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Extracting free-space observables from trapped interacting clusters
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The energy spectrum of two short-range interacting particles in a harmonic potential trap has previously been
related to free-space scattering phase shifts. But the existing formula for systems with a nonzero interaction
range is exact only in the limit of an infinitely shallow trap. Here I provide a systematically improved
formula—describing the low-energy dynamics—that enables the use of finite traps. This paves the way for
extracting nuclear scattering phase shifts from ab initio nuclear many-body structure calculations, a long-sought
goal in nuclear physics. The derivation establishes effective field theory as a powerful framework for studying
the connection between structure information of a trapped system (with two or more subclusters) and continuum
physics in the fields of both nuclear and condensed-matter physics.
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I. INTRODUCTION

Nuclear experiments at low energy can not manipulate
many-body systems to the extent possible in condensed-
matter or cold-atom experiments. However, with progress in
many-body methods [1–5] and increasing computing power
(and quantum computers [6]), one can start manipulating
nuclear systems computationally. Here, I show how trapping
two clusters at low energy in a harmonic potential well tells
us about their free-space scattering through a formula con-
necting low-energy phase shifts with the confined spectrum.
In this approach the trap compacts the system and reduces the
required degrees of freedom enough to allow controlled ab
initio calculations, as will be demonstrated elsewhere. (See,
e.g., Refs. [7–10] for other ab initio approaches of computing
light-nucleus scatterings.)

A formula for particles in a harmonic-potential trap was
derived in Ref. [11] and later generalized to include the full
energy dependence of the phase shift (besides the scattering
length term in Ref. [11]) and for partial waves beyond s
wave [12–20]. The result for angular momentum � [17,18,21]
(called the BERW formula here) is
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This holds at the eigenenergies E ≡ p2/2MR—with the
center-of-mass (CM) energy subtracted—in a trap where each
particle experiences a potential ω2r2/2 times its mass; MR

is the reduced mass and δ� is the phase shift. Equation (1)
is analogous to the Luscher formula [22,23] that is widely
applied in lattice quantum chromodynamics (for a system on
a space-time torus).
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References [21,24] have used Eq. (1) to extract nuclear
scattering from ab initio spectrum calculations. However,
away from the infinitely-shallow-trap limit (i.e., for ω �= 0),
Eq. (1) does not capture the external potential’s modifications
to the interaction at short distances. To illustrate the impact
on extracting phase shifts, I use a two-body potential model
[25] designed for describing neutron-α scattering [see the
Supplemental Materials (SM) [26] for details]. Figure 1(a)
shows 3/2− p-wave phase shifts extracted by using Eq. (1) at
the eigenenergies with ω = 3, 4, 6, 9, 16 MeV (typical values
applicable in ab initio calculations): they fail to align on a
smooth curve and systematically deviate from the exact curve
[21].

Here, I remedy the BERW formula by using pionless ef-
fective field theory (EFT) [27–29], which enables low-energy
dynamics to be studied without specifying the details of the
short-distance physics (e.g., potential or cluster structure and
excitation). This EFT was used to rederive and generalize
the Luscher formula [23,30]. The improved formula for a
harmonic trap is

∞∑
i, j=0

Ci, j (MRω)2i p2 j = (−)�+1(4MRω)�+
1
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�
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) ,

p2�+1 cot δ�(E ) =
∞∑
j=0

Ci=0, j p2 j . (2)

The constants Ci, j depend implicitly on � but are independent
of ω and p; they are dimensionful and scale as proper powers
of a high-momentum scale MH (as dictated by, e.g., the cluster
excitations), unless there is fine tuning. When

