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Uncertainty quantification of an empirical shell-model interaction
using principal component analysis
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Recent investigations have emphasized the importance of uncertainty quantification (UQ) in nuclear theory.
We carry out UQ for configuration-interaction shell-model calculations in the 1s-0d valence space, investigating
the sensitivity of observables to perturbations in the 66 parameters (matrix elements) of a high-quality empirical
interaction. The large parameter space makes computing the corresponding Hessian numerically costly, so we
compare a cost-effective approximation, using the Feynman-Hellmann theorem, to the full Hessian and find it
works well. Diagonalizing the Hessian yields the principal components of the interaction: linear combinations of
parameters ordered by sensitivity. This approximately decoupled distribution of parameters facilitates theoretical
uncertainty propagation onto structure observables: electromagnetic transitions, Gamow-Teller decays, and dark
matter-nucleus scattering matrix elements.
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I. INTRODUCTION

Recent advancements in nuclear theory have emphasized
the importance of theoretical uncertainty quantification (UQ)
[1] with applications to, among other things, the nuclear
force and effective field theory [2–7], the optical model
[8,9], density functional theory [10,11], and the configuration-
interaction shell model [12,13].

The shell model, which provides a useful conceptual
framework for nuclear structure, can be approximately di-
vided into ab initio and empirical/phenomenological ap-
proaches. Ab initio calculations, such as the no-core shell
model [14,15], typically use forces built upon chiral effective
field theory [16] and thus are arguably more fundamental
and also have been subject to considerable UQ [2–7] but are
limited to light nuclei, approximately mass number A < 16.
Empirical shell-model calculations [17–19] have a long, rich,
and successful history and, importantly, have been applied
to a wide range of nuclei far beyond the 0p shell, but the
theoretical underpinnings are more heuristic: Individual in-
teraction matrix elements in the laboratory frame (single-
particle coordinates) are adjusted to reproduce experimental
data.

(We will not consider here related but distinct methodolo-
gies such as coupled clusters [20], and we note but do not
comment further on efforts to construct interactions that “look
like” traditional empirical calculations but are derived with
significant rigor from ab initio forces [21].)

Previous work on UQ in the shell model focused on
0p-shell calculation: one considered a simple interaction
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with only seven parameters, examining correlations using a
singular-value-decomposition analysis [12]; while the other
used 17 parameters but did not consider correlations between
parameters [13].

Because of the broad applications and demonstrated util-
ity of the empirical shell model, we carry out a sensitivity
analysis on an widely used, “gold standard” empirical shell-
model interaction, Brown and Richter’s universal sd-shell
interaction, version B, or USDB [22]. Here, “sd-shell” means
the valence space is limited to 1s and 0d single-particle orbits,
with an inert 16O core.

In fitting their interaction, Brown and Richter followed
a standard procedure [17]. They minimized the total error
with respect to experiment, defined as the χ2-function in
Eq. (5) below, by taking the first derivatives with respect to
the parameters, which yield the linear response of calculated
energies to perturbations of the parameters, and then carried
out gradient descent on the independent parameters, here 63
two-body matrix elements and three single-particle energies.
In the fit they found that about five or six linear combinations
of parameters, found by singular value decomposition as we
do below, were the most important. (Interesting, a similar
result was found for random values of the matrix elements
[23]). Brown and Richter actually produced two interactions
[22], USDA, which was found by fitting the first 30 linear
combinations from singular value decomposition, and USDB,
found by fitting 56 linear combinations.

For a Bayesian sensitivity analysis, discussed more fully in
Appendix A, one must characterize the likelihood function for
model parameters. In Laplace’s approximation, one assumes
the likelihood is well approximated by a Gaussian, which
corresponds to a quadratic expansion in the χ2-function. Even
so, the matrix of second derivatives of χ2 (which, more
rigorously, is the log-likelihood), or the Hessian, needed is
quite demanding to obtain.
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We therefore consider a further simplification, approximat-
ing the Hessian by the same linear response (first deriva-
tives of the energies), which are efficiently computed by the
Feynman-Hellmann theorem [24,25]. As discussed below, this
principal component analysis of the sensitivity is, in this
approximation, singular value decomposition of the linear
response. Importantly, we find that numerical corrections to
the linear response matrix are small, making this approxi-
mation appealing for studying larger spaces wherein the full
numerical calculation is too costly.

II. THE EMPIRICAL CONFIGURATION-INTERACTION
SHELL MODEL

We formally represent the nuclear Hamiltonian in second
quantization, with r, s, t, u labeling single-particle states,

Ĥ =
∑

rs

Trsâ
†
r âs + 1

4

∑
rstu

Vrs,tuâ†
r â†

s âuât , (1)

where typically one takes Trs as diagonal single-particle ener-
gies, and the Vrs,tu are two-body matrix elements. As input to
nuclear configuration-interaction codes, the two-body matrix
elements are always coupled up to an angular momentum
scalar so that the many-body angular momentum J is a good
quantum number of eigenstates [17]. (To be specific, the two-
body matrix elements are VJT (ab, cd ) = 〈ab; JT |V̂ |cd; JT 〉,
where V̂ is the nuclear two-body interaction and |ab; JT 〉 is
a normalized two-body state with nucleons in single-particle
orbits labeled by a, b coupled up to total angular momentum J
and total isospin T .) In this paper, the single-particle energies
and the coupled two-body matrix elements are the input
parameters.

