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Background: The semimicroscopic algebraic quartet model (SAQM) generates the excitation spectra of shell-
like quartets, formed by two protons and two neutrons in a well-defined shell configuration. It is based on the
SU(3) symmetry, which is valid only in light nuclei. Algebraic quartet models have been proposed for heavy
nuclei, too, but their shell model background is not known.
Purpose: I wish to construct an algebraic approach for the description of shell-like quarteting in heavy nuclei.
Methods: The SAQM is extended based on the pseudo- and proxy-SU(3) symmetries.
Results: The procedure of the generalization is presented. The new models are applied for the description of the
energy spectrum and electromagnetic transitions of the low-lying bands of 224Th.
Conclusions: In the present case the performance of the two approximate symmetries is fairly similar due to
the alike nature of the relevant shell orbits. The possibly similar or different results of the two symmetries are
discussed.
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I. INTRODUCTION

The importance of quarteting in nuclei has long been
known; its origin goes back to Wigner’s supermultiplet the-
ory [1]. Qualitatively it is easily understandable in light
of the short-range and attractive nature of the nucleon-
nucleon forces, and the fact that the exclusion principle allows
two protons and two neutrons to occupy a single particle
orbital.

Several quartet models have been formulated (see, e.g.,
[2]), and for a long time they were applied exclusively in the
study of the binding energy of the ground state nuclei. The
concept of quartet excitations was introduced in 1970 [3], and
from then on one is interested in the quartet spectra, too. In
[3] a quartet is defined as two protons and two neutrons on a
single orbital (without specifying the coupling scheme), and
the excitation occurs, via the jumping of the four nucleons to
the next major shell. The corresponding energies were deter-
mined from mass relationships. Later this model was extended
into several directions [4,5], including not only intershell, but
also intrashell quartet excitations.

An important generalization was presented in [6] by in-
corporating any number of particle-hole excitations (in the
language of the nucleon-shell model), contrary to the quartet-
shell model of [3,5] which had only zero, four, eight,...
excitation quanta (in terms of nucleon-shell model). This
considerable extension of the quartet model space appeared
due to the conceptual generalization of a quartet. Harvey
defined it [6] as two protons and two neutrons having a quartet
symmetry: permutational symmetry of {4}, and spin-isospin
symmetry of {1,1,1,1}.

In these models a quartet had a well-defined shell config-
uration, but the models did not have detailed formalism to
calculate the spectra (energies, transitions, etc).

Interacting boson type quartet models were also invented
[7,8] for the description of quarteting in heavy nuclei. In [7]
the basic building block quartets are treated as l = 0 (s) and
l = 2 (d) bosons, and the model has a U(6) group structure,
like the interacting boson model of the quadrupole collectivity
[9]. This model describes a spectrum of positive parity states.
In [8] the α-like correlation is treated in terms of bosons of
nucleon pairs, but in addition to the s and d bosons another
set of basic building blocks of l = 0 (s∗) boson and l = 1
(p) boson is included, therefore, negative parity states are also
involved. These phenomenological models have the efficiency
and elegance of the algebraic methods in generating the
spectrum, e.g., they have dynamical symmetries as limiting
cases, which provide us with exact solutions for the eigenvalue
problem. On the other hand, the shell content of these boson
models is not known exactly.

In [10] an algebraic approach was proposed, based on
Elliott’s SU(3) formalism [11], for the calculation of detailed
spectra of the shell-like quartets defined in [3,6]. Actually two
algebraic quartet models were introduced, a phenomenolog-
ical (PAQM) one, which did not treat the nucleon degrees
of freedom one-by-one, and a semimicroscopic (SAQM) one,
in which the model space is fully microscopic, i.e., based on
nucleon degrees of freedom.

Due to the definition of the quartet in terms of shell model
symmetries of the nucleons, and the application of the SU(3)
formalism, the semimicroscopic algebraic quartet model is in
fact a symmetry-governed truncation of the (no-core) SU(3)
shell model [12]. For an I quartet system (A = 4I, N = Z =
2I) the truncation means the {I, I, I, I} Wigner-scalar sector,
or the corresponding {4,4,...,4} permutational symmetry. This
kind of shell model connection is not univocal; in other quartet
models, based on other definitions of a quartet, the relation is
different.
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In the semimicroscopic algebraic quartet approach also the
connection to clusterization is well-defined and transparent
[13]. In [13,14], e.g., high-lying detailed cluster spectra of two
different configurations could be predicted from the quartet
model description of the low-lying bands. The predictions
turned out to be in good agreement with the experimental
observation.