√
MRω and p

are smaller than MH , the series sum converges and thus can be
truncated with a controlled error. However, outside the conver-
gence domain, where the details of the finite-range interaction
and its interplay with the trap potential are being probed, the
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FIG. 1. (a) The n-α p-wave scattering phase shifts extracted using Eq. (1) at the ω-dependent eigenenergies. The “True” curves are the
exact phase shifts. (b) After subtracting ω-dependent pieces from generalized ERE curves (inset), the extractions from Eq. (2) lie on the
“True” curve. (c) Discrepancies of Eq. (1) at those eigenenergies. The curves plot the summation of the Ci �=0, j terms on the LHS of Eq. (2).
(d) Discrepancies of Eq. (2) at those eigenenergies with two different truncations on the i and j indices in its LHS: “Up to E 2” and “E 3”. The
shaded area is the range of the RHS of Eq. (2) (E � 10 MeV). Note that all panels use the legend from panel (a).

series expansion becomes infeasible. It is also worth noting
that, in the case of physically zero-range interactions (i.e.,
MH → ∞), the Ci �=0, j terms, which capture the trap-induced
modifications, would vanish, and Eq. (2) becomes equivalent
to Eq. (1).

To infer the phase shifts from Eq. (2) given the eigenener-
gies, the Ci �=0, j terms must be simultaneously calibrated with
the C0, j . The latter determine the free-space phase shifts via
the effective range expansion (ERE) [27,29]. Knowing the
full potential in the n-α model, one can fix Ci, j (see the SM
[26]) and generate Fig. 1(b): the inset shows that the phase
shifts extracted from Eq. (1) for a given ω sit on a curve
parametrized by a generalized ERE, in which the jth-order
coefficient is given by

∑
i=0 Ci, j (MRω)2i. After subtracting the

trap-induced modifications, the extracted phase shifts agree
with the “True” curve.

The essence of Eq. (2), that the trap-induced modifications
can be parametrized by using a Taylor expansion in the ω2 and
p2 variables, can be seen in Fig. 1(c). The symbols show the
differences between the right-hand-side (RHS) and left-hand-
side (LHS) in Eq. (1)—scaled by M−3

H —at the ω-dependent
eigenenergies, while the solid lines plot the summation of the
Ci �=0, j terms on the LHS of Eq. (2) with i � 2 and 0 � j � 3.
Indeed, they interpolate those symbols. Of course, outside
the convergence domain, the series expansion would fail, as
shown in Fig. 1(d). The differences between the two sides
of Eq. (2), based on two series truncations ( j � 3 for “Up to
E3” and j � 2 for “Up to E2,” and i � 2 in both cases), are
plotted against a large range of eigenenergies. The truncation
errors behave as the leading terms left out of the summation
in the low-energy region, but then increase to 100% when the
symbols reach the shaded region, indicating the range of the
RHS of Eq. (2); this also suggests that the breakdown scale

for E is between 20 and 40 MeV. (See the SM [26] for more
details on series convergence.)

To extract nuclear phase shifts (or Ci, js) from ab initio
spectra, Eq. (2) will play a crucial role because ab initio
calculations, developed for computing compact nuclei, have
uncontrolled errors when ω → 0. To illustrate Eq. (2), two
models are used in the SM [26]: a hard-sphere potential model
is solved exactly, while the n-α model is studied numerically.
The rest of the paper is devoted to the derivation of Eq. (2),
emphasizing a new set of interaction vertices between the
external potential (or background field) and trapped particles,
and renormalization.

II. DERIVATION THROUGH EFFECTIVE FIELD THEORY

I start by constructing an EFT Lagrangian for two spin-
0 particles—for simplicity—in the �th partial wave, with a
harmonic potential coupled to each particle. The framework
is valid at low energies, where the details of the short-distance
physics and its interplay with the trap are not resolved. I
follow the conventions of Ref. [31]. Let c(x) and n(x) be
particle fields with masses Mc and Mn (c∗ and n∗ are the
complex conjugations), while φm�

is the so-called dimer field
[28–30,32–35] with spin �, projection m�, and mass Mnc =
Mn + Mc [φ†m� ≡ (φm�

)∗]. The dimer φ couples to n-c and
represents the compound system. The background field B(x)
is mω2x2/2 in the lab frame with m as a reference mass. The φ

propagator—and the related self-energy corrections due to n-c
multiple scattering—will be the central piece in the derivation:
in free space it is directly related to the n-c scattering T matrix,
while in the trap its poles give the system’s spectrum.

