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A fully quantal algebraic version of the Bohr-Mottelson unified model is presented with the important
property that its quantization is defined by the fully antisymmetric many-nucleon unitary irreps (irreducible
representations), which span the many-nucleon Hilbert space of a nucleus. The spatial component of this model,
with added spin SU(2)S and isospin SU(2)T degrees of freedom, is uniquely defined by the requirement that its
Lie algebra of observables includes the nuclear quadrupole moments, its angular momenta, and kinetic energy.
Thus, it is determined to be an Sp(3, R) Lie algebra, which is then combined with the spin and isospin algebras
of a Lie algebra for an Sp(3, R) × SU(2)S × SU(2)T dynamical group of the desired algebraic unified model.
The irreps of this model are uniquely defined by their Sp(3, R) lowest weights, spins, and isospins, and have the
property that observed transitions between rotational states of nuclei can be expressed in terms of these irreps and
their mixtures. The algebraic unified model parallels the Bohr-Mottelson version in almost all respects, including
the possibility of taking into account the effects of Coriolis and centrifugal forces as subsequent perturbations.
In addition, it defines the admissible fully antisymmetric many-nucleon irreps and puts a new perspective on
the phenomenon of shape coexistence. It avoids use of an overcomplete set of coordinates and corrects the
phenomenological unified model treatment of angular momentum quantization. These changes have significant
implications for the dynamics of nuclear rotations, which are hidden when its moments of inertia are considered
as adjustable parameters in the standard expression of rotational kinetic energies.
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I. INTRODUCTION

Nuclei are of special interest among the many-particle
systems that have contributed to the development of quantum
mechanics. They have shell structures, similar to those of
atoms, and rotational states with properties between those of
molecules and superfluids. Such properties and the prevalence
of deformed nuclei with rotational spectra throughout the
nuclear periodic table [1–5] stimulate interest in the dynamics
of nuclear rotations and motivate development of the many-
nucleon quantum mechanics of the rotational states of de-
formed nuclei.

It is generally understood that, in the classical mechan-
ics of a many-particle system in a rotating frame of refer-
ence, there are perturbations due to centrifugal and Coriolis
forces. In accord with Born-Oppenheimer theory [6], it is
also understood that these inertial forces can be treated as
perturbations of the low angular-momentum rotational states
of nuclei in quantum mechanics. Thus, Bohr and Mottelson
[7] introduced their highly influential unified model of low-
energy rotational states with moments of inertia as adjustable
parameters and wave functions expressed as functions of the
orientation angles of an intrinsic state that also has higher-
energy vibrational excitations. However, there are fundamen-
tal differences between translations and rotations in quantum
and classical mechanics that were not taken into account in the
phenomenological unified model. A particularly significant
difference is that, whereas the wave functions of a many-

particle system can be expressed as products of functions that
are, respectively, functions of center-of-mass coordinates and
intrinsic functions of relative coordinates, there is no such
separation of the many-nucleon coordinates into subsets of
rotational and complimentary intrinsic coordinates, as pre-
sumed in the unified model, other than in a rigid-rotor limit
[8].

Another questionable presumption is that the rotational
energies of nuclei are kinetic energies as understood, for
example [9], in the interpretation of the moments of inertia
of the Inglis cranking model [10,11] as linear combinations
of those for rigid-body and irrotational flow rotations. More
sophisticated cranking models [12] and models with the
inclusion of superconducting pairing interactions [13] were
similarly interpreted and the moments of inertia of essentially
all rotational nuclei have been observed, in support of this
cranking model interpretation [14], to lie between those of
irrotational superfluid rotations and the rigid-body flows of a
viscous fluid.

This paper is concerned with establishing a framework in
which the dynamics of nuclear rotations can be explored. The
dynamics is expected to be model dependent. However, as
this paper shows, it is possible to define an optimal algebraic
many-nucleon version of the unified model with the property
that there are no isoscalar E2 transitions between the states
of its different irreps (irreducible representations). Observed
rotational states are then mixtures of its irreps. A useful
result, shown in Sec. III, is that this optimal model is the
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already well-known symplectic model, which now acquires
an enhanced significance.

Early symplectic model calculations were made [15–19]
to derive the properties of nuclear rotational states with
model interactions in truncated finite-dimensional shell-
model spaces. In these applications, fits were obtained to both
the energy levels and E2 transitions of 20Ne [15], 24Mg [18],
and four rare-earth nuclei [19], without the use of effective
charges, and it was determined that the so-called rotational
energies of the nuclei in these calculations were mixtures
of kinetic and potential energies of comparable magnitude.
Similar results were later obtained for 166Er by Bahri [20].
However, while significant and suggestive, these results with
model Hamiltonians in truncated spaces could not be consid-
ered definitive.

II. DYNAMICS OF THE BOHR-MOTTELSON UNIFIED
MODEL

In the Bohr-Mottelson unified model [1,7], the rotations
and shape vibrations of a nucleus are characterized by an
intrinsic state that corresponds to a classical limit of a rotor
at rest. This state has vibrational excitations corresponding
to those of quantized normal-mode vibrations and rotational
states described by wave functions that are functions of the
orientation angles of the intrinsic ground state. All the states
of the ground-state rotational band of the unified model
were thereby assigned a common intrinsic state and, hence,
common potential energies. The rotational energies of the
unified model were then presumed to be kinetic energies. The
remarkable successes of this unified model, with moments of
inertia adjusted to fit the data, then resulted in its widespread
acceptance.