With the Hamiltonian Eq. (1) we want to find specific
eigenpairs,

Ĥ|ψα〉 = Eα|ψα〉, (2)

in this case low-lying states with experimentally known ener-
gies. This is done by the configuration-interaction (CI) many-
body method, which expands the wave function in a basis
{|a〉}, usually orthonormal,

|ψα〉 =
∑

a

cα,a|a〉. (3)

Here α labels the eigenstates and their observables, in par-
ticular the energy Eα . For the basis we use the occupation
representation of Slater determinants, that is, antisymmetrized
products of single-particle states. We furthermore use basis
states with fixed total Jz, also called an M-scheme basis. By
computing the matrix elements of the Hamiltonian in this
same basis, Ha,b = 〈a|Ĥ|b〉, the Schrödinger Eq. (2) is now
a matrix eigenvalue problem, which we solve by the standard
Lanczos algorithm [26] to extract the extremal eigenpairs of
interest. See Refs. [17–19] for a multitude of important and
interesting details and Refs. [27,28] for information on the
code used.

We assume a frozen 16O core and use the 1s-0d single-
particle valence space, also called the sd-shell. Assuming both
angular momentum J and isospin T are good quantum num-
bers, one has only three independent single-particle energies

and 63 independent two-body matrix element, for a total of 66
parameters. Because each of those parameters appears linearly
in the Hamiltonian, we can write

Ĥ =
∑

i

λiÔi, (4)

where Ôi is some dimensionless one- or two-body operator.
Thus, the parameters λ have dimensions of energy.

The set of parameters λ = {λi} we use are Brown and
Richter’s universal sd-shell interaction version B (USDB)
[22], which, along with its sister interaction USDA, are the
current “gold standards” for empirical sd-shell calculations.
The present study seeks to extend this model by computing
theoretical uncertainties on model parameters and shell-model
observables [29,30]. While the parameter vector λ is formally
considered a random variable, note that all calculations are
performed about the USDB values.

An important nuance in using the USDB parameters is
that while the single-particle energies are fixed, the two-body
matrix elements are scaled by (A0/A)0.3, where A is the
mass number of the nucleus, and A0 is a reference value,
here = 18. We account for this by modifying Eq. (4) as
Ĥ = ∑

i λi(A0/A)0.3Ôi (but only for the two-body matrix
elements), so that we implicitly varied the parameters fixed
at A = 18.

Experimental energies in this paper are the same used in
the original fit of the USDB Hamiltonian: absolute energies,
relative to the 16O core and with Coulomb differences sub-
tracted, of 608 states in 77 nuclei with A = 21–40. The data
excludes any experimental uncertainties greater than 200 keV,
and most are smaller, on the order of 10 keV.

In the rest of this paper, we estimate the uncertainty in the
USDB parameters and, from those, estimate uncertainties in
observables such as energies, probabilities for selected elec-
tromagnetic and weak transitions, and for a matrix element
relevant to dark matter direct detection.

III. SENSITIVITY ANALYSIS

Our analysis can be cast in terms most physicists are
familiar with, see, e.g., Refs. [1,31–33]. In the Appendix
we discuss the relationship to Bayesian analysis, giving a
more rigorous starting point and setting the stage for more
sophisticated analyses.

We begin with the χ2 function of parameters λ, which is
the usual sum of squared residuals over N data:

χ2(λ) =
N∑

α=1

(
ESM

α (λ) − E exp
α

�Eα

)2

. (5)

In addition, E exp
α is the experimental excitation energy given

in the data set and ESM
α (λ) is the shell-model calculation

for that energy using the parameters λ. The total uncertainty
�Eα on the residual is expressed as experimental uncertainty
�E exp

α and some a priori theoretical uncertainty �E th added
in quadrature:

�E2
α = (�E th)2 + (

�E exp
α

)2
(6)
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FIG. 1. Histogram of energy residuals Rα = [ESM
α (λUSDB) −

E exp
α ]/�Eα .

Here we introduce �E th as an estimated uncertainty on the
shell-model predictions of the data. We assume it is inde-
pendent of the level, that is, of α, and fix it by requiring the
reduced sum of squared residuals χ2

ν = 1
ν
χ2 ≈ 1 [32], which

gives us �E th ≈ 150 keV. Here ν is the number of degrees
of freedom: the number of data points minus the number of
parameters. In their original paper, Brown and Richter set σ th

(equivalent to our �E th) = 0.1 MeV as “close to the rms
value” they eventually found, 126 keV [22].

Before proceeding with the sensitivity analysis, it is impor-
tant to test the distribution of residuals Rα = [ESM

α (λUSDB) −
E exp

α ]/�Eα , shown in Fig. 1, since we will approximate it to be
normally distributed (equivalent to Laplace’s approximation
discussed in Appendix A). We employ two statistical tests

of normality: Kolmogorov-Smirnov [34] (KS-test) and tail-
sensitive [35,36] (TS-test); the former is a typical test of
overall normality, while the latter is more sensitive to features
in the tails of the distribution. Each test returns a p-value:
we adopt the traditional significance threshold of p > 0.05
as no significant evidence for deviations from the standard
normal distribution. This is sometimes colloquially referred as
agreement between the empirical and theoretical distributions.
To visualize these tests of normality, we show a rotated
quantile-quantile (Q-Q) plot of the residuals Rα in Fig. 2.
The residuals appear to have a nearly normal distribution, and
indeed the KS-test returns a p value of 0.15. This validates
our implementation of Laplace’s approximation. However, the
more sensitive TS-test returns a p value of 0.02, indicating
that the tails of the residual distribution contain sufficient
nonnormal features as to warrant a more detailed study in
future work.