Quartet condensates have also been considered [15–17],
but I do not discuss them here, because for the present purpose
the individual quartet picture is more relevant.

In this paper I introduce a new algebraic approach to
quarteting in heavy nuclei. As for the definition of the quartet,
the well-defined shell content of [3,6] is kept. In particular,
two protons and two neutrons form a quartet, when they
have permutational symmetry {4}. (In heavy nuclei it is
not the spin-isospin scheme, which is appropriate, rather the
proton-neutron one, that is why the permutational symmetry
is applied here to define a quartet.)

The formalism of this new approach is that of SU(3) [11],
i.e., I present here a generalization of the semimicroscopic
algebraic quartet model (SAQM) of light nuclei [10]. The
generalization is needed due to the well-known fact, that the
original SU(3) symmetry is valid only in light nuclei, in heavy
ones it is badly broken.

Though the real SU(3) symmetry is not good in heavy
nuclei, nevertheless, other symmetries were found to be valid.
I consider here the pseudo-SU(3) [18] and the proxy-SU(3)
schemes [19]. Both of these symmetries are valid in subspaces
of the full shell model space: some intruder orbits are omitted.
The rearrangement of the shell scheme is, however, different
in the two cases.

The harmonic oscillator shell structure is destroyed in
heavy nuclei by the spin-orbit force. In particular, the j =
n + 1

2 orbitals of the nth oscillator shell are pushed down
among the next lower shell. They have opposite parity, and
are called unique parity states.

In the pseudo-SU(3) scheme all the unique parity orbitals
are omitted, and the remaining orbitals can be rearranged into
the pseudoshell of (n − 1) oscillator quanta.

In the proxy-SU(3) scheme only one of the unique parity
orbitals is excluded: the highest lying state, e.g., [505]11/2 in
the 50–82 shell. (Here, the [Nnz�]K quantum numbers of the
asymptotic Nilsson state indicate the total number of oscillator
quanta, the quanta along the symmetry axis, the projection of
the orbital, and total angular momentum, respectively.) The
rest of the intruder states are replaced by the highest j orbit
from the next lower shell. The new set of orbits constitutes a
full oscillator shell.

Here, I propose algebraic models for the shell-like quartet-
ing in heavy nuclei, based on the pseudo- and proxy-SU(3)
symmetries.

Since in heavy nuclei the proton and neutron valence
shells are different, I use the permutational symmetry for
the definition of the quartet, as mentioned above. When two
protons and two neutrons sit in two different major shells
with {2}p and {2}n symmetries, they may result in the quartet
symmetry {4}. Similarly if eight protons and eight neutrons
are there in two subsequent shells, then the {2, 2, 2, 2}p

and {2, 2, 2, 2}n symmetries may combine to the {4,4,4,4}

symmetry, corresponding to a quartet state. (This latter exam-
ple is relevant for the 224Th nucleus discussed below.)

In what follows first I recall some basic features of the
pseudo-SU(3) and proxy-SU(3) schemes, and illustrate them
by constructing the model space of the 224Th nucleus. Then
the spectrum and the E2 transition ratios are calculated,
by applying the formalism of the semimicroscopic algebraic
quartet model of Ref. [10].

The main purpose of the present paper is methodological.
I wish to find how the algebraic description of the shell-
like quarteting can be extended to heavy nuclei, based on
the approximate symmetries of the pseudo- and proxy-SU(3)
schemes. Furthermore, the two methods are compared, when
they are applied for the treatment of a low-energy spectrum.

II. THE PSEUDO-SU(3) SCHEME

As is mentioned above, the subspace of the pseudo-SU(3)
symmetry is obtained by excluding the intruder orbitals [20].
Under the action of the normal-to-pseudo (unitary) transfor-
mation the composition of the angular momentum changes
from j = l + s to j = l̃ + s̃, where “tilde” (∼) indicates
pseudo [21,22].

