shape
used to determine the position of the muonic x rays was
the same as the one used for the calibration source lines
collected in dedicated runs. With this procedure one relies
on the strong assumption that the detector response stayed
unchanged between the x-ray runs and the calibration runs.

The muonic x-ray peaks are broader than the calibration
source lines or background lines due to the natural width of
the muonic energy states. Since the intrinsic x-ray line shape
is Lorentzian, the muonic x rays were fitted using the experi-
mental line shape of Eq. (17) where the Gaussian component
is modified into a Gaussian-convoluted Lorentzian (resulting
in a Voigt profile) with calculated transition widths. The
typical natural line widths are ≈80 eV for the 5g9/2 → 4 f7/2,
5g7/2 → 4 f5/2, and 5g7/2 → 4 f7/2 transitions and ≈150 eV
for the 5 f7/2 → 4d5/2 and 5 f5/2 → 4d5/2 transitions.

B. The hyperfine splitting in 185,187Re

The analysis of the hyperfine splitting was performed in
higher muonic levels n = 5 and n = 4. The 5g9/2 → 4 f7/2 and
5g7/2 → 4 f5/2 hfs complexes appear as two bumps located at
around 360 keV (see Fig. 3) and they have been analyzed
together. The 5g and the 4 f levels of 185,187Re are sixfold
split as in this case I = 5/2 and l = 5, 4. Taking the selection
rules into account for transitions within both hf complexes,
the resulting x-ray pattern consists of 30 members.

In the analysis of the hfs spectrum the correction for the
presence of the weaker 5 f7/2 → 4d5/2, 5g7/2 → 4 f7/2, and
5 f5/2 → 4d5/2 multiplets has to be taken into account, as they
coincide in energy. The hfs spectra analysed consisted there-
fore of 76 lines originating from five multiplets which were
fitted using for each line the empirical line shape described

by Eq. (17) corrected for the radiative width. The background
constant B was common for all the lines.

The intensity and energy position of the individual mem-
bers of the hf multiplets relative to the most intense transition
for each multiplet were calculated using the formalism de-
scribed in Secs. II B and II E. The values are given in Tables III
and IV for 185Re and 187Re, respectively. The multiplets were
then correlated in energy to the F = 7 → 6 transition in
5g9/2 → 4 f7/2 using the values given in Table V.

It should be noted that the energy splittings of the hyperfine
transitions in the 5 f7/2 → 4d5/2 multiplet are around a factor
three larger than the values given in Ref. [7] whereas the
calculations for the other multiplets agree. The difference can
be due to a mistake in reporting the values. The intensity of the
three multiplets originating from the 5g state has been corre-
lated to the intensity of the most intense F = 7 → 6 hyperfine
transition in 5g9/2 → 4 f7/2 assuming the hypothesis that the
states within a l multiplet are statistically populated; similarly
the intensity of two multiplets originating from the 5 f has
been correlated to the intensity of the most intense F = 6 → 5
hyperfine transition in 5 f7/2 → 4d5/2. The relative intensity of
the lines within a l multiplet does not depend on the initial
distribution of the cascade and therefore they were kept fixed
in the fitting procedure. On the other hand, no assumption can
be made on the relative population of the 5g9/2 and 5 f7/2 states
as it depends on the details of the atomic cascade of muons
which are still rather uncertain, particularly as to the exact
beginning of the cascade.

Following this procedure, the description of the hfs could
be reduced to five parameters which are the energy of the F =
7 → 6 hyperfine transition in 5g9/2 → 4 f7/2, the quadrupole
moment, the two intensities of the 5g9/2 → 4 f7/2 and 5 f7/2 →
4d5/2 transitions and the number of background events. They
were used as free parameters and varied until the best fit
to the spectra was found. Figure 6 shows the theoretical
prediction of the hfs of the five multiplets considered in the
present analysis calculated for Q = 2.21 b. In the figure the
intensity ratio 5 f7/2 → 4d5/2 over 5g9/2 → 4 f7/2 is set equal
to 0.06 as obtained from a cascade calculation [40] with initial
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refilling process of 25 eV. Different initial conditions of the
cascade calculations give a range of values between 0.06 and
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FIG. 7. Prompt γ -ray spectrum of 185Re obtained by GeR (a) and
GeL (b) showing the 5g → 4 f hf complex. The full black line shows
the best fit to the data. The lines predicted by the hfs formalism are
shown below the spectra.