Unfortunately, there is negligible experimental information
on the nature of nuclear rotations. There was early optimism
that the current flows in rotating nuclei could be determined
from transverse electron scattering cross sections [21–26].
However, because of the dominance of much larger longitu-
dinal cross sections, the available cross sections proved to be
too imprecise to be of much value.

In view of the successes of the Bohr-Mottelson model,
there followed numerous theoretical investigations of the
many-nucleon kinetic energy of a nucleus [8,10,11,27–38].
Complete decompositions of the nuclear kinetic energy opera-
tor were ultimately obtained in terms of collective coordinates
and momenta [35,38–40], and summarized in Ref. [41]. The
objective was to express the many-nucleon kinetic energy of
a nucleus as a sum of intrinsic plus rotational components
with a minimal coupling term that could be treated as a
perturbation. However, it turned out that only for a rigid-body
rotor or a superfluid with zero vorticity could the kinetic
energy of a nucleus be expressed as a sum of rotational and
complementary intrinsic energies without a strong coupling
term. The search was nevertheless rewarding in that it led to
the discovery, as reviewed in Refs. [16,42], of a number of
algebraic many-nucleon models of nuclear collective motions:
one was Ui’s rigid rotor model [43]; another was the so-
called CM(3) model of Weaver, Biedenharn, and Cusson [37],

which included quantized vortex spin degrees of freedom; and
another was the symplectic model [15,16].

Meanwhile, a coupling scheme for the spherical shell
model based on the U(3) symmetry group of the spherical
harmonic oscillator, with the remarkable ability to reproduce
many of the properties of a rotor model with an effective inter-
action and an effective charge, was provided by Elliott’s SU(3)
model [44,45]. This is now understood from the observation
that an SU(3) irrep is the projected image of a rigid-rotor
model [46] irrep onto an irreducible U(3) subspace of the
spherical harmonic-oscillator shell model. For, whereas the
Lie algebra of the Ui rigid-rotor model is spanned by angular
momentum and quadrupole moment operators, the SU(3) Lie
algebra is spanned by the same angular momentum operators
but with the restriction of the quadrupole moment operators to
their SU(3) components. As a result, all the states of an SU(3)
rotor model irrep have identical kinetic energies and provide
no information on the dynamics of nuclear rotations.

III. AN OPTIMAL MODEL OF THE ROTATIONS AND
SHAPE VIBRATIONS OF DEFORMED NUCLEI

The collective dynamics of nuclear rotations and shape
vibrations is model dependent. However, it is most usefully
defined for an algebraic model with a dynamical group having
the following properties: (i) its Lie algebra is a subalgebra of
that of the group of all one-body unitary transformations of
a many-nucleon Hilbert space; (ii) it has a set of irreps that
together span the fully anti-symmetric many-nucleon Hilbert
space of a nucleus; and (iii) its Lie algebra contains among
its elements the many-nucleon kinetic energy, the angular
momentum operators, and the monopole/quadrupole moment
operators of nuclei. Conditions (i) and (ii) then restrict consid-
eration to the set of admissible many-nucleon representations;
i.e., those which are fully antisymmetric as required of a
many-fermion model. And, condition (iii) ensures that the de-
composition of the Hilbert space of a nucleus into irreducible
collective model subspaces, has the essential and invaluable
property that there can be no nonzero matrix elements of any
of the operators in its Lie algebra between states belonging to
different model irreps. While the rotational states of physical
nuclei are not expected to satisfy the latter condition, its
inclusion in the optimal model enables the physical states
to be expressed as mixtures of the model’s states to explain
observed interband E2 transitions. The properties of such an
optimal rotor model are then of primary interest.

A fortuitous result is that the simplest algebraic model with
these properties is already known. It is the symplectic model
[15,16,42] with an Sp(3, R) × SU(2)S × SU(2)T dynamical
group in which Sp(3, R) is the symplectic group with Lie
algebra spanned, for an A-nucleon nucleus, by the operators

Q̂i j =
A∑

n=1

x̂nix̂n j, P̂i j =
A∑

n=1

(x̂ni p̂n j + p̂nix̂n j ), (1)

h̄L̂i j =
A∑

n=1

(x̂ni p̂n j − x̂n j p̂ni ), K̂i j =
A∑

n=1

p̂ni p̂n j, (2)
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where x̂ni = xni and p̂ni = −ih̄∂/∂xni, with i, j = 1, 2, 3, are
the position and momentum observables of the n = 1, . . . , A
nucleons of a nucleus. The spin-isospin groups SU(2)S ×
SU(2)T are included to take account of the neutron and proton
spins and ensure that the combined space, spin, and isospin
states of an irrep satisfy the antisymmetry requirements of a
many-nucleon nucleus. The P̂i j operators were not among the
required elements of the Lie algebra being sought. However,
their inclusion is appropriate; not only are they required to
close the Lie algebra, they also have an important physical
significance as the infinitesimal generators of model shape
deformations.

An invaluable property of this Sp(3, R) × SU(2)S ×
SU(2)T symplectic model is that its totally antisymmetric
irreps together span the Hilbert spaces of any nucleus with
and without inclusion of the nuclear center-of-mass degrees
of freedom. Another important property, as shown in the
following section, is that the Bohr-Mottelson unified model
emerges as a mean-field expression of this algebraic many-
nucleon model.