The reason for the appearance of the pseudo-SU(3) sym-
metry is the following. The single-particle Hamiltonian

H = H0 + Cls + Dl2 + · · · (1)

transforms into the pseudo-counterpart

H̃ = H̃0 + C̃l̃ s̃ + D̃l̃2 + · · · (2)

H and H̃ have the same excitation spectrum, when h̄ω =
h̄ω̃, C̃ = (4D − C), D̃ = D. It turns out that for the A � 100
nuclei C ≈ 4D, so C̃ ≈ 0, i.e., the symmetry-breaking spin-
orbit force is negligible [23]. Therefore, the pseudo-SU(3)
symmetry is realized in heavy nuclei to a similar extent, or
even better, than the real SU(3) in light nuclei.

The nucleons of the intruder orbital from the next higher
oscillator shell are assumed to play only a passive role in the
dynamics, because of their opposite parity. In particular, they
are usually considered to form J = 0 coupled pairs contribut-
ing only to the binding energy. This arrangement is favored
because the pairing gap is large as compared to the spacing of
low-lying rotational levels, thus the assumption seems to be
valid except for the backbending and related phenomena [23].

The pseudo-SU(3) scheme proved to be successful also
in the microscopic description of the quadrupole collectivity,
which is a multishell phenomenon [24]. In light nuclei the
E2 electromagnetic transitions could be described correctly,
without applying effective charge, by the symplectic gener-
alization of the Elliott model [25,26]. It takes into account
2h̄ω major shell excitations. When it is extended to heavy
nuclei, based on the pseudo-SU(3) scheme, one would expect
different kinds of major shell excitations: those of normal
parity, unique parity, and a mixing between the two. But it was
found [23] that the latter two kinds are not necessary (except
for backbending, etc). The reason is that the unique parity
part of the wave function is dominated by pairing correlations,
which differs from the quadrupole correlation, in that they do
not require the involvement of higher shells.
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The physical operators transform under the normal-to-
pseudo mapping into their pseudo-counterpart plus small cor-
rections:

O = κÕ + . . . . (3)

Õ has the same tensorial character as O, while the other
terms in the series have a different tensorial character and an
expansion coefficient that is typically less than 10% of the
leading term. These correction terms were found to yield only
a minor (less than one percent) change in calculated results in
eigenenergies and electromagnetic transition rates, therefore,
they are usually ignored [23,24].

In constructing the quartet-model-space based on the
pseudo-SU(3) scheme, one can assume a scenario similar to
that of the pseudosymplectic model of the quadrupole collec-
tivity: the dynamics is dominated by the normal-parity major
shell excitations, while those of the unique parity orbitals
play a passive role, and their effect can be taken into account
by renormalization of model parameters [24]. Further model
assumptions (again similarly to the pseudosymplectic model
[27]) are as follows. i) The most important normal parity
configurations are those with highest spatial symmetry, which
implies that only pseudospin zero configurations are taken
into account. ii) The leading pseudo-SU(3) irreducible repre-
sentations (irreps) in the proton and neutron spaces dominate.
Whether or not these assumptions are valid, can be checked by
comparing the predictions of a model with the experimental
data.

Now we summarize the scenario of the construction of the
model space, which is similar in both the pseudo and the proxy
cases.

(i) First one chooses the closed core of the shell model
problem. Here, the core is the 208

82 Pb126 nucleus.
(ii) The nucleons above the closed core are placed on

the Nilsson orbitals of the corresponding deformation
according to the energy minimum and the Pauli prin-
ciple.

(iii) The pseudo- and proxy oscillator shells are obtained
as a subset of the single particle orbitals above the
closed shell, according to the truncation of the two
schemes. In the pseudo formalism all the unique
parity orbitals are excluded, while in the proxy one,
only the highest-lying Nilsson orbital is omitted.

The following steps are made in each shell. For the 0h̄ω

case it means a single proton and single neutron shell. For the
major shell excitations it involves two or more shells (in one
or both of the proton and neutron sectors).

(iv) The permutational symmetry of the protons (or neu-
trons), obtained from step (iii) provides us with with
the irreducible representation of the U(N) group,
where N is the number of the single particle orbital
in the shell. In particular, the representations of the
permutational and U(N) groups are given by the same
Young pattern.

(v) The allowed SU(3) irreps are obtained from solving
the U(N) ⊃ SU(3) representation problem [28].

TABLE I. The dominating ˜SU (3) irreps of the 224Th nucleus in
the semimicroscopic algebraic quartet model based on the pseudo
scheme. The superscript indicates multiplicity.

h̄ω (λ,μ)

0 (38,6),(39,4),(40,2),(36,7),(37,5)2, (38, 3)2,...