The Lagrangian is L0 + LI , where

L0 = (c∗, n∗, σ�φ
†m� ) diag

(
i∂̃t + ∂2

2Mc
+ 
c, i∂̃t + ∂2

2Mn
+ 
n, i∂̃t + ∂2

2Mnc
+ 
�

)(
c, n, φm�

)T
, (3)

LI = g�φ
†m�c[V ⊗�]m�

n + c.c. − φ†m�

[
d (�)

j�2

(
i∂̃t + ∂2

2Mnc

) j

+ d (�)
j�0,k�1

(
i∂̃t + ∂2

2Mnc

) j(
M2

R

3m
∂2B

)k
]
φm�

. (4)
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Here, c.c. is for complex conjugate. The building blocks of
L0,I are invariant under Galilean transformations, including
rotation, translation, and boost. (A relevant discussion on
Galilean invariance in EFT can be found, e.g., in Ref. [36].)
In both Lagrangians for ψ = n, c, or φ, the ψ∗[i∂̃t +
∂2/(2Mψ )]ψ structures with i∂̃t ≡ i∂t − MψB(x)/m are ψ’s
internal energies (i.e., total energies with kinetic and external
potential energies subtracted), and therefore Galilean invari-
ant.

The g� coupling in LI uses n-c’s relative velocity V , while
V ⊗� denotes a rank-� operator composed of � copies of V nor-
malized such that when m� = +�, [V ⊗�]m�

= [(V +1)�]∗ with
V +1 ≡ −(V x + iV y)/

√
2. This term means φ†m� is coupled to

an n-c configuration having � and m� as its relative angular
quantum numbers. The m� indices are implicitly summed up
so that this term is a scalar. (In general, the spin and vector
indices need to be properly contracted to form scalars.) In
addition, both V and spins are invariant under translation and
boost, and thus the g� coupling preserves Galilean invari-
ance. Note that repeated indices in the Lagrangian [and in
Eqs. (6), (8), and (9)] are implicitly summed with specified
ranges.

It should be mentioned that the interactions in L0 and LI

with the external potential turned off follow closely previous
works using a dimer-field approach [28–30,32–35]: σ� (=±1),

�, g�, and d (�)

j together reproduce the ERE [see Eq. (6)
and Refs. [30,33]]. This approach is equivalent [28,32,35]
to the EFTs without dimer fields (see further discussion in
Sec. III).

The d (�)
j�0,k�1 terms are also Galilean invariant, considering

that the external potential B is a scalar field. However, their
specific structures are severely constrained by a unique prop-
erty of a harmonic potential: the CM of a multiparticle system
is decoupled from its internal dynamics [37]. (It can be under-
stood based on that the external force on the multiparticle’s
CM depends only on CM’s location in the harmonic potential
well, i.e., not affected by any other degrees of freedom.) In
these couplings with M2

R∂2B/(3m) = M2
Rω2, ∂2 ensures that

they only shift the system’s energy by r-independent but ω2-
dependent functions so that the CM behaves as a free particle
in traps, i.e., decoupled from internal dynamics.

Besides powers of ∂2B, the other possible scalar objects
built of B include (1) B2, B3, ...(2) (∂B)4, (∂B)6, ...[(∂B)2

is proportional to B], and (3) products of (1) and (2).
(Derivatives higher than ∂2 applied on B would give zero and
therefore are not relevant here.) They would induce external
potentials with powers of r2 higher than unity. Copies of
∂B can also be used to construct tensor (vector) objects,
which create anisotropic external potentials that need to be
coupled to particles’ momenta or spins. As the result, the new
scalar and tensor objects and their products would break the
CM–internal-dynamics decoupling if they are present in any
interaction terms with particles.