Under the assumption the errors have a normal distribution,
χ2 is well-approximated by quadratic function in λ, and we
can compute the Hessian H , or the second derivative of χ2,
that is,

Hi j = 1

2

∂2

∂λi∂λ j
χ2. (7)

Note that we write the Hessian matrix as H , and the Hamilto-
nian operator as Ĥ. We can simplify this expression to put it
in terms of eigenenergies:

∂2χ2

∂λi∂λ j
=

N∑
α=1

2

(�Eα )2

[
∂ESM

α

∂λi

∂ESM
α

∂λ j
+ (

ESM
α − E expt

α

) ∂2ESM
α

∂λi∂λ j

]
, (8)

so that

Hi j =
N∑

α=1

1

(�Eα )2

∂ESM
α

∂λi

∂ESM
α

∂λ j
+

N∑
α=1

(
ESM

α − E expt
α

)
(�Eα )2

∂2ESM
α

∂λi∂λ j
. (9)

The first term in this expression dominates, so we define the
approximate Hessian A as follows:

Hi j ≈
N∑

α=1

1

(�Eα )2

∂ESM
α

∂λi

∂ESM
α

∂λ j
≡ Ai j . (10)

This approximation is good if the cross-derivative is small, for
example if the energies were exactly linear in the parameters,
or alternatively if the residual is small (meaning the model is
good). Furthermore, the calculation of ESM

α is made with the
optimized USDB parameters, therefore the term multiplying
the cross-derivative should on average be close to zero. The
second term contains the cross-derivative, and this is more
challenging to calculate, especially considering the size of the
parameter-space.

Note that the energy matrix element is nonlinear in λ

due to dependence in the wave function. If one were to
ignore this dependence, then we call this the linear model

approximation,

E = 〈ψ (λ)|Ĥ(λ)|ψ (λ)〉 ≈ 〈ψ |Ĥ(λ)|ψ〉 =
∑
i=1

λi〈ψ |Ôi|ψ〉.

(11)

Under the linear model approximation, any cross-derivative
term is zero and thus the “approximate” Hessian above would
be equal to the full Hessian: A = H .

To compute the derivatives of the energies, in Eq. (10), we
use the Feynman-Hellmann theorem,

∂ESM
α (λ)

∂λi
=

〈
ψα

∣∣∣∣∣dĤ
dλi

∣∣∣∣∣ψα

〉
= 〈ψα|Ôi|ψα〉, (12)

where the Hamiltonian Eq. (4) is linear in λi. (These first
derivatives are Jacobians [1].) Thus, for the first derivatives
in Eq. (10), we can simply evaluate expectation values of the
individual one- and two-body operators.

054308-3



FOX, JOHNSON, AND PEREZ PHYSICAL REVIEW C 101, 054308 (2020)

FIG. 2. Rotated quantile-quantile (Q-Q) plot of energy residuals
(ESM

α (λUSDB) − E exp
α )/�Eα with respect to standard normal distribu-

tion. The dashed and dotted lines in the Q-Q plot show the boundaries
of TS and KS-tests, respectively. Deviation from the horizontal
axis indicates nonnormal deviations in the data. The residual points
crossing the dashed purple line around Qnormal ≈ 1.5 corresponds to
the low p value returned by the TS-test. (A brief explanation of Q-Q
plots can be found in the Appendix.)

While the full numerical calculation of the Hessian is quite
costly, we can numerically compute the cross-derivative term
in Eq. (9) with a simple finite difference approximation of the
second derivative, so as to achieve a better approximation to
the exact Hessian,

∂2ESM
α

∂λi∂λ j
= 1

2ε

[
∂ESM

α (λ+
j )

∂λi
− ∂ESM

α (λ−
j )

∂λi

]
+ O(ε2). (13)

Here, ESM
α (λ±

j ) is the αth energy evaluated using USDB
parameters with the j-th value perturbed by ±ε. Inserting
into Eq. (9), we denote the resulting numerically corrected
approximate Hessian matrix as Anum,

[Anum]i j ≡ [A]i j +
N∑

α=1

(
ESM

α (λ) − E expt
α

)
(�Eα )2

1

2ε

×
[

∂ESM
α (λ+

j )

∂λi
− ∂ESM

α (λ−
j )

∂λi

]
. (14)

We tested their importance by evaluating with ε ≈ 0.1. The
the resulting eigenvalues of A and Anum, shown in Table I, are
very similar, indicating that while the numerical corrections
terms are individually nonzero, the total contributions average
to very small contributions.

Thus, A is in fact a very good approximation to the full
Hessian matrix and, in what follows, we find that propagation
of uncertainties onto observables are almost independent of
the numerical correction. This also implies that the linear
model approximation [Eq. (11)] is a good approximation.

PCA transformation

The Hessian, whether exact (H) or approximate (A), allows
us to determine the uncertainty in parameters, discussed in
more detail in Sec. IV, and in particular the uncorrelated
uncertainties. Transforming the Hessian UHU T = D, where

TABLE I. Statistics of linear-combinations of USDB matrix
elements, or principle component analysis (PCA) parameters. The
eigenvalues of the approximate Hessian matrix A we denote as [�]ii,
which is the sensitivity of the ith PCA parameter, and σi is the
corresponding uncertainty. Thus, the most sensitive PCA parameter
is constrained to within 290 eV. Likewise, the eigenvalues of the
numerically corrected approximate Hessian matrix Anum we denote
as [�num]ii, and [σnum]i is the corresponding uncertainty. Note that
for the most sensitive PCA parameters, the numerical correction
effectively leaves the standard deviations unchanged.