1 (43,4),(44,2),(45,0),(41,5)2, (42, 3)3, (43, 1)2,...

2 (48,2),(46,3)2, (44, 4)3, (45, 2)2, (46, 0)1, (42, 5)2,...

(vi) The Pauli-allowed SU(3) representations are obtained
as the outer product of those SU(3) representations of
the different major shells, which belong to permuta-
tional symmetries such that their outer product gives
the required quartet symmetry.

In this procedure each major shell is treated separately. The
larger algebraic structure is Us(2) ⊗ U(N) in each shell of
protons or neutrons, where Us(2) stands for the spin sector,
while U(N) refers to the space part. The antisymmetrization
requirement is taken into account in a two-step treatment:
within each major shell the spin and space parts of the wave
function carry symmetries which belong to conjugate Young
patterns, and in building up the complete model space only
those outer products are taken, which keep the total antisym-
metrization for the many major shell problem.

Due to the nature of the different truncation schemes, the
dimension of the pseudo-SU(3) representations are usually
smaller than those of the proxy ones.

Now I illustrate the procedure by constructing the model
space for the 224

90 Th134 nucleus. It has eight protons and eight
neutrons, which may form four quartets, outside the 208

82 Pb126

core.
The eight protons (in the 82–126 shell) occupy the normal

parity Ñ = 4 pseudo-harmonic oscillator shell and the 1i13/2

intruder levels of opposite parity. The eight neutrons (in the
126–184 shell) are distributed on the normal parity Ñ = 5
pseudoshell and, and the 1 j15/2 unique parity orbitals.

The deformation parameter of the ground state is ε = 0.15
[29], therefore, four protons sit in the Ñ = 4 pseudoharmonic
oscillator shell [27], having a leading SU(3) representation of
(12,2), and four protons are in the 1i13/2 intruder level. The
eight neutrons sit in Ñ = 5 pseudoharmonic oscillator shell,
having a leading representation of (26,4). (All the (λ,μ) irreps
in this section refer to the pseudo-SU(3) scheme, thus, we
can ignore, for the sake of simplicity, their “tilde”, without
causing any confusion.) The dominating SU(3) symmetries
of the 0h̄ω subspace (in Table I) are obtained as a product:
(12, 2) ⊗ (26, 4).

The leading 1h̄ω representations, when a proton or a
neutron is excited to the next pseudomajor shell, are (15,1),

and (31,2), respectively. Thus, the ˜SU (3) irreps are obtained
as (15, 1) ⊗ (26, 4) and (12, 2) ⊗ (31, 2). Please, note that
the 1h̄ω irreps of Table I cannot be obtained from the 0h̄ω

representations multiplied by the (1,0) center of mass motion,
therefore, they are not contaminated by spurious excitations
of the center of mass.

The leading 2h̄ω proton and neutron excitations are
(18,0), and (36,0), respectively. When one proton and one
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neutron is excited: (15,1) and (31,2). Therefore, the ˜SU (3)
irreps are obtained as (18, 0) ⊗ (26, 4) for proton excitation,
(12, 2) ⊗ (36, 0) for neutron excitation, and (15, 1) ⊗ (31, 2)
for proton-neutron excitations. The multiplicity of some 2h̄ω

irreps of Table I is decreased (in comparison with the result
of the multiplications), due to 1h̄ω spurious excitations [e.g.,
the 1h̄ω excitation of the center of mass of the (44,2) states
results in (45,2)]. The 0h̄ω and 2h̄ω states have positive, while
the 1h̄ω excitations have negative parities.

III. THE PROXY-SU(3) SCHEME

The microscopic support for the proxy-SU(3) scheme is
provided by the observation that the Nilsson diagrams for
well-deformed nuclei obtained with the proxy-SU(3) sym-
metry are very similar to the traditional Nilsson diagrams
[19]. In particular, the pairs of Nilsson orbits related by
[�N�nz��]�K = [110]0 have very large overlap.

But the parity content of the shells is different. The replace-
ment of the intruder orbits with those from the next lower shell
changes the parity. When, however, the orbitals are double
occupied it does not effect the parity of the nucleus.

Due to the approximation applied in the proxy-SU(3)
scheme some selection rules (and avoided level crossing)
are affected [19]. Furthermore, one has to be careful when
applying this new symmetry to nuclei of odd mass number,
due to the parity change between the real and proxy orbitals.