C
ou

nt
s 

[a
rb

. u
ni

ts
]

2000

3000

4000

5000

6000

7000

8000
(a)

model
background

7/2 4f→
9/2

5g

5/2 4f→
7/2

5g

7/2 4f→
7/2

5g

5/2 4d→7/25f

5/2 4d→5/25f

Energy [keV]
354 356 358 360 362 364 366 368 370

C
ou

nt
s 

[a
rb

. u
ni

ts
]

2000

3000

4000

5000

6000

7000

8000

(b)

FIG. 8. Prompt γ -ray spectrum of 187Re obtained by GeR (a) and
GeL (b) showing the 5g → 4 f hfs complex. The full black line shows
the best fit to the data. The individual lines of the hfs formalism are
shown below the spectra.

The measured 5g → 4 f spectrum of 185Re together with
the result of the fit is shown in Fig. 7 for the two Ge detectors
used. The fit for 187Re is shown in Fig. 8. Tables VI and VII
summarize the values of the fit parameters.

The isotopic impurity of the targets was included in the
fitting procedure by having the hfs spectrum described by
a double complex (one for each isotope) with one multiplet
slightly shifted with respect to the other. The value of the shift
is proportional to the ratio of the quadrupole moments of the
two isotopes which was taken from literature. In the case of
the 187Re, the fit parameters were not affected by the inclusion
of the small impurity of 185Re and it was therefore neglected
in the final fit.

In addition to the five parameters mentioned above to
describe the structure of the hfs, the step A of the line shape
was also left as free parameter. This because it was not
possible to reproduce the hfs with the value extracted from
the line shape analysis. This effect might be due to the very
different background between the delayed spectrum (where
the line shape analysis has been performed) and that of the
prompt spectrum.

Reasonably good fits were obtained with χ2 per degree of
freedom of 2.5 and 1.5 for GeR and GeL in 185Re and 1.8
and 1.1 in 187Re. The energy of the F = 7 → 6 hyperfine
transition in 5g9/2 → 4 f7/2 multiplet obtained from the fit
is 359.9(1) keV for GeL and 359.8(1) keV for GeR. These
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TABLE VI. Spectroscopic quadrupole moments Q, intensity RI of the 5 f7/2 → 4d5/2 transition relative to the 5g9/2 → 4 f7/2, step A and
centroid energy E7→6 obtained from the fit of the hfs of the 5g → 4 f transition in muonic 185Re. The influence on the extracted quadrupole
moment of weak transitions is analysed.

GeR GeL

Fit Q (barn) RI E7→6 (keV) A (1/keV) χ 2
red Q (b) RI E7→6 (keV) A (1/keV) χ 2

red

Fulla 2.11(2) 0.090(8) 359.8(1) �10−9 2.39 2.04(5) 0.139(7) 359.9(1) 0.0051(4) 1.51
no 5 f5/2 → 4d5/2 2.11(2) 0.090(8) 359.8(1) �10−9 2.34 2.06(4) 0.137(7) 359.9(1) 0.0051(4) 1.50
no 5g7/2 → 4 f7/2 2.18(3) 0.074(9) 359.7(1) 0.0009(6) 3.85 2.17(4) 0.122(7) 359.8(1) 0.0057(4) 2.28
no weak transitionsb 2.18(3) 0.076(9) 359.7(1) 0.0011(5) 3.80 2.19(4) 0.121(7) 359.8(1) 0.0058(4) 2.22
fix 5g/5 f populationc 2.03(2) 0.139 359.8(1) 0.0014(4) 2.85 2.12(4) 0.090 359.8(1) 0.0037(3) 2.06

aFull fit as described in Sec. IV B.
bThe 5 f5/2 → 4d5/2 and 5g7/2 → 4 f7/2 multiplets are removed from the fit.
cRelative intensity fixed to 0.14 for GeR and 0.09 for GeL.

values are the same for the two rhenium isotopes and show
that, with the procedure described in Sec. III B, a very good
energy calibration with precision at the level of 100 eV can be
achieved.