The group Sp(3, R) is understood to have elementary
unitary representations given, respectively, by the positive and
negative parity states of a three-dimensional harmonic oscil-
lator. It similarly has many-nucleon unitary representations
defined by a lowest-weight state of some number of nucleons
in the states of a spherical harmonic oscillator. A classifi-
cation of the states of nuclei, in terms of their space, spin,
and isospin quantum numbers is then obtained in terms of
Sp(3, R) × SU(2)S × SU(2)T irreps on subspaces of many-
nucleon harmonic-oscillator shell-model states. A systematic
procedure for determining the matrix elements of these irreps
in an angular-momentum coupled basis has also been given
by so-called vector-coherent-state methods [47–50]. However,
for present purposes, I am concerned with the simpler task of
constructing the states of an algebraic many-nucleon version
of the Bohr-Mottelson unified model.

The Lie algebra of the symplectic model is defined as fol-
lows. First, express the position and momentum coordinates
of the nucleons in terms of harmonic-oscillator raising and
lowering operators, {c†ni, cni}, by the standard expressions

x̂ni = 1√
2 a

(c†ni + cni ), p̂ni = ih̄
a√
2

(c†ni − cni ), (3)

where a = √
Mω0/h̄ is a harmonic-oscillator unit of inverse

length. This gives

Q̂i j = 1

2a2
(2Q̂i j + Âi j + B̂i j ), P̂i j = ih̄(Âi j − B̂i j ), (4)

K̂i j = 1

2
a2h̄2(2Q̂i j − Âi j − B̂i j ), L̂i j = −i(Ĉi j − Ĉ ji ),

(5)

with

Âi j = Â ji =
A∑

n=1

c†nic
†
n j, B̂i j = B̂ ji =

A∑
n=1

cnicn j, (6)

Ĉi j =
A∑

n=1

(
c†nicn j + 1

2
δi, j

)
, Q̂i j = 1

2
(Ĉi j + Ĉ ji ). (7)

Thus, it is apparent that the states of the optimal model are
defined on subspaces of many nucleons in the positive- or
negative-parity states of a three-dimensional harmonic oscil-
lator.

IV. A CLASSICAL MEAN-FIELD PERSPECTIVE

Primary objectives of this paper are to identify the Bohr-
Mottelson unified model with a classical representation of
the symplectic model and to identify its quantization with
an irreducible unitary representation of this algebraic model.
This section outlines the relationship between these two rep-
resentations in terms of mean-field theory.

It has long been understood that classical mechanics can
be realized as constrained quantum mechanics [51] in which,
for example, the classical states of a finite fermion system
are identified with the states of a submanifold of quantum
mechanical states known in physics as coherent states. Co-
herent states were introduced for harmonic-oscillator states
by Glauber [52] and subsequently defined for any algebraic
model with a dynamical group and unitary irreps with lowest-
weight states, by Perelomov and Klauder [53,54], as the states
generated by the transformations of a lowest-weight state
of the irrep by the set of dynamical group elements. Such
coherent states are described in mathematics as elements of a
coadjoint orbit [55–58]. Thus, it is apparent that an algebraic
model with a dynamical group and a lowest-weight state has
a classical representation with a phase space given by the
coherent states generated by the group transformations of the
lowest-weight state and a quantum mechanical representation
defined on the Hilbert space spanned by these coherent states.

The most familiar classical manifolds in many-fermion
quantum mechanics, are sets of independent-particle states
with Slater determinant wave functions. For these manifolds,
the equations of motion of quantum mechanics for the time
evolution of a Slater determinant, that is constrained to remain
a Slater determinant, are the well-known classical equations of
time-dependent HF (Hartree-Fock) theory. The corresponding
classical Hamiltonian equations of motion, defined by time-
dependent HF theory, are then identical to the corresponding
equations of motion of constrained quantum mechanics as
shown, for example, in Refs. [59–62]. Thus, a minimum
energy HF state in such a manifold is a classical equilibrium
state for which the expectation value of the quantum mechani-
cal Hamiltonian is a (possibly local) minimum. Also the clas-
sical normal-mode vibrations of a nucleus about its equilib-
rium state, given by the time-dependent HF equations of mo-
tion [63,64], are identical to those of the quantum-mechanical
random-phase approximation (RPA) of Bohm and Pines [65].
This becomes apparent when the RPA is expressed in the
double-commutator equations-of-motion formalism [66–68],
which is the form in which it is now commonly used in nuclear
physics [69].

The embedding of classical mechanics in quantum me-
chanics by such mean-field methods is insightful for under-
standing the physics of quantum systems from a classical
perspective; e.g., for exploring the topography of the classical
potential energy surface, as a landscape, in the neighbourhood
of its lowest-energy equilibrium state. This was initiated by
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Rowe, Basserman [59,70] and Marumori [71], who studied
the valley floor of its classical potential energy surface and
by Reinhard and Goeke [72], who studied its fall lines. It is
apparent [73,74] that, in proceeding upwards along the valley
floor, starting from its lowest point, a high point of the valley
is reached, following which the valley path begins a descent to
another low-energy point. It follows that the HF minimisation
procedure could converge to such a local minimal-energy state
if the iterative HF procedure were initiated from a state in
its neighborhood. Such a possibility has been considered by
Matsuyanagi and colleagues [75]. However, the properties
of local minimum-energy HF excited states have yet to be
explored.