[�]ii σi [�num]ii [σnum]i

i (MeV−2) (keV) (MeV−2) (keV)

1 11 785 000 0.29 11 785 500 0.29
2 393 000 1.6 393 600 1.6
3 79 100 3.5 78 810 3.5
4 71 200 3.7 70 800 3.7
5 22 200 6.7 22 220 6.7
6 6357 13 6357 13
7 5200 14 5175 14
8 3600 17 3590 17
9 3270 17 3261 17
10 3050 18 3035 18
... ... ... ... ...
64 10.6 307 <1 >1000
65 7.71 360 <0.1 >3000
66 3.16 562 <0.1 >3000

D is diagonal, or its approximation,

WAW T = �, (15)

where � ≈ D is also diagonal, provides a transformation
from the original parameters λ to new linear combinations of
parameters,

μ = W λ. (16)

This is simply principal component analysis (PCA) of the
Hessian, and so we call μ the PCA parameters. In terms of
our approximate Hessian, we can also understand this as a
singular value decomposition (SVD) of the linear response
Jαi = ∂Eα/∂λi. More formally, we approximate H ≈ A =
JT �−2J , where � is the diagonal matrix of uncertainties on
energies, �αβ = δαβ�Eα; but, as is nearly true, �Eα ≈ �E th

and hence A ≈ (�E th)−2JT J; then it should be clear that the
eigenvalues of A are proportional to the SVD eigenvalues of
J . Thus, the eigenvalues found in �, presented in Table I and
plotted in Fig. 3, allow us to determine the most important
linear combinations of parameters to the fit.

IV. EVALUATING UNCERTAINTIES

The parameter covariance matrix is simply the inverse of
the Hessian matrix, which we have approximated as

C(λ) = H−1 ≈ A−1 = W T �−1W. (17)

The naive variance of the original parameters λ is given by
the diagonals of the covariance matrix, so that σ (λi ) = √

Cii.
This, however, ignores correlations between parameters and
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FIG. 3. Ordered eigenvalues of the approximate Hessian A,
which equal the diagonal elements of �. The eigenvalues are inter-
preted as the sensitivity of the corresponding linear combination or
principal components of matrix elements (PCA-parameter). The first
PCA-parameter carries 95% of the total sensitivity, and the first 5
PCA-parameters carry 99.6% of the sensitivity.

thus is an incomplete description of parameter uncertainties. A
better approach is to compute variances from the diagonalized
Hessian matrix, and thus obtaining uncorrelated uncertainties
on the PCA parameters, σ (μ) = 1/

√
�ii. These we give in

Table I and plot in Fig. 3. Here one sees the first few PCA
parameters have very large sensitivity, and indeed the first
10 carry over 99.8% of the total; it is well-known lore in
the nuclear shell-model community the fit of USDB and
similar empirical interactions are dominated by only a few
linear combinations, which here define the PCA parameters.
Table I, in fact, demonstrates these parameters must be known
to within a few keV or better; on the other hand 23 PCA
parameters have uncertainties of 100–500 keV. At this point,
it is important to remember that these variablities are with
respect to experimental data that only includes energies, so
these low-variability PCA parameters could in principle be
tuned to fit the interaction to various other observables without
disrupting the fit to energies.

If the uncertainties in the principal components μ are
independent, then the propagation of uncertainties is straight-
forward. For any observable X ,

σ 2(X ) =
∑

i

(
∂X

∂μi

)2

σ 2(μi ). (18)

Using Eq. (16),

∂X

∂μi
=

∑
j

Wi j
∂X

∂λ j
(19)

and so

σ 2(X ) =
∑

i

σ 2(μi )
∑

jk

∂X

∂λ j
Wi j

∂X

∂λk
Wik = gT Cg, (20)

where gi = ∂X/∂λi is the linear response of any observable
to perturbations in the original parameters. This is particularly
useful in the case of energies, where we already have the linear

TABLE II. States in experimental energy data, shown in order of
descending uncertainty σ (high-variability on top, low-variability on
bottom).

E exp − ESM σ

Nucleus Jπ
n T (keV) (keV)

30Si 1+
1 1 −114 851

39K 1/2+
1 1/2 −189 785

25F 5/2+
1 7/2 −312.1 743

38K 1+
1 0 −355.9 686

27Al 11/2+
1 1/2 −52.9 615

... ... ... ... ...
24Mg 6+

1 0 156.1 156
20Ne 6+

1 0 −223.2 154
23Na 11/2+

1 1/2 −15.3 153
28Mg 2+

1 2 19.3 153
17O 5/2+

1 1/2 218.3 142

response, thanks to the Feynman-Hellmann theorem. For a
discussion of some of the subtleties, see Appendix B.