In principle, B can be coupled to the φ∗nc operators (e.g.,
the g� term), which again must take the form of (∂2B)1,2,....
However, these terms can be eliminated by rescaling the φ

field by 1 + #(MRω)2 + · · · [38]. Since the rescaling-induced

terms are already present as d (�)
j,k couplings in LI , the trap

modification to g� is not included.
Lastly, in the free space, defining energy relative to the n-c

threshold sets 
c = 
n = 0. Both are modified by B through
“polarization” effects as 
� by d (�)

j=0,k couplings, but they only
affect the energy references in traps and for simplicity are not
shown here.

To compute the propagator of the dimer φ, its self-energy
correction due to n-c multiple scattering needs to be included.
A cutoff on momentum is applied to regularize loops in
free space, while in traps the cutoff is applied on the vir-
tual excitation energy [27]. (However, for fine-tuned systems
other schemes would be preferred, e.g., power divergence
subtraction [39].) Within time-independent perturbation the-
ory [31], the one-loop self-energy bubble diagram in free

space is (2π )3δ(P − P′)δm�

m′
�

(EL, P) ≡ 〈φm′
�

P′ |Hg�
(EL − H0 +

i0+)−1Hg�
|φm�

P 〉. H0 and Hg�
are the Hamiltonians derived

from L0 and the g� term in LI , respectively [31]. Both
states are plane waves, with P, P′, EL, m�, and m′

� as φ’s
momenta and energy in the lab frame, and its spin projections.
(The relationships between Feynman diagrams and the matrix
elements defined here and below can be found in Ref. [31].)
One then obtains

(E ) = A�

π

∫ T�

0
dTq

(
2MRTq

)�+ 1
2

E − Tq + i0+

= −A�

⎡
⎣ip2�+1 +

+∞∑
j=0

L�, j (�)p2 j

⎤
⎦,

A� ≡ g2
�

M2�−1
R

2�−1�!2

π (2� + 1)!
, L�, j (�) ≡ 2�2�−2 j+1

π (2� − 2 j + 1)
.

(5)

p ≡ [2MR(E + i0+)]1/2, Tq ≡ q2/(2MR), � is the cutoff on
|q|, and T� ≡ �2/(2MR). E ≡ EL − P2/(2Mnc) is the energy
in the CM frame. Note that L�, j>�(�) → 0 as � → ∞.

The fully dressed free-space φ propagator, which is

defined through (2π )3δ(P − P′)δm�

m′
�

D(EL, P) ≡ 〈φm′
�

P′ |[EL −
(H0 + HI ) + i0+]−1|φm�

P 〉, with HI from LI , can be computed
by summing the self-energy-insertion diagrams due to  and
the d (�)

j vertices, yielding

D = 1

σ�(E + 
�) − d (�)
j E j − 

= −A −1
�

p2�+1[cot δ� − i]
,

with p2�+1 cot δ� =
∞∑
j=0

C0, j p2 j, and

C0, j = A −1
�

(2MR) j

{ − σ�
�,−σ�, d (�)
2 , d (�)

3 , . . .
}

j

−L�, j (�). (6)
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D is related to δ� through the scattering T matrix, which is
computed by multiplying D with two g� vertices [31]. The
range of the index in d (�)

j in the implicit sum is fixed in LI ,
and in the C0, j definition {. . .} j is the jth component of the list
and j is not summed.

Now let us turn to the trapped system. Based on L0,
one can expand n, c, and φ fields using their corresponding
harmonic-oscillator wave functions [18]. Again note that the
g� coupling only picks up the n-c configuration whose total
angular momentum and projection equal those of the CM
motion (i.e., φ) and whose relative angular momentum and
projection equal the φ’s spin and projection (� and m�). Thus
the matrix element between φ’s eigenstates in a trap for defin-

ing its self-energy becomes δ
N′

φ

Nφ
δ

m′
�

m�
ω(E ) ≡ 〈φm′

�

N′
φ

|Hg�
(EL −

H0)−1Hg�
|φm�

Nφ
〉 (note the absence of i0+ in the Green’s func-

tion), with

ω(E ) = g2
�

M2�
R

(2� + 1)!