A promising application relates to the many minima of very
different deformations given by the algebraic many-nucleon
version of the unified model, as discussed in the following sec-
tion in which it is shown that, when the Lie group of one-body
operators is restricted to its Sp(3, R) × SU(2)S × SU(2)T
symplectic model subgroup, the classical HF potential-energy
surface separates into a sum of disconnected energy surfaces,
each of which is defined for an irrep of the symplectic model
subgroup. It would not be surprising then to find that, if a
general HF calculation were initiated from the minimum-
energy state of one these symplectic model irreps, it con-
verged to a local minimum-energy state of essentially the
same general form. For example, if an HF calculation for 16O
were initiated from a closed-shell state of spherical harmonic
oscillator states, it would most likely converge to a closed-
shell state of single-nucleon states with modified radial wave
functions. Likewise, if it were initiated from a deformed four-
particle–four-hole symplectic model minimum-energy state,
it might converge to a modified but related four-particle–
four-hole state relative to the closed-shell solution. It would
then be meaningful to interpret the minimum-energy state
as an intrinsic state of a unified model, as pursued in the
following for the symplectic model, for which its low-energy
rotational states are generated by its rotations and its intrinsic
vibrational excited states are defined by its small-amplitude
time-dependent normal mode vibrations.

V. AN ALGEBRAIC MANY-NUCLEON (AMN) UNIFIED
MODEL

Following the definition in Sec. III, an optimal model of
nuclear rotations and shape vibrations can be constructed
with an Sp(3, R) × SU(2)S × SU(2)T dynamical group in
an AMN version of the Bohr-Mottelson unified model. Its
essential properties are exhibited by its irreps of minimal spin
and isospin, which are also of maximal space symmetry and,
hence, are the most deformed. As now shown, the states of this
model are substantially lowered in energy by corresponding
deformations of the shell-model potential and end up with
energy levels surrounded by those of less deformation and
lower spherical harmonic-oscillator energies. This perspective
provides an understanding of the emergent phenomenon of
shape-coexistence of strongly deformed states among spher-
ical states of much lower spherical shell-model energy [4,5].
Thus, for simplicity in establishing the principles underlying
the approach presented, the focus in this paper is restricted

to the properties of fully antisymmetric Sp(3, R) × SU(2)s ×
SU(2)T irreps with S = 0 and T = T0 with the expectation
that an extension to other irreps will be straightforward.

A symplectic model irrep is conventionally defined, within
the many-nucleon Hilbert space of a nucleus, by a lowest-
weight state |σ, ω〉 that satisfies the equations

B̂i j |σ, ω〉 = 0, for i, j = 1, 2, 3, (8)

Ĉi j |σ, ω〉 = 0, for i < j, (9)

Ĉii|σ, ω〉 = σi|σ, ω〉, for i = 1, 2, 3, (10)

where |σ, ω〉 is a spherical shell-model state and, therefore
an eigenstate of a many-nucleon spherical harmonic-oscillator
Hamiltonian

Ĥsho|σ, ω〉 ≡ h̄ω

3∑
i=1

Ĉii|σ, ω〉 = h̄ω

3∑
i=1

σi|σ, ω〉, (11)

with a value of ω such that the volume of the state |σ, ω〉 is
that of essentially incompressible nuclear matter. However, a
symplectic model calculation can be carried out more mean-
ingfully and, for present purposes, more usefully in a triaxial
harmonic-oscillator basis of eigenstates of a Hamiltonian Ĥtho

for which the state |σ, ω〉 is the lowest-energy eigenstate

Ĥtho|σ, ω〉 ≡
3∑

i=1

h̄ωiĈii|σ, ω〉 =
3∑

i=1

h̄ωiσi|σ, ω〉 (12)

with frequencies chosen to minimize the energy
〈σ, ω|Ĥ |σ, ω〉 of a nuclear Hamiltonian among states
that are now eigenstates of a generally triaxial harmonic
oscillator Ĥtho. The required state |σ, ω〉 is then given by
the self-consistency property of HF theory, which is that the
values of (ω1, ω2, ω3) are determined by the condition that
the potential-energy component

V (x) = 1

2
M

∑
n

(
ω2

1x2
n1 + ω2

2x2
n2 + ω2

3x2
n3

)
, (13)

of the mean-field Hamiltonian Ĥtho(ω), of which the state
|σ, ω〉 is an eigenstate, has maximal overlap as a function of
the xi coordinates with the density of the minimum-energy
state |σ, ω〉 (subject to the constraint that the volume of the
nucleus is consistent with that of essentially incompressible
nuclear matter).

The surfaces of constant V (x) potential energy are seen to
be ellipsoidal. Also the mean values of

∑
n x2

ni in the lowest-
energy state of the independent-particle Hamiltonian with this
potential energy are given by

〈
x2

i

〉
ω(σ ) = 〈σ, ω|

∑
n

x2
ni|σ, ω〉 = h̄σi

Mωi
, i = 1, 2, 3. (14)

It follows that the closest approach to an ellipsoidal equiden-
sity surface for the minimal energy state, is defined by the
equation

x2
1〈

x2
1

〉
ω(σ )

+ x2
2〈

x2
2

〉
ω(σ )

+ x2
3〈

x2
3

〉
ω(σ )

= const., (15)
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i.e., by

ω1x2
1

σ1
+ ω2x2

2

σ2
+ ω3x2

3

σ3
= const. (16)

For this equidensity surface to have the same ellipsoidal shape
as the equipotential surface for the potential V (x) given by the
equation

ω2
1x2

1 + ω2
2x2

2 + ω2
3x2

3 = const. (17)

it is then required that

σ1ω1 = σ2ω2 = σ3ω3. (18)

Such a shape-consistency relationship has also been used for
other purposes; e.g., by Bohr and Mottelson [1,9] and Castel
et al. [76]. In addition to satisfying the shape consistency of
the harmonic-oscillator field and the density of its lowest-
weight state, it also corresponds to an equipartition of the
three components of the generally triaxial harmonic oscillator
energy which is also a desirable property of a minimal energy
equilibrium state.