For other observables, we do not use Eq. (20) directly.
Instead, we generate perturbations in USDB by generating
perturbations in the PCA parameters δμ with a Gaussian
distribution with width σ (μi ) given by Table I. Because
the uncertainties are independent, or nearly so, in the PCA
parameter representation, it is safe to generate the perturba-
tions independently. We then transform back to the original
representation of the matrix elements and read into a shell-
model code [27,28], find eigenpairs, and evaluate the reduced
transition matrix element for one-body transition operators.
We sampled at least 1000 sets of parameters, which gives
sufficient convergence of the resulting set of matrix elements:
assuming the transition strengths Bi are normally distributed
with respect to small perturbations in the Hamiltonian, we
take the theoretical uncertainty σ (Bi ) as equal to the stan-
dard deviation of the set of samples. Previous works have
demonstrated convergence with similar approaches and an
even smaller number of samples. In Ref. [37] the statistical un-
certainty in the binding energy of 3H was quantified using 250
samples of an interaction with about 40 parameters, resulting
in σ (B) = 15 keV. The same result was later reproduced in
Ref. [38] using only 33 samples.

Results

For the energies used in the fit, we already have the
elements of �g saved from computing the approximate Hessian,
so this calculation is cheap. We can thus estimate covariance
in the computed energies CE by expanding this expression to
a matrix equation,

CE = JCλJT . (21)

Results for some of these estimated uncertainties are given
in Table II. Using these estimates, 75% of shell-model ener-
gies are within 1σ of experiment, and 96% are within 3σ ;
these are close to the standard normal quantiles of 68% and
99%, respectively, so we conclude that these theoretical uncer-
tainties are sensible. Akin to the original sensitivity analysis of
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FIG. 4. Estimated 1σ uncertainties of ground-state fit energies in
units of keV.

fit energies [22], Fig. 4 shows theoretical 1σ uncertainties on
ground-state binding energies. We refer the reader to Ref. [22]
for comparison to uncertainty plots, in particular, Fig. 10 of
that paper. While this description of uncertainties on the fitted
energies may be useful, we also note that they are in a sense
tautological: the energy covariance CE is related to the energy
uncertainties in Eq. (6) by a coordinate transformation. An
algebraic explanation is given in Appendix B.

We also computed the uncertainties in selected transitions.
The uncertainty bands presented in all transition strength cal-
culations correspond to the 16th–84th percentiles; for normal

distributions this is precisely the 1σ uncertainty band, but
we find many computed transition strengths have asymmetric
distributions (especially those with small B values). This,
along with reporting median rather than mean, gives a more
accurate description of uncertainty.

Following Ref. [30], we compute reduced transition
strengths B(E2) for several low-lying transitions in 26Mg and
26Al, shown in Fig. 5 and 6, respectively. The one-body
electric quadrupole operator matrix elements were computed
assuming harmonic oscillator radial wave functions with os-
cillator length b = 1.802 [18] and effective charges ep = 1.36,
en = 0.45, which were obtained by a least-squares fit [29].
While some values are close to experiment, others differ
significantly. The B(E2) values are quadratically dependent
upon both the oscillator length and the effective charges, and
can be quite sensitive to small changes in the interaction
matrix elements [30].

For 26Mg, in Fig. 5, the median values and uncer-
tainty intervals for our selected transitions are 2+

1 → 0+
1 :

63.7+0.78
−0.83, 2+

2 → 0+
1 : 3.46+0.55

−0.52, 0+
2 → 2+

1 : 1.15+0.33
−0.29, and

2+
4 → 0+

1 : 0.96+0.18
−0.18, all in units of e2fm4, while for 26Al,

in Fig. 6 the median values and uncertainty intervals for
our selected transitions are 3+

1 → 5+
1 : 52.04+0.99

−1.0 , 1+
2 →

3+
1 : 54.47+4.19

−4.92, 2+
2 → 0+

1 : 56.63+1.26
−1.16, 1+

3 → 3+
1 : 0.53+2.53

−0.49,
3+

2 → 5+
1 : 0.017+0.041

−0.015, and 3+
3 → 1+

1 : 11.38+2.82
−2.53.

Magnetic dipole reduced transition strengths B(M1) distri-
butions for 18F and 26Al are shown in Figs. 7 and 8, respec-
tively. We used bare gyromagnetic factors, with no corrections
for exchange currents. Like the B(E2) values, some of the
transitions are close to experiment, while the 0+

1 → 1+
1 in 18F

is quite far away. For 18F, in Fig. 7, the median values and
uncertainty intervals for our selected transitions are 0+

1 → 1+
1

: 17.13+0.19
−0.21, 1+

2 → 0+
1 : 0.31+0.076

−0.068, and 3+
2 → 2+

1 : 0.57+0.087
−0.077,

FIG. 5. Distributions of the electric quadrupole (E2) transition strengths for 26Mg. Black dashed line shows experimental value [39]. The
the median values and uncertainty interval are highlighted in white: (a) 2+

1 → 0+
1 : 63.7+0.78

−0.83, (b) 2+
2 → 0+

1 : 3.46+0.55
−0.52, (c) 0+

2 → 2+
1 : 1.15+0.33

−0.29,
(d) 2+

4 → 0+
1 : 0.96+0.18

−0.18, all in units of e2fm4.
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FIG. 6. Distributions of the electric quadrupole (E2) transition strengths for 26Al. Black dashed line shows experimental value [39]. The
median values and uncertainty intervals are highlighted in white: (a) 3+

1 → 5+
1 : 52.04+0.99

−1.0 , (b) 1+
2 → 3+

1 : 54.47+4.19
−4.92, (c) 2+

2 → 0+
1 : 56.63+1.26

−1.16,
(d) 1+

3 → 3+
1 : 0.53+2.53

−0.49, (e) 3+
2 → 5+

1 : 0.017+0.041
−0.015, and (f) 3+

3 → 1+
1 : 11.38+2.82

−2.53, all in units of e2fm4.