The intensities of the 5 f7/2 → 4d5/2 transition relative to
the 5g9/2 → 4 f7/2 obtained from the fits are higher compared
to the value of 6% obtained from the calculation of the muonic
cascade. Such discrepancies are not surprising given the ap-
proximation of the cascade calculations and were observed in
similar analyses [29,41]. Moreover, possible resonance effects
between nuclear and muonic states could modify significantly
the muonic cascade leading to anomalous intensity ratios.
Such resonance effects are more likely to occur in very
deformed nuclei due to the dense nuclear excitation spectrum.
On the other hand, in the same isotope, the relative intensities
deduced from the two detectors differs up to 50%. This
inconsistency in the fitted relative intensities has been taken
into account by adding a systematic error to the extracted
quadrupole moment (see Sec. IV C).

C. Quadrupole moments and uncertainty

The values of quadrupole moments with their statistical
errors are collected in the Tables VI and VII. To evaluate
possible systematic errors of different parameters, like the

line shape, the σ of the experimental line shape, and the
description of the background, their influence on the extracted
value of the quadrupole moments was studied separately in
a systematic way and is reported in Table VIII for the two
targets. The effects were checked for small variations of
the χ2 with respect to the values reported in the Tables VI
and VII.

The effect of variation in the modeling of the background
and the line shape turned out to be negligible with respect
to the value of the quadrupole moment. The sensitivity of
our results to the assumed background was examined by
comparing the hfs parameters obtained with our constant
background model with those using a linear or quadratic form
of the background.

The influence of the experimental line shape was investi-
gated by sampling the parameters describing the line shapes.
Out of 1000 sampled line shapes, around 300 could simulta-
neously fit the shape of the background lines with reasonable
values of χ2. Each of these line shapes was then used in the fit
of the hf complex and the distribution of the extracted values
of the quadrupole moments was fitted with a Gaussian. The
centroid of the quadrupole moment distribution showed no
variation with respect to the quadrupole moment given by the
best line shape and the sigma of the Gaussian distribution was
taken as uncertainty.

TABLE VII. Spectroscopic quadrupole moments Q, intensity RI of the 5 f7/2 → 4d5/2 transition relative to the 5g9/2 → 4 f7/2, step A and
centroid energy E7→6 obtained from the fit of the hfs of the 5g → 4 f transition in muonic 187Re. The influence on the extracted quadrupole
moment of weak transitions is analyzed.

GeR GeL

Fit Q (b) RI E7→6 (keV) A (1/keV) χ 2
red Q (b) RI E7→6 (keV) A (1/keV) χ 2

red

Fulla 1.97(2) 0.118(7) 359.8(1) � 10−11 1.72 1.93(5) 0.17(1) 359.9(1) 0.0043(6) 1.25
No 5 f5/2 → 4d5/2 1.98(2) 0.118(7) 359.8(1) � 10−10 1.62 1.96(4) 0.168(9) 359.9(1) 0.0044(5) 1.22
No 5g7/2 → 4 f7/2 2.04(3) 0.099(8) 359.7(1) 0.006(5) 3.07 2.05(5) 0.155(14) 359.8(1) 0.0050(6) 1.92
No weak transitionsb 2.05(2) 0.097(7) 359.7(1) 0.0001(3) 2.99 2.07(5) 0.154(9) 359.8(1) 0.0051(6) 1.86
Fix 5g/5 f populationc 1.90(2) 0.170 359.8(1) 0.0013(5) 2.22 1.99(8) 0.118 359.9(1) 0.0026(5) 1.62

aFull fit as described in Sec. IV B.
bThe 5 f5/2 → 4d5/2 and 5g7/2 → 4 f7/2 multiplets are removed from the fit.
cRelative intensity fixed to 0.17 for GeR and 0.12 for GeL.
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TABLE VIII. The variation of the extracted quadrupole moment
�Q in barn due to various systematics effects and its uncertainty is
analysed on the data of 185Re / 187Re. In the cells where only one
value is reported, the effect is the same for the two isotopes.