When σ1 = σ2 = σ3, it follows that ω1 = ω2 = ω3 and
that the corresponding lowest-weight state of the symplec-
tic model is rotationally invariant and in a state of zero
orbital angular momentum. It is then a many-nucleon L =
S = J = 0, T = T0 ground state of a spherical harmonic
oscillator Hamiltonian and has one-phonon monopole and
quadrupole vibrational excitations given by the random phase
approximation. This is what one would expect for a doubly
closed-shell nucleus. However, when σ1 > σ2 and/or σ2 >

σ3, the shape-consistent lowest-energy lowest-weight state for
an irrep of the Sp(3, R) dynamical group is nonspherical
and has an interpretation as an intrinsic state of an alge-
braic many-nucleon version of the Bohr-Mottelson unified
model.

Following the Nambu-Goldstone interpretation [77,78],
a nonrotationally invariant (broken-symmetry) minimum-
energy state is understood to be a combination of the many
states of good angular momentum that can be obtained by
angular-momentum projection methods as developed, for ex-
ample, by Lee, Cusson [79,80], Kamlah [81], and others
[82,83]. Low-energy rotational states for the model are then
obtained by diagonalization of a nuclear Hamiltonian in the
space of these projected states of good angular momentum,
which then have an interpretation as the rotational states of a
unified model.

In concluding this section, it is instructive to consider the
relationship of the symplectic model of a rotor to that of
Elliott’s SU(3) model. The SU(3) model was introduced as
a coupling scheme for the spherical shell model of nuclei
and was observed to exhibit many rotor model properties.
These properties can be understood, as noted in Sec. I,
from the observation that the SU(3) model is the image
of a genuine rigid-rotor model [46] irrep when projected
onto an irreducible U(3) subspace of the spherical harmonic-
oscillator shell model. As such it has an interpretation as
a model of a rigid rotor with an effective Hamiltonian and
an effective charge. Thus, the kinetic rotational energy of
the rigid rotor is effectively replaced by a potential en-
ergy and both the neutrons and the protons are assigned

large effective charges. Clearly, many characteristics of the
rigid rotor are lost in its projection to a single spheri-
cal harmonic oscillator shell. For example, a rigid rotor
model is infinite dimensional whereas an SU(3) model is
finite.

The symplectic model has sometimes been considered to
be an extension of the SU(3) model. However, as shown in
Sec. III the symplectic model is more appropriately consid-
ered to be an advance on the rigid-rotor model of which
the SU(3) model is a projected image. Moreover, as model
calculations illustrate [19] and as the following section con-
firms, the low-lying rotational states of the symplectic model
description of well-deformed nuclei generally have essentially
zero overlaps with low-lying SU(3) states. Nevertheless, in
spite of their differences, symplectic model calculations ben-
efit substantially from the many developments of the SU(3)
tensor algebra [84,85].

It is also significant that massive shell-model calculations
of nuclear rotational states with realistic interactions in the
symmetry-adapted no-core shell model [86], determine them
to be mixtures of numerous SU(3) irreps from many different
spherical harmonic oscillator shells. However, as recently
shown [87], these many SU(3) irreps belong to just a few
symplectic model irreps. It follows that the symplectic model
not only provides a fully quantal many-nucleon version of the
successful Bohr-Mottelson unified model, it also identifies the
symplectic symmetry that underlies the shape coexistence of
nuclei as an emergent phenomenon.

VI. AN ENERGY ORDERING OF SYMPLECTIC MODEL
IRREPS AND SHAPE COEXISTENCE

In the standard spherical shell model, an energy-ordered
basis of independent-particle states is defined by the energies
of single neutron and single proton states in a spherical
harmonic-oscillator field with a spin-orbit interaction and
a minor angular-momentum-dependent term with strengths
adjusted to fine tune the required sequences of states. Such an
ordering of single-nucleon states is then used in the selection
of active valence-shell spaces for shell-model calculations of
the many-nucleon states of nuclei. This is no doubt appropri-
ate for doubly closed-shell nuclei and for states that give no
evidence of belonging to rotational sequences. However, even
for spherical nuclei, there are frequent occurrences of strongly
deformed states at low excitation energies. For example, the
first excited state of 16O is understood to be the J = 0 ground
state of a band of a strongly deformed rotational states with
an intrinsic state given by a four-particle–four-hole excitation
of the spherical 16O closed-shell state [88,89]. Consistent
with the widespread observation of nuclear shape coexistence
[4,5,90], Hartree-Fock calculations [91,92] also indicate that
most nuclei have deformed lowest-energy mean-field states.
This is easily understood.

Table I lists the leading positive parity S = 0, T = T0 =
1
2 (N − Z ) AMN symplectic-model irreps available for three
nuclei. The irreps of each nucleus are ordered by increasing
values of the mean-field energies Eσ of their lowest-weight
states as determined, in units of h̄ω0, by the mean-field shape-
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TABLE I. Comparison of the minimum lowest-weight energies Eσ = 〈σ, ω|Ĥ|σ, ω〉/h̄ω0 of positive parity symplectic model irreps of three
nuclei, given in increasing order in units of h̄ω0 as defined by Eq. (19), and the corresponding values of N , λ = σ1 − σ2, and μ = σ2 − σ3,
for a range of values of N = σ1 + σ2 + σ3 increasing from the minimum value allowed by the Pauli exclusion principle for states of spin
S = 0 and isospin T = T0. The spurious contributions of the center-of-mass states to the results shown have been removed. The relative
magnitudes of ellipsoidal deformations of the shape-consistent Sp(3, R) lowest-weight states are characterized by the values of (λ + μ)2. The
representations are ordered by increasing values of Eσ = 3(σ1σ2σ3)1/3. The tables show that the irreps with strongly deformed lowest-weight
states, as characterized by large values of (λ + μ)2, have significantly lower values of Eσ relative to N than those that are closer to spherical
harmonic-oscillator irreps with relatively small values (λ + μ)2. (Similar results without removal of the center-of-mass energies were presented
in Ref. [93].)