FIG. 7. Distributions of the magnetic dipole transition strengths for 18F. Black dashed line shows experimental value [40]. The uncertainty
interval is highlighted in white: (a) 0+

1 → 1+
1 : 17.13+0.19

−0.21, (b) 1+
2 → 0+

1 : 0.31+0.076
−0.068, and (c) 3+

2 → 2+
1 : 0.57+0.087

−0.077, all in units μ2
N .
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FIG. 8. Distributions of the magnetic dipole transition strengths for 26Al. Black dashed line shows experimental value [39]. The uncertainty
interval is highlighted in white: (a) 1+

1 → 0+
1 : 2.89+0.15

−0.17, (b) 1+
2 → 0+

1 : 0.55+0.18
−0.16, (c) 1+

3 → 0+
1 : 0.096+0.10

−0.07, (d) 1+
4 → 0+

1 : 0.17+0.12
−0.09, and (e)

2+
5 → 1+

1 : 0.095+0.022
−0.021, all in units μ2

N .

all in units μ2
N , where μN is the nuclear magneton, while for

26Al, in Fig. 8 the median values and uncertainty intervals for
our selected transitions are 1+

1 → 0+
1 : 2.89+0.15

−0.17, 1+
2 → 0+

1 :
0.55+0.18

−0.16, 1+
3 → 0+

1 : 0.096+0.10
−0.07, 1+

4 → 0+
1 : 0.17+0.12

−0.09, and
2+

5 → 1+
1 : 0.095+0.022

−0.021.
We show Gamow-Teller matrix elements for β− decays

in 26Ne and 32Si in Figs. 9 and 10, respectively. We have
used for the axial-vector coupling constant gA/gV = −1.251,
following Ref. [29], and a quenching factor of 0.76 for USDB.
For 26Ne, in Fig. 9, the median values and uncertainty inter-
vals for our selected transitions are 0+

1 → 1+
1 : 0.726+0.038

−0.037,
0+

1 → 1+
2 : 0.267+0.029

−0.030,and 0+
1 → 1+

3 : 0.22+0.034
−0.037, all unitless.

The ground-state decay of 32Si has a small experimental
transition strength, so our sensitivity analysis does not provide
a normal distribution for B(GT). Using USDB, our median
value and uncertainties are 0.00597+0.0071

−0.0045, but this is quite
different than the experimental value is of 0.000038 [41]. This
particular transition is very sensitive to the parameters: for the
1985 universal sd-shell interaction (USD) interaction [42] we
get a value for B(GT) = 0.00005, and if one uses the 2006
universal sd-shell interaction version A (USDA), which is a
less constrained version of USDB [22], the B(GT) is 0.038.

(Motivated by the non-Gaussian distribution in Fig. 10,
we increased the number of samples from 1000 to 4000. The
results were nearly indistinguishable, with new median value
and uncertainties of 0.00624+0.0077

−0.0047.)
One of the biggest questions in physics today is the nature

of nonbaryonic dark matter [43]. While there are a number
of ongoing and planned experiments [44], interpreting ex-
periments, including limits, requires good knowledge of the
dark matter-nucleus scattering cross-section, including uncer-
tainties. While historically it was assumed dark matter would
couple either to the nucleon density or spin density, more
recent work based upon effective field theory showed there
should be a large number of low-energy couplings, around 15
[45]. This enlarged landscape of couplings, and the increased
need for good theory, is a strong motivation for the current
work.

To illustrate the application of UQ to nuclear matrix ele-
ments for dark matter scattering, Fig. 11 shows the uncertainty
of an �l · �s coupling for 36Ar. 36Ar is a small component (0.3%)
of argon dark matter detectors, e.g., Ref. [46], but it is within
the scope of the current work to compute. Of the EFT oper-
ators that do not vanish for a Jπ = 0+ ground state, most of
them depend upon radial wave functions that do not play a role
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FIG. 9. Distributions of the Gamow-Teller (GT) transition strengths for β−-decay of 26Ne to 26Na. Black dashed line shows experimental
value [39]. The uncertainty interval is highlighted in white: (a) 0+

1 → 1+
1 : 0.726+0.038

−0.037, (b) 0+
1 → 1+

2 : 0.267+0.029
−0.030, and (c) 0+

1 → 1+
3 : 0.22+0.034

−0.037.

in fitting the USDB parameters; nontrivial operators, however,
include �l · �s, which arises in the long-wavelength (momentum
transfer q → 0) limit of the nuclear matrix elements of the
operators O3,12,15 [45]

O3 = i�SN ·
( �q

mN
× �v⊥

)
,

O12 = �Sχ · (�SN × �v⊥),

O15 = −
(

�Sχ · �q
mN

)(
(�SN × �v⊥) · �q

mN

)
,

where mN is the nucleon mass, �q is the momentum transfer,
�SN/χ are the spins of the nucleon/WIMP, and �v⊥ is the com-
ponent of the nucleon-WIMP relative velocity perpendicular
to �q. We chose to study 〈�l · �s〉 for the simple reason of best
illustrating a variance due to uncertainty in the USDB parame-
ters. The variance of this particular operator is relatively small,
but in larger model spaces there could be greater uncertainty.