The proxy-SU(3) model space of the 224
90 Th134 nucleus is as

follows.
The eight protons (in the 82–126 shell) occupy the N = 5

proxy harmonic oscillator shell. It is obtained by replacing
the i13/2 intruder orbitals, with h11/2 ones, after excluding the
[606]13/2 highest-lying one, as described above. The excluded
orbital is not occupied in the ground-sate region. The highest
weight SU(3) symmetry of this configuration is (26,4).

The eight neutrons (in the 126–184 shell) are distributed on
the N = 6 proxy shell. (The excluded [707]15/2 orbit does not
play an important role.) The highest weight symmetry of the
neutron sector is (34,4).

Therefore, the dominating SU(3) symmetries of the
0h̄ω subspace (in Table 2) are obtained as a product:
(26,4)⊗(34,4).

Please, note that the ambiguity between the highest weight
representation and the leading one (corresponding to the
largest eigenvalue of the second order Casimir), as discussed
in detail in Ref. [30], is not disturbing here. The reason is that
in the lower half of the major shells (which are relevant in the
present case) the two representations coincide.

When major shell excitations take place, they can be differ-
ent kinds. Nucleons may jump from normal parity to normal
parity subshells, as well as between unique parity orbitals, and
mixed ones. This situation is similar to that of the pseudo-
SU(3) case. Here, again one can assume that the excitations
between the normal parity states dominate the spectrum. The
shell model dynamics seems to prefer these excitations [23],
but in fact it is a model assumption.

The leading 1h̄ω representations, when a proton or a
neutron is excited to the next major shell, are (31,2), and

TABLE II. The dominating irreps of the proxy-SU(3) symmetry-
based algebraic quartet model of the 224Th nucleus. The superscript
indicates multiplicity.

h̄ω (λ, μ)

0 (60,8),(61,6),(62,4),(63,2),(64,0),(58,9),(59,7)2,...

1 (65,6)2, (66, 4)2, (67, 2)2, (63, 7)2, (64, 5)4, (65, 3)4,...

2 (70,4)3, (68, 5)3, (69, 3)3, (66, 6)2, (67, 4)2, (68, 2)2,...

(39,2), respectively. Thus, the SU(3) irreps are obtained as
(31, 2) ⊗ (34, 4) and (26, 4) ⊗ (39, 2). Here, again the 1h̄ω

irreps cannot be obtained from the 0h̄ω representations mul-
tiplied by the (1,0) center of mass motion, therefore, they are
not contaminated by spurious excitations.

The leading 2h̄ω proton and neutron excitations are (36,0)
and (44,0), respectively. When one proton and one neutron
is excited: (31,2) and (39,2). Therefore, the SU(3) irreps are
obtained as (36, 0) ⊗ (34, 4), (26, 4) ⊗ (44, 0), and (31, 2) ⊗
(39, 2). The multiplicity of some 2h̄ω irreps of Table II is de-
creased (in comparison with the result of the multiplications),
due to 1h̄ω spurious excitations.

The 0h̄ω and 2h̄ω states have positive, while the 1h̄ω

excitations have negative parities (if each of them is a normal-
to-normal rearrangement).

IV. CALCULATION OF THE SPECTRUM

I apply a simple Hamiltonian, expressed in terms of the
invariant operators of the U(3) ⊃ SU(3) ⊃ SO(3) algebra
chain:

Ĥ = (h̄ω)n̂ + a
(
Ĉ(2)

SU3 + −0.004Ĉ(3)
SU3

) + dL̂2. (4)

The first term is the harmonic oscillator Hamiltonian [linear
invariant of the U(3)] with a strength obtained from the sys-
tematics [31] h̄ω = 6.73 MeV. The last one is the rotational
term with a parameter to fit. The remaining parts were written
in terms of the second (Ĉ(2)

SU3) and third order (Ĉ(3)
SU3) invariant

of the SU(3). The former one accounts for the quadrupole-
quadrupole interaction, and the latter one distinguishes be-
tween the prolate and oblate shapes. This Hamiltonian turned
out to be successful in describing the low-energy quartet
spectra of light nuclei [10,13], and predicting from them the
high-lying cluster spectra [13,14].

In the 224Th nucleus two bands are known experimentally,
as shown in the central part of Fig. 1 [32]. Their description
in the pseudo-SU(3) and proxy-SU(3) schemes turns out to be
fairly similar, with the sets of parameter a = −0.0500 MeV,
d = 0.00872 MeV and a = −0.148 MeV, d = 0.00872 MeV,
respectively.