12C 16O 166Er

N λ μ (λ + μ)2 Eσ N λ μ (λ + μ)2 Eσ N λ μ (λ + μ)2 Eσ

24.5 0 4 16 23.8 34.5 0 0 0 34.5 812.5 30 8 1444 811.05
28.5 12 0 144 24.3 38.5 8 4 144 35.7 824.5 96 20 13,456 811.38
26.5 6 2 64 24.7 36.5 4 2 36 35.8 822.5 82 26 11,664 811.47
30.5 10 2 144 26.9 46.5 24 0 576 36.3 826.5 104 20 15,376 811.49
32.5 12 2 196 27.9 42.5 16 2 324 36.6 814.5 40 16 3,136 811.51

40.5 10 4 196 36.9 820.5 70 28 9,604 811.53
816.5 52 20 5,184 811.58
818.5 60 26 7,396 811.59
828.5 114 16 16,900 811.66

consistency relationship equation (18), which implies that

Eσ h̄ω0 = 〈σ, ω|Ĥ(ω)|σ, ω〉
=

∑
i

h̄ωiσi = 3(σ1σ2σ3)
1
3 h̄ω0, with ω3

0 = ω1ω2ω3,

(19)

for a range of N = σ1 + σ2 + σ3 values.
The mean-field energy Eσ h̄ω0 of a lowest-weight state

in these tables is equal to Nh̄ω0 for a spherical state, for
which λ = σ1 − σ2 and μ = σ2 − σ3 are both zero, as seen for
the lowest-energy state of 16O. However, the N = 38.5 state
of 16O, which would be at an excitation energy of ≈4h̄ω0

if it were spherical, is understood to be the intrinsic state
of a strongly deformed N (λ,μ) = 38.5(8, 4) rotational band
at 6.05 MeV [88,89,94]. Similarly, the lowest three states
obtained for 12C, include that of the rotational band of states,
based on the highly deformed Hoyle state, with N (λ,μ) =
28.5(12, 0) and another with N (λ,μ) = 26.5(6, 2) in accord
with observations and the calculations of Dreyfuss et al. [95].

A notable prediction of the shape-consistent mean-field
ordering of states, by increasing values of Eσ , is clearly very
different to that of the spherical harmonic oscillator for the
rare-earth nucleus 166Er; for this nucleus and many others
with the exception of the lowest-energy states of closed and
singly closed-shell nuclei, there is clearly a major departure
from the spherical shell-model ordering of states. Recall also
that Eσ h̄ω0 has an interpretation, in the AMN version of the
unified model, as the intrinsic energy of a rotational band and
that the lowest-energy J = 0 rotational state of a rotational
band of states has considerably lower energy than the energy
of its deformed intrinsic state.

Thus, the results of the table are a clear indication that
the ordering of independent-particle basis states, as given by
the spherical shell model, is only relevant for the relatively
few spherical states of nuclei. In particular, the spherical shell

model is inappropriate for a many-nucleon theory of deformed
nuclei for which a shape-consistent Nilsson model [96,97]
expression of the intrinsic state of a rotor model is more
relevant.

In concluding this section it is recalled that, whereas a
Hartree-Bogolyubov generalization of HF calculations to take
account of short-range pairing correlations is known to result
in a partial restoration of spherical symmetry, it can be ex-
pected that a parallel extension of the AMN unified model
to take account of pair correlations could result in reduced
deformations and, in particular, the enhancement of axial
symmetric relative to triaxial rotational states. This remains
to be explored in the context of the AMN symplectic model.

VII. MEAN-FIELD ALGEBRAIC MANY-NUCLEON
UNIFIED MODEL CALCULATIONS

A fundamental property of the symplectic model is that,
because its spatial Sp(3, R) Lie group and its complementary
SU(2)S spin and SU(2)T isospin groups are semisimple, its
many-nucleon irreps are uniquely defined by their lowest
weights. Thus, its irreps can be explored in mean-field theory
one at a time more usefully and much more insightfully than
in the single independent-particle model irrep of standard HF
theory. In this section, rotational energies of various kinds
are determined for an S = 0, T = T0 symplectic-model irrep
of 166Er.