Knowledge of the variance of the operator is important for
interpreting experiments, such as placing upper limits on dark
matter-nucleon couplings.

V. CONCLUSIONS

We have carried out uncertainty quantification of a “gold-
standard” empirical interaction for nuclear configuration-
interaction calculations in the sd-shell valence. Rather than
finding the uncertainty in each parameter independently [13],
we computed the linear sensitivity of the energies, which
is easy to compute using the Feynman-Hellmann theorem,
and then constructed an approximate Hessian which we
then diagonalized. This is equivalent to a singular-value
decomposition of the linear sensitivity and is also known as
principle component analysis. We found evidence this is a
good approximation to the full Hessian. From the inverse of
the diagonal (in a basis of the PCA linear combination of
parameters) approximate Hessian, we obtained approximately

FIG. 10. Distribution of the Gamow-Teller (GT) transition strength for β− decay of 32Si to 32P (0+
1 → 1+

1 ). The left plot is a linear scale
in B(GT) and the right is log-scale. Black dashed line shows experimental value of 0.000038 [41]. The uncertainty interval is highlighted in
white: 0.00597+0.0071

−0.0045.
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FIG. 11. Distribution of 〈l · s〉 in the ground-state of 36Ar. The
1σ interval is highlighted in white: 4.143 ± 0.074.

independent uncertainties in the PCA parameters. Then,
starting from those uncertainties, we generated uncertainties
for energies as well as several observables. The distribution
of residuals in energies implies statistical agreement, as well
as an underlying systematic uncertainty in the shell model
of 150 keV. For electromagnetic and weak transitions, which
we note are sensitive to effective parameters such as effective
charges and assumed oscillator length parameters, our
residuals relative to experiment included both good agreement
as well as residuals with statistically significant deviations.
We also presented as a test case a dark matter-nucleus
interaction matrix element and our derived uncertainty.

In the Supplemental Material [47], we provide the list
of energies, courtesy of B. A. Brown, to which USDB was
fit, and the eigenvalues and eigenvectors of our principal
component analysis.

In future work, in addition to further and more systematic
study of observables, we will carry out a more detailed and
thorough study of parameter covariances, as well as applying
our methods to other empirical interactions in other model
spaces. This will entail, following Appendix A, evaluating the
posterior without Laplace’s approximation, and instead using
Markov-chain Monte Carlo sampling. We are investigating the
use of eigenvector continuation [48–50] to explore parameter
space efficiently. For the time being, however, it seems that
this approximate Hessian is a good approximation. This is
not surprising, but it is useful. Nonetheless, moving to larger
spaces, which grow exponentially in dimensions and compute
time, will be challenging. New technologies still in develop-
ment, such as quantum computing may make possible better
and more rigorous uncertainty quantification.
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APPENDIX A: THE BAYESIAN CONTEXT

Our development above is cast in terms of standard sen-
sitivity analysis. To connect with more sophisticated UQ
analyses, and to set the stage for future work, we provide a
broader, Bayesian context.

To define uncertainty on the USDB parameters, we start
with Bayes’ theorem. Let D represent data and λ the parame-
ters, then

P(λ|D) = P(D|λ)P(λ)

P(D)
∝ P(D|λ)P(λ). (A1)

Bayes’ theorem states that the distribution of model param-
eters given the experimental data [the posterior = P(λ|D)]
is proportional to the distribution of data [the likelihood =
P(D|λ)] given the parameter set, multiplied by the a priori
distribution of parameters [the prior = P(λ)]. Bayesian anal-
ysis [51] demands that we put some thought into the choice
of prior, and the typical choice here is a noninformative prior,
which seeks to minimize the effects of prior knowledge on
the posterior distribution. In this case a noninformative prior
can simply be uniform and very broad in the limiting case,
P(λ) = constant everywhere. This assigns equal probability
to all parameter values (the principle of indifference [51]).
Although one could also justify using an informative prior,
the flat prior it is a sensible first approximation for the scope
of this analysis.

With the prior set to constant, Bayes’ theorem reduces to

P(λ|D) ∝ P(D|λ). (A2)

The goal now is to evaluate this expression, and we can
choose between two methods: Laplace’s Approximation (LA)
or Markov chain Monte Carlo (MCMC). Due to its simplicity,
we choose LA, as did a prior shell-model study [13]. While
MCMC advantageously makes no assumption as to the form
of P(λ|D), it typically converges slowly for posteriors which
are steep around extrema, so the computational cost of LA is
comparatively much less.

Laplace’s approximation is a second-order Taylor approx-
imation in the log-likelihood, and thus we assume normally
distributed errors on energies. Our likelihood function takes
the form

P(D|λ) = exp
[− 1

2χ2(λ)
]
, (A3)

where χ2 is the usual sum of squared residuals:

χ2(λ) =
N∑

α=1

(
ESM

α (λ) − E exp
α

�Eα

)2

. (A4)

E exp
α is the experimental excitation energy given in the data

set and ESM
α (λ) is the shell-model prediction for that energy

using the parameters λ, with total uncertainty on the residual
�Eα [see discussion in Sec. III and in particular Eq. (6)].

