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Optimum orientations for octupole deformed nuclei in fusion configurations
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The octupole deformation (β3) distorts the spherically symmetric or quadrupole deformed (β2) nuclei into a
pear shape. In the present work, the optimum (or uniquely fixed) orientations obtained for the ‘elongated’ and
‘compact’ fusion configurations of octupole (β3) deformed nuclei differ significantly from the ones reported
for the quadrupole deformed nuclei. The soft-pear shape nuclei with small β3 deformations show a maximum
deviation of 20◦ in the elongated and compact configurations, respectively, of oblate and prolate cases, whereas
for rigid-pear shape nuclei with strong β3 deformation, the deviation is of 90◦. The optimum orientations
obtained are also dependent on ‘+’ and ‘−’ signs of β3. Thus, octupole deformations significantly modify
the optimum orientations for the cold and hot fusion reactions and hence leads to modification of the barrier
characteristics. In addition to this, the effects of β3 have also been observed in the calculation of fusion cross
section for the formation of heavy (190Ir∗) and superheavy (268Sg∗) elements from the octupole-based reactions,
i.e., 48Ca(sph.)+142La (β2 = 0.108, β3 = −0.083) and 220Ra (β2 = 0.110, β3 = −0.125), respectively.
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The shape of an atomic nucleus in its ground state can be
spherical or deformed. The doubly magic nuclei in which neu-
tron and proton shells are completely filled are spherical. As
the nucleons (either neutron or proton) are added beyond the
magic numbers, it causes a long-range correlation and the nu-
clear shape starts deviating from spherical configuration. The
Coulomb excitation is used as a tool to measure the electric
transition probabilities of quadrupole and octupole deformed
nuclei [1–4]. The quadrupole deformed nuclei, having axial
and reflection symmetry, are the most commonly observed
deformed nuclei [5–10]. Unlike quadrupole deformation, it
is difficult to observe the effect of the reflection-asymmetry
shape in the octupole deformed nuclei. In literature [3,11–16],
there are very few experimentally observed octupole nuclei,
and limited cases are reported for proton numbers (Z ) =
34, 56, 86, and 88, and neutron numbers (N ) = 34, 56, 88,
134, and 136. The presence of octupole deformation in a
nucleus enhances the nuclear Schiff moments, which in turn,
influences the electric dipole moment. Thus, the octupole
deformed nuclei are important in the search for permanent
electric dipole moments (EDMs) [3,17]. Also, in the nuclear
fusion process, the nonzero EDMs in one of the fusing part-
ners (i.e., 16O + 144Ba and 224Ra) show a remarkable impact
on the fusion barrier and sub-barrier cross sections [4]. In the
present work, we intend to investigate the effect of higher-
order multipole deformations (up to β3) in nuclear fusion
reactions (which involve β3-deformed nuclei either as a pro-
jectile or target or both), by obtaining the optimum or uniquely
fixed orientations for the ‘elongated or cold’ and ‘compact
or hot’ fusion configurations of the colliding partners. At
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these fixed orientations, the significance of higher multipole
deformations (up to β3) can be explored in the synthesis of
heavy and superheavy elements.

The shape of a nucleus plays an important role in the
nuclear fusion dynamics, and the radius of the deformed nu-
clei is described in terms of the spherical harmonic multipole
expansion [18–21], as given below:

Ri(αi ) = R0i

⎡
⎢⎣1 +

∑
i=1,2
λ=2,3

βλiY
(0)
λi (αi )

⎤
⎥⎦. (1)

Here, R0i(= 1.28A1/3
i − 0.76 + 0.8A−1/3

i ) represents the ra-
dius of the equivalent spherical nucleus. βλi is the deformation
parameter. Y (0)

λi is the normalized spherical harmonic function
for axially symmetric shape. Here, i = 1 is labeled for pro-
jectile and i = 2 for target; λ = 2, 3 stands for quadrupole
and octupole deformations, respectively. Note that, in the
present work, the values of βλ for quadrupole (βλ=2) and
octupole (βλ=3) deformations are referred from Ref. [21].
As an illustrative case for the graphical representation of
deformed nuclei, the deduced β2- and β3-deformed shapes
of 224

88 Ra136 from Eq. (1) are presented in Fig. 1 for ‘+’
and ‘−’ signs of βλ. The quadrupole deformed nuclei, with
β2 < 0 called oblate—a discus like shape [Fig. 1(a)] and
β2 > 0 called prolate—a rugby ball like shape [Fig. 1(d)],
have symmetry around the axial and reflection axes. On the
other hand, the four possible shapes of octupole deformed
nuclei (i.e., β−

2 β−
3 , β−

2 β+
3 , β+

2 β−
3 , and β+

2 β+
3 ) break symmetry

around the reflection axis, as shown in panels (b), (c), (e), and
(f) of Fig. 1.