An essential observation, as shown in Sec. V, is that the
properties of a symplectic model irrep are given by identifying
its minimum lowest-energy, lowest-weight state with the in-
trinsic state of an AMN version of the Bohr-Mottelson unified
model. It was then shown that the required lowest-energy state
is obtained in mean-field theory if the lowest-weight state is
the ground state of a generally triaxial harmonic oscillator that
satisfies the shape-consistency equation (18) and if ω0, defined
by Eq. (19), has a value such that the lowest-weight state has
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FIG. 1. The figure shows energy levels, labeled by EEXPT, of the
ground-state rotational band of 166Er and corresponding energies
EIRR for irrotational flow and ERIG for rigid-body rotations of the
shape-consistent (lowest-weight) intrinsic state for the Sp(3, R) S =
0 irrep 〈327 1

2 , 249 1
2 , 249 1

2 〉. (The half-odd integer weights of the
Sp(3, R) irrep label are due to the exclusion of the center-of-mass
zero-point energy contribution to the energies of states.) The kinetic
energies, EKE, are those of the states angular momentum projected
from the shape-consistent intrinsic state as defined in the text. The
energy levels EHO are those which, in addition to the kinetic energies,
include the harmonic-oscillator potential energies of the angular-
momentum-projected states. The results show that, for a nuclear
Hamiltonian consisting of a many-nucleon kinetic energy plus a
potential energy interaction term adjusted to fit the experimentally
energies, more than half of each excitation energy would be potential
energy, consistent with the results of Refs. [19,20].

the volume for the nucleus under consideration as required
of essentially incompressible nuclear matter. The rotational
states of the AMN unified model are then obtained, in accord
with the Nambu-Goldstone interpretation of a broken sym-
metry in mean-field theory [77,78], by angular-momentum
projection from the lowest-energy lowest-weight state.

As a first study of the dynamics of the AMN unified
model obtained in this way, I consider an irrep with an
axially symmetric lowest-weight state. This has the distinct
advantage that the angular-momentum projected rotational
states of the model can then be obtained explicitly by the
algebraic methods given in Ref. [98].

Figure 1 shows the excitation energies of a few states
of low angular momentum L of an axially symmetric S =
0, T = T0 symplectic-model rotational band as they would
be for different model moments of inertia. The Sp(3, R)
irrep considered was used previously [20] in a fit to the
lower-energy rotational states of 166Er and the E2 transitions
between them with a schematic interaction but without the use
of an effective charge. According to the estimates of Jarrio
et al. [99], the experimentally most-appropriate irreps for this
nucleus are weakly triaxial. However, an axially symmetric
representation was chosen for a first study of the dynamics
of nuclear rotations because its multiplicity-free angular mo-
mentum wave functions are uniquely defined, independently
of the Hamiltonian, and can be explicitly determined for a
given irrep by known algebraic methods [98]. They are also
the most useful because other rotor model studies, with which

comparisons can be made, have been for axially symmetric
irreps.

The entries in the figure were obtained as follows:

(i) The experimental energies, EEXPT, were obtained
from the Brookhaven NuDat 2.7 compilation.

(ii) The irrotational EIRR and rigid-body ERIG rotational
energies were obtained from the expression for rota-
tional energies about a z axis given by E = h̄2

2I L(L +
1) with moments of inertia (given in Ref. [1], p. 78)

IIRR = M

〈∑
n

(
x2

n − y2
n

)〉2〈∑
n

(
x2

n + y2
n

)〉 , IRIG = M

〈
A∑
n

(
x2

n + y2
n

)〉
.

(20)
(iii) The energies EHO and EKE are the expectation values

of the spherical harmonic oscillator Hamiltonian and
the many-nucleon kinetic energy operator, respec-
tively, in the states angular momentum projected from
the intrinsic state of the AMN unified model. The
AMN model intrinsic state for the results of Fig. 1 was
chosen to be axially symmetric. The kinetic energies
of the rotational states could then be calculated, with-
out resorting to numerical approximations, because
the kinetic energy observable of nuclear states is an
element of the Sp(3, R) Lie algebra and because
rotational states of good angular momentum can be
analytically projected from an axially symmetric in-
trinsic state, as shown in Ref. [98]. The calculations
were repeated for other axially symmetric irreps and
determined to be characteristic of any axially sym-
metric irrep.

Several conclusions emerge from these results. A primary
conclusion is that they are inconsistent with the presumption
that nuclear rotational energies are kinetic energies as sug-
gested based on the observation that the observed rotational
energies can be fitted, phenomenologically as linear combi-
nations of rigid-body and irrotational flow kinetic energies
[1,9]. Another is that with a residual interaction or a slightly
larger value of λ > 327.5, a close fit to the experimental
rotational energies could be obtained with rotational ener-
gies given by EHO. A desirable characteristic of the results
shown is that they were obtained without the use of any
particular nuclear Hamiltonian. Thus, they can be expected
to hold for any nucleon-nucleon interaction that satisfies the
shape-consistency condition. It would nevertheless be useful
to ascertain that a reasonable nuclear interaction, could supply
the additional potential energy needed to fit the observed
rotational energies.

Regardless of the choice of Hamiltonian, it is worth re-
calling, as mentioned above, that because the nuclear kinetic
energy is an element of the symplectic model Lie algebra the
expectation values of the nuclear kinetic energies for the states
of mixed symplectic model irreps can only be the averages of
those of the unmixed irreps.

054301-7



DAVID J. ROWE PHYSICAL REVIEW C 101, 054301 (2020)

VIII. SUMMARY AND CONCLUSIONS

The primary objectives of the investigations pursued in this
paper were to define a fully quantal algebraic many-nucleon
version of the Bohr-Mottelson unified model and determine
the dynamical properties of nuclear rotations; e.g., whether
or not nuclear rotational energies are the kinetic energies of
linear combinations of rigid-body and irrotational superfluid
flows or combinations of rotational and potential energies.