GeR GeL

Effect �Q (b) error (b) �Q (b) error (b)

Bkg model 0.0 0.01 0.0 0.01/0.03
Line shape 0.0 0.01 0.0 0.01/0.02
σ 0.0 0.02/0.03 0.0 0.07/0.06
RI −0.04/−0.03 0.04/0.03 0.03/0.03 0.03/0.03

Total −0.04/−0.03 0.05 0.03/0.03 0.08

In a similar way, the effect of the σ was checked by
sampling the values within its statistical uncertainty while
leaving fixed the other parameters of the line shape. Also
in this case the centroid of the distribution of the extracted
quadrupole moments showed no variation with respect to the
value of the best line shape but with a larger uncertainty.

Finally, most sensitive was the relative intensity of the
5g9/2 → 4 f7/2 versus 5 f7/2 → 4d5/2 transition. As described
in Sec. IV B the fits of the two detectors do not converge to the
same ratio. In Table VIII the variation of the quadrupole mo-
ment obtained when the ratio 5g9/2 → 4 f7/2 versus 5 f7/2 →
4d5/2 is fixed to the medium value of the two detectors is
reported. This variation has been added in the systematic
uncertainty.

The final quadrupole moments with their uncertainty are
185Q = 2.07 ± 0.02(stat) ± 0.05(syst),
187Q = 1.94 ± 0.02(stat) ± 0.05(syst)
and
185Q = 2.07 ± 0.05(stat) ± 0.08(syst),
187Q = 1.96 ± 0.05(stat) ± 0.08(syst)

for GeR and GeL, respectively. Given the larger uncertainty
in GeL, a combined analysis of the two detectors is clearly
not worthwhile. The ratio of the quadrupole moments was
not fixed in our fits and amounts to 2.07(5)/1.94(5) =
1.067(35) in very good agreement with the very precise value
of 1.056709(17) reported by Segel [42].

The extracted Q values are smaller compared to the values
of 185Q = 2.21(4) barn and 187Q = 2.09(4) b reported in
Ref. [7]. Two weak multiplets namely 5g7/2 → 4 f7/2 and
5 f5/2 → 4d5/2 have been introduced in the present analysis
which were not included in the previous work. Their effect
on the extracted quadrupole moment is reported in Tables VI
and VII. While the inclusion of the very weak 5 f5/2 → 4d5/2

does not modify the results of the quadrupole moment, the
5g7/2 → 4 f7/2 multiplet has stronger influence and it leads
to a lower value of quadrupole moment explaining the dis-
crepancy to the values reported in [7]. The addition of the
5g7/2 → 4 f7/2 multiplet in the fitting of the hfs was neces-
sary in order to properly reproduce the rising slope at low
energy of the experimental spectrum as can be inferred by
the significantly higher value of reduced χ2 obtained when
this transition is removed from the fit. This effect clearly
shows that the isotopically pure muonic x-ray spectra could

be sensitive to transitions of relative intensity of only a few
%. Since the fitted hfs spectrum is not reported in [7] neither
are the values of χ2, we cannot judge the quality of the fit and
consequently the sensitivity of that experimental spectrum to
weaker transitions.

V. CONCLUSIONS

The hfs of the 5g → 4 f x-ray transition in muonic
185,187Re has been investigated. The extracted values of the
quadrupole moments have been determined based on high-
quality isotopically pure muonic x-ray spectra of 185,187Re and
state-of-the-art theoretical calculations and fitting procedures.
The quadrupole moments Q = 2.07(5) b and Q = 1.94(5) b
are measured for 185,187Re, respectively. The disagreement
with values in literature extracted with the same procedure
has been understood from the higher sensitivity of the muonic
x-ray spectra of isotopically pure targets to weak hyperfine
transitions.

The measurement of the hyperfine splitting of muonic
x rays allows the extraction of the quadrupole moment of the
nucleus to a rather high precision compared to the hyperfine
splitting in electronic systems because they do not suffer from
the uncertainty in the calculation of a multielectron system for
the determination of the electric field gradient at the nucleus
and the polarization of the electron core. Nevertheless, we
have pointed out that particular care has to be taken in the
estimation of the systematic errors for what concerns the
description of the detector response and the relative intensity
of the muonic transitions.

This work is part of the muX project which currently
pursues at PSI the possibility to extend muonic atom spec-
troscopy to elements available in microgram quantities, with
a special emphasis on 226Ra.
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