2�+2π

n�∑
n=0

(R̄(r)
n,�

(0))2

E − E (r)
n,�

= A�

π
(4MRω)�+

1
2

n�∑
n=0

f�(zE , n),

f�(zE , n) ≡ �
(
n + � + 3

2

)
/�(n + 1)

zE − (
n + �

2 + 3
4

) . (7)

Here zE ≡ E/(2ω) and the relative energy E ≡ EL − E (φ)
Nφ

,

with E (φ)
Nφ

= (2Nφ + �φ + 3
2 )ω as the CM energy. If 
c and


n receive trap-dependent “polarization” corrections, these
corrections also need to be subtracted in defining E . In the
derivation, a unitary transformation between n and c single-
particle and CM and relative motion eigenmodes has been
used.

Summing over the quantum numbers associated with the

intermediate state’s CM motion gives rise to the δ
N′

φ

Nφ
factor in

defining ω, since the CM’s decoupling property is preserved
and thus so is Nφ . For the relative dynamics, R̄(r)

n,� is part of the

eigenmode function R(r)
Nr

[18]: R(r)
Nr

(r) ≡ R̄(r)
n,�(r) r�Y�m�

(r̂). Nr

has n, � for its radial excitation and angular momentum, and
E (r)

n,� = (2n + � + 3
2 )ω. A cutoff on n is used to regularize the

theory in a trap, which is in parallel with the regularization
used in Eq. (5).

The φ propagator in the trap, defined as Dω(E )δ
N′

φ

Nφ
δ

m′
�

m�
,

can be computed by summing up all self-energy insertion
diagrams, including insertions of ω and those of the d (�)

j and

d (�)
j,k vertices. One gets

Dω = 1

σ�(E + 
�) − d (�)
j E j − ω(E ) − d (�)

j,k E j (MRω)2k

= (−)A −1
�

p2�+1 cot δ� + 1
A�

[
ω(E ) − P(E ) + d (�)

j,k E j (MRω)2k
] .

(8)

In the second step, the principal value of the free-space self-
energy P is added and subtracted. Thus, the quantization
condition can be derived by setting the denominator in Eq. (8)

to zero:

p2�+1 cot δ�(E ) + d (�)
j,k

A�

E j (MRω)2k = P(E ) − ω(E )

A�

.

(9)

There exists a special relation between � (or T̄� ≡ T�/ω) and
n� such that the divergences in  and ω cancel in Eq. (9),
and thus d (�)

j,k are finite. For s wave, T̄� = 2n�[1 + O(n−1
� )],

but for p wave the n−1
� -order term needs to be specified: T̄� =

2n�[1 + 7
4 n−1

� + O(n−2
� )]; for d wave another higher-order

term needs to be specified: T̄� = 2n�[1 + 9
4 n−1

� − 37
32 n−2

� +
O(n−3

� )]; for even larger �, more terms need to be specified
accordingly. Details on the renormalization can be found in
the SM [26]. However, the above n�-� relations should be
considered as a specific scheme; any alternative ones would
need to ensure that the divergences on the RHS of Eq. (9)
can be absorbed by the d (l )

j,k terms on the left side so that phase
shifts are cutoff-independent and the CM-decoupling property
is not violated.