By Eq. (A3), there exists a global maximum of this like-
lihood function, called the maximum likelihood estimator
(MLE). The optimal point for the posterior is called the
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“maximum a posteriori” (MAP), and here we see that λMAP =
λMLE, but of course this is only in the special case of uniform
prior. In this work, the MAP is equal to the USDB parameters:

λMAP = argmax P(λ|D) = argmaxP(D|λ)P(λ)
λ λ

= argminλχ
2(λ) = λUSDB. (A5)

λ

The virtue of LA is we can immediately write down a properly
normalized Gaussian approximation of the posterior:

P(λ|D) ≈ |H |1/2

(2π )k/2
exp

[
−1

2
(λ − λMAP)T H (λ − λMAP)

]
,

(A6)

where k is the dimension of the parameter space, and H
denotes the Hessian of the log-posterior (for brevity we refer
to this as “the Hessian”). The Hessian is defined as minus the
second-derivative (in λ) of the log-likelihood about the MAP:

H = −∇∇ log P(λ|D)|λ=λMAP . (A7)

Because of Eq. (A2), we can introduce an arbitrary con-
stant c, so P(λ|D) = cP(D|λ):

H = −∇∇ log P(λ|D) = −∇∇ log cP(D|λ)

= 0 − ∇∇ log P(D|λ) = +1

2
∇∇χ2(λ), (A8)

so the elements of H become

Hi j = 1

2

∂2χ2(λ)

∂λi∂λ j
. (A9)

Under these assumptions, we proceed as described in the
main text.

APPENDIX B: COMPUTED COVARIANCE OF
FITTED ENERGIES

Here we show that computing the covariance matrix of
fit energies CE by Eq. (21) is simply related to a similarity
transform of the original uncertainties on fit energies given
by Eq. (6): �αα = �Eα . The response of the energies to
changes in the parameters is an Nd × Np Jacobian matrix,
Jαi = ∂Eα/∂λi, where Nd is the number of data points and Np

is the number of parameters. The approximate Hessian is

A = JT �−2J, (B1)

and the parameter covariance is

Cλ = A−1 = (JT �−2J )−1. (B2)

Since J is not square, we cannot evaluate this expression in
terms of matrix inversion and instead use the pseudoinverse
obtained by SVD decomposition. We get the factorization
J = USV T where U is a Nd × Nd unitary matrix, S is a
Nd × Np matrix with the only nonzero elements being Np

singular values along the diagonal, and V is a Np × Np unitary
matrix. We use this to define a new matrix J+ which is the
pseudoinverse of J:

J+ = V S+U T . (B3)

Here, S+ is the pseudoiverse of S, which has the same shape
as ST and the only nonzero elements are such that S+

j j = 1/S j j

for j = 1, 2, ..., Np.
Plugging this into the expression for Cλ we have

Cλ = J+�2[JT ]+ = (V S+U T )�2(US+V T ). (B4)

In turn we insert this into our expression for CE :

CE = (USV T )(V S+U T )�2(US+V T )(V SU T ). (B5)

By the orthogonality of U and V we have U T U = Id and
U T U = Ip, identity matrices in the data-space and parameter-
space, respectively, so that

CE = USIpS+U T �2US+IpSU T . (B6)

To simplify further, we need to pay attention to the rank-
deficient property of S. Define SIpS+ = Pp

d to be a Nd × Nd

square matrix with Np 1’s on the diagonal, starting from the
top, and all zeros otherwise. (This is projection operator from
the data-space into the parameter-space, hence this notation.)
Then

CE = UPp
d U T �2UPp

d U T . (B7)

Now, notice that since �2 is diagonal, we have U T �2U = �2.
The matrix Pp

d is of course idempotent so Pp
d Pp

d = Pp
d , and we

get

CE = U�2Pp
d U T (B8)

or

U T CEU = �2Pp
d . (B9)

Thus, the computed covariance on the energies CE is equiv-
alent to a similarity transform of the input uncertainties �2,
albeit with rank = Np.

APPENDIX C: THE ROTATED QUANTILE-QUANTILE
PLOT

The quantile-quantile (Q-Q) plot [52] is a useful tool for
visualizing how well the distribution of a data set matches
that of a random variate from a known probability distribution.
Our rotated Q-Q plot in Fig. 2 shows the comparison of energy
residuals to a standard normal distribution. The following
gives a brief explanation.

A typical Q-Q plot graphs N measured data points {xdata
i },

sorted from lowest to highest, against N uniformly distributed
evaluations {xeval

i } of the quantile function (sometimes called a
percent-point function) of the distribution we wish to compare
to. For a random variable X with cumulative distribution func-
tion (CDF) FX (x) ≡ Pr(X � x), the quantile function QX (p)
returns the value of x such that FX (x) = p; in other words,
it is the inverse function of the CDF. For instance if the set
of data points follows a normal distribution, that is, {xeval

i } =
{xnormal

i } then the points (xdata
i , xnormal

i ) for i = 1, 2, . . . , N will
fall on a straight line with slope of 1. If the data does not
follow a normal distribution, then the points will deviate
from a straight line, displaying how nonnormal the data is.
Our Q-Q plot in Fig. 2 in this paper has been “rotated” by
plotting instead (xdata

i − xnormal
i , xnormal

i ), where xdata are the
energy residuals, so that a normal distribution would lie on the
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horizontal axis at zero. This allows for an easier identification
of discrepancies between empirical and theoretical quantiles
via visual inspection.

Many statistical tests exist for determining normality of
data, and often these can be represented as a curve on the

Q-Q plot. The Kolmogorov-Smirnov and tail-sensitive tests
used in this work correspond to curves shown in Fig. 2;
evidence of possible nonnormality of the data is indicated
by the plotted quantile-quantile points crossing over these
curves.
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