The intraband B(E2) value is given by [10,33]

B(E2, Ii → I f )

= 2I f + 1

2Ii + 1
α2|〈(λ,μ)KIi, (11)2||(λ,μ)KIf 〉|2C(2)(λ,μ),

(5)
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FIG. 1. Experimental bands in 224Th and their description in the
pseudo and proxy-SU(3) quartet models. The energy is measured
in MeV, and the thickness of the arrows are proportional to the E2
transition rates.

where 〈(λ,μ)KIi, (11)2||(λ,μ)KIf 〉 is the SU(3) ⊃ SO(3)
Wigner coefficient [28], and α is a parameter fitted to the the
experimental value of the 2+

1 → 0+
1 transition of 96 W.u. [34]:

α2(pseudo)= 0.0536 W.u., α2(proxy)= 0.0226 W.u. The in-
terband transition rate is zero.

In order to see, how the other parts of the low-lying model
spectra compare to each other the energies of the low-lying
band heads were calculated. They are shown in Fig. 2. In
particular, the pseudo-SU(3) spectrum was obtained with the
parameters above, and the parameters a = −0.05441 MeV,
d = 0.00872 MeV of the proxy-SU(3) Hamiltonian were
fitted to the energies of the pseudo spectrum (in order to check
how similar the two spectra can be).

It is seen, that though the two spectra are not identical,
the difference is not very big. In particular, the spin-parity
content of the bands are the same for the low-lying states,
but their energy-distribution is somewhat different. This can
be understood as a consequence of the similarity of the two
symmetries. In both cases the spectrum is dominated by a

FIG. 2. Low-lying band heads of the 224Th from the pseudo- and
proxy-SU(3) quartet models.

few low-lying single-particle orbitals of two subsequent major
shells for the protons and neutrons. In the ground state each
orbitals is double occupied. In particular the ground-state
shell model configuration is (4̃)

4
p (5̃)

8
n in the pseudo-SU(3)

model, and (5)8
p (6)8

n in the proxy-SU(3) model. In spite of
the considerable difference in the (λ and μ) quantum numbers
of the pseudo and proxy schemes, the low-lying spectra are
fairly similar.

The quadrupole deformation is more sensitive to the actual
value of the symmetry quantum numbers. The pseudo-SU(3)
symmetry of (38,6) corresponds to quadrupole deformation
parameters [35] of β = 0.11, γ = 7.2 (deg), while the proxy-
SU(3) symmetry (60,8) gives β = 0.17, γ = 6.2 (deg).

V. SUMMARY AND CONCLUSIONS

In this paper I have proposed two methods for the exten-
sion of the semimicroscopic algebraic quartet model [10] to
heavy nuclei. This model describes the shell-like quarteting
(of two protons and two neutrons in a well-defined shell
configuration). In its original form it is based on the SU(3)
symmetry [11], therefore, it is applicable to light nuclei. The
generalization is carried out by applying the pseudo-SU(3)
[18] and proxy-SU(3) [19] schemes.

Both of these symmetries are approximate ones, which are
valid in a subspace of the full shell model space. The trunca-
tions they use are different, and so are the limitations of their
applicability. The proxy scheme keeps more single particle
orbitals to contribute to the SU(3) symmetry than the pseudo
scheme, thus it results in larger dimension representations.

In the pseudo-SU(3) quartet model I applied similar model
assumptions, like those of the pseudo symplectic model of the
quadrupole collectivity [24]. The reason is that both models
deal with multishell problem.

It seems that both the pseudo and the proxy-SU(3) sym-
metry is applicable for the description of shell-like quarteting
of heavy nuclei. Their performance for the low-lying spectra
of the 224Th nucleus shows a considerable similarity. Such a
similarity is expected to happen in many other cases, too. It
is, however, obviously not valid in any mass region. To what
extent the results of the two schemes are similar or different
depends on the details of the shell model configurations,
which are relevant for the low-lying spectrum.

Formulating the same statement from a different angle we
can say that the low-lying energy spectrum is not necessarily
sensitive to the difference between the two approximate SU(3)
symmetry schemes. The quadrupole deformation parameters
show bigger differences. And the most sensitive physical
quantities may very well be those ones, which are related
to the SU(3) selection rules, e.g., allowed and forbidden
clusterizations, or in general: cluster spectroscopic factors.
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