The right side of Eq. (9) in this scheme then becomes

− 1

π
(4MRω)�+

1
2

⎡
⎣ n�∑

n=0

f�(zE , n) + π

�∑
j=0

z j
E Ll, j

(√
T̄�

2

)⎤
⎦

≡ − 1

π
(4MRω)�+

1
2

(R)∑
n=0

f�(zE , n), (10)

with “(R )” labeling the renormalized series sum with n� →
+∞. To finish the derivation, this identity is needed:

(R)∑
n=0

f�(z, n) = (−)�π
�
(

�
2 + 3

4 − z
)

�
(

1
4 − �

2 − z
) , (11)

which holds in the entire complex z plane (both sides have
the same poles and residues, see the proof in the SM [26]).
By redefining d (�)

j,i ≡ A�(2MR) jCi, j in Eq. (9) and applying
Eq. (11) in Eq. (10), Eq. (9) gives Eq. (2).

III. FURTHER COMMENTS

It is worth comparing D(E ) in Eq. (6) and Dω(E ) in
Eq. (8) in the complex E plane. 1/D(E ) has a branch cut—
known as the unitary cut—on the positive real axis due to
the −ip2�+1 term, which changes into a series of poles—
called “unitary” poles below—for 1/Dω(E ) [from the term
[ω(E ) − P(E )]/A�]. Both nonanalyticities are directly
connected to unitarity and thus independent of framework,
power counting, and fine tuning.

However, fine tuning and power counting do impact the
behavior of the ERE function [27]: in a natural case, C0, j ∼
M2�+1−2 j

H ; in a first fine-tuned case, C0,0 is enhanced; and in
a second fine-tuned case, the function has low-energy poles.
Note that Ref. [27] uses EFTs without a dimer field, and
the Lagrangian is the same for the three cases, except power
countings. One can add the couplings between B(x) and
particles to the Lagrangian, again by multiplying the short-
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distance-interaction terms with powers of ∂2B, e.g., for s
wave LI = [d̃0 + ∑

k�1 d̃0,k (M2
R∂2B/3m)k](c n)∗(c n) + · · · .

For each of these cases, the T matrix in a trap can be
computed in the same way as the free-space one [27] but
with the bare couplings substituted by the corresponding
modified ones—e.g., d̃0 → d̃0 + ∑

k�1 d̃0,k (MRω)2k—and the
unitary cut by the “unitary” poles. Since the EFT calculations
reproduce the free-space T matrix using ERE parameters
Ci=0, j , the T matrix in a trap can be parametrized in the
same way but with ω-dependent ERE parameters. The relation
between these ERE parameters and the bare couplings is
nonlinear, but the former’s ω dependence could be expanded
in terms of ω2. (This expansion must be examined with care, if
its convergence radius is much smaller than the naive estimate
based on MH , e.g., due to fine tuning of the trap’s modification
to the interaction at short distance.) Finally, by identifying the
poles of the trap T matrix, one then reproduces Eq. (2) for the
natural and the first fine-tuned case; for the second fine-tuned
case, a Laurent expansion of p2�+1 cot δ� was derived [27], so
the same expansion should be used on the LHS of Eq. (2) with
the parameters carrying ω2 corrections. In other words, in my
approach with a dimer field, resumming of d (�)

j and d (�)
j,k terms

is needed.

IV. SUMMARY

I have applied pionless EFT to two short-range interacting
particles in an external harmonic trap to derive a systemat-
ically improved BERW formula that is exact even at finite
ω. It is valid when the infrared scale of the trap (

√
MRω)

and the relative momentum p are both smaller than the
high-momentum scale set by the dynamics. This provides
a firm foundation for implementing a Luscher-formula–like

approach to connect nuclear scattering and ab initio structure
calculations. The derivation involved new coupling terms
between the background field and particles, which lead to the
improvements of the original BERW formula. Moreover, a
careful analysis of renormalization shows a nontrivial relation
between the cutoff � on relative momentum in free space and
cutoff n� on the number of radial excitations in a trap. The
renormalization procedure is further confirmed by the proof
of Eq. (11). Both aspects are instructive for deducing connec-
tions between a trapped system (with two or more clusters)
and free-space scattering and reactions for both nuclear and
cold atom physics [20]. It should also be interesting to apply
this framework to study exotic atoms1 and quantum dots [40].
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