In pursuing these objectives, an optimal algebraic many-
nucleon version of the Bohr-Mottelson unified model has been
constructed with unitary irreps, given by the symplectic model
[15,16,42] with an Sp(3, R) × SU(2)S × SU(2)T dynamical
group that spans the Hilbert spaces of nuclei. This model has
an important property that there can be no isoscalar E0 or E2
transitions between the states of its inequivalent irreps. Thus,
an observation of such transitions between states signifies that
the states either belong to common symplectic model irreps or
that they are mixtures of symplectic model irreps with one or
more irrep in common.

A new development, exploited in deriving the results of
Sec. VII, is based on the observation that Sp(3, R) is the dy-
namical group of the positive- and negative-parity states of a
many-nucleon, generally triaxial, three-dimensional harmonic
oscillator. As a result, every S = 0, T = T0 unitary irreps of
the many nucleon symplectic model is characterized by a
lowest weight σ = (σ1, σ2, σ3) and harmonic-oscillator fre-
quencies ω = (ω1, ω2, ω3), as defined by Eq. (19) to minimize
the expectation value 〈σ, ω|Ĥ |σ, ω〉 of an appropriate nu-
clear Hamiltonian and satisfy a mean-field shape-consistency
condition. The generally triaxial lowest-energy, lowest-weight
state for the symplectic model was then shown to have an
interpretation as the intrinsic state of an AMN version of the
Bohr-Mottelson unified model.

A generally nonspherical many-nucleon harmonic-
oscillator ground state has been determined and shown
to have a physical interpretation as the intrinsic state of
a many-nucleon unified model, in which the low-energy
rotational states are generated by its rotations and its
intrinsic shape vibrational states are generated by its
symplectic model raising operators. Thus, a proposed new
method for determining the spectrum of a symplectic
model is to start by identifying its minimum energy
lowest-weight state as a mean-field state of a generally triaxial
lowest-energy lowest-weight state. Then, in accord with the
Nambu-Goldstone interpretation [77,78] of the generally
broken rotational symmetry of this minimum energy state,
rotational states are determined that span the vector space
of states generated by its rotations. The intrinsic vibrational
states of the AMN unified model can also be determined
in time-dependent mean-field theory or, equivalently, in the
random phase approximation [68,69].

The above approach enables a nuclear shell model to be
constructed, which, unlike the standard spherical shell model,
provides an appropriate framework for describing the states
of deformed nuclei. In particular, it provides an order-of-
magnitude simpler approach to that of previous symplectic-
model calculations [42], in which basis states were expressed
in the space of spin 1/2 neutrons and protons occupying

subspaces of states of a three-dimensional spherical harmonic
oscillator. Most significantly, the basis states of the new
approach have an interpretation as algebraic many-nucleon
states of the Bohr-Mottelson unified model, which enables
simple comparisons of phenomenological and many-nucleon
unified model interpretations of nuclear data.

In reflecting on what has been achieved, it is instructive to
contrast the current expression of a symplectic model irrep
with its expression in terms of the spherical shell model.
The standard lowest-weight state of an Sp(3, R) irrep is
traditionally taken to be the U(3) highest-weight state among a
degenerate set of lowest spherical harmonic-oscillator energy,
where U(3) ⊂ Sp(3, R) is the symmetry group of the three-
dimensional spherical harmonic oscillator. This practice has
its origins in the recognition that U(3) is the maximal compact
subgroup of Sp(3, R) and, because of the introduction of
a U(3) ⊃ SU(3) ⊃ SO(3) coupling scheme for the spherical
shell model [44], its properties have been well studied. The
downside of this practice is that an expansion of rotor model
states in terms of a sequence of SU(3) ⊂ U(3)-coupled basis
states is slowly convergent and, hence, not so efficient for
understanding the dynamics of nuclear rotations. In contrast,
the single lowest-weight state of a generally triaxial harmonic
oscillator irrep is uniquely defined for that irrep and has a
physical interpretation as the intrinsic state of the unified
model. Another advantage is that the β- and γ -vibrational
states of the emergent unified model are obtained by standard
Tamm-Dancoff and RPA excitations of this same lowest-
weight state [68,69]. A third advantage is that a realistic
Hamiltonian for a nucleus can be diagonalized in a space of
many symplectic model irreps, with many different lowest
weights, in an independent-particle basis. This enables the
binary structure of computers to be exploited, as recognized
by Whitehead [100,101] and now used, with considerable
success, in huge NCSM (no-core shell-model) calculations
[102,103] and, in symmetry adapted NCSM calculations in
mixed SU(3) model bases [86,104]. A useful and particularly
remarkable result is the emergence of states with unexpect-
edly little mixing of states belonging to different Sp(3, R) ×
SU(2)S × SU(2)T irreps [87].

In conclusion, it is admitted that only the maximally
deformed subset of spin S = 0 and minimum isospin T =
T0 = 1

2 (N − Z ) irreps have been considered in this paper.
Hopefully, an extension to states of nonzero spin and nonmin-
imal isospin T > 1

2 (N − Z ) will be straightforward. It is also
possible that there is a common coherent coupling of many
symplectic model irreps, such as a mixing of pair-coupled
states, as in the shell-model seniority coupling scheme and HF
Bogolyubov theory, which could go some way to restoring the
spherical symmetries of symplectic model states. In particular,
it might be that a restriction to unmixed symplectic model
irreps could result in partially restoring the axial symmetry
and even the spherical symmetry of some otherwise strongly
deformed triaxial nuclei. A promising procedure is to extend
the program to study the many-nucleon states of deformed
nuclei in spaces of multiple symplectic model irreps within
the framework of the symmetry-adapted no-core shell model
[87] with, for example, a mixture of quadrupole plus pairing
interactions.
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