The axial and reflection-symmetric nuclear shapes are
found to play a very important role in the synthesis of heavy
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FIG. 1. The graphical representation of quadrupole [(a) β−
2 and

(d) β+
2 ] and octupole shapes [(b) β−

2 β−
3 , (c) β−

2 β+
3 , (e) β+

2 β−
3 & (f)

β+
2 β+

3 ] of 224
88 Ra136. Here, β±

2 = ±0.143 and β±
3 = ±0.139. Horizon-

tal and vertical axes represent the reflection [z (fm)] and axial [x (fm)]
axes, respectively.

and superheavy nuclei [22–30]. Further, in the work of Kumar
et al. [4], the effect of symmetry-breaking shapes has been
tested on the fusion barrier distributions. The sensitivity of
barrier distributions to octupole deformed targets, such as
144Ba and 224Ra, was tested using 16O-induced reactions and
the corresponding impact on the sub-barrier cross sections
was analyzed. However, the impact of symmetry-breaking
or pear shapes is not understood in the context of fusion
dynamics. In the present work, a first step has been taken by
analyzing the significance of pear-shape nuclei (belonging to
different mass regions of the Periodic Table) on the fusion
barriers at optimized orientations. For the synthesis of a
compound nucleus either via cold or hot fusion process, the
orientation of a deformed nucleus is fixed or optimized in
two ways: (i) the elongated configuration which occurs due
to the lowest barrier and largest interaction radius between the
centers of two nuclei, and (ii) the most-compact configuration
that happens at the highest barrier and smallest interaction
radius. The steps (i) and (ii) correspond to the ‘optimum
cold’ and ‘optimum hot’ fusion configurations, respectively.
In addition to the above, the effect of octupole deformations,
along with their +/− signs, have been analyzed and reported
for both the elongated and compact configurations. Note that
the nuclei with small and strong octupole deformations are
termed as soft- and rigid-pear shaped nuclei, respectively.

The interaction radius (R) and barrier height (VB) are re-
quired to determine the optimum orientations (θopt). The inter-
action radius is the distance between the centers of two collid-
ing nuclei, lying in a plane (as shown in Fig. 2), i.e., R = X1 +
s + X2 = R1(α1) cos δ1 + s + R2(α2) cos δ2. Here, R1(α1) and
R2(α2) are obtained using Eq. (1) of the radius vector. θi

represents the orientation angle, which rotate in a counter-
clockwise direction, between the symmetry and collision axes.
αi rotating in the clockwise direction is the angle that the
radius vector Ri(αi ) makes with the symmetry axis. The angle
δi between the radius vector and collision axis in terms of θi

and αi is obtained by using the minimization condition [31],

FIG. 2. Schematic configuration of (a) spherical-plus-octupole,
(b) quadrupole-plus-octupole, and (c) octupole-plus-octupole axially
symmetric deformed and oriented nuclei, lying in the same plane.

which is used to determine the minimum separation distance s
between two interacting surfaces. Different iterative methods
to fix ‘s’ are available [32,33]. In the proximity potential [see
details of Eq. (3)], the shortest distance ‘s’ is taken parallel to
the separation distance R along the collision axis. Figure 2
represents the coplanar case of (a) spherical-plus-octupole,
(b) quadrupole-plus-octupole, and (c) octupole-plus-octupole
deformed nuclei. It is important to note that the quadrupole de-
formed nuclei have the same configurations at orientations 0◦
and 180◦. However, the pear-shape or octupole nucleus does
not have similar configuration at these two extreme angles.

The barrier height (VB) (used to fix θopt) is defined as
the maximum height attained at a distance where a repulsive
Coulomb (VC) and an attractive nuclear proximity potential
(VN ) balance each other. For the higher multipole deformed
case, the Coulomb potential is given as [34]

VC = Z1Z2e2

R
+ 3Z1Z2e2

i=1,2∑
λ=2,3

1

2λ + 1

Rλ
i (αi )

Rλ+1
Y (0)

λ

×
[
βλi + 4

7
β2

λiY
(0)
λ (θi )

]
. (2)

The nuclear proximity potential is obtained from the “pocket
formula” of Blocki et al. [35]. It is a generalized formulation
for the deformed and oriented nuclei and given as [31,32,36–
39]

VN = 4π R̄γ b	(s). (3)
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FIG. 3. The octupole deformed nuclei of β+
2 β−

3 and β−
2 β−

3 shapes
belonging to different mass regions of the Periodic Table. The
deformations of more than 700 octupole nuclei are taken from the
data table of Möller et al [21].

Here, VN is a product of two terms, one (4π R̄γ b) depends
on the shape and geometry (relative orientation) of the
colliding nuclei, and another [	(s)] depends only on the
shortest distance (s) between the two colliding surfaces.
The derived proximity potential is valid for all possible
colliding partners, irrespective of the choice of minimization
conditions used to fix the quantity ‘s’ [31]. The optimum
orientations for quadrupole deformed nuclei were obtained

by Gupta et al. [25]. In the present work, the cold and hot
optimum orientations obtained, respectively, for elongated
(noncompact) and compact configurations from Eqs. (1) to
(3) are exercised for the projectile-target combinations, which
involve deformations up to β3 either in the projectile or target
or both the colliding partners. The combinations considered
are as follows: spherical+octupole (or octupole+spherical),
quadrupole+octupole (or octupole+quadrupole), and
octupole+octupole. Here, spherical nuclei are taken as
16O, 48Ca, and 208Pb, quadrupole deformed as 48Ar, 62Fe,
and 62Ni, and over 700 octupole deformed nuclei belonging
to 8 � Z � 118. The ground-state deformations up to β3

are taken from the recent Nuclear Data Table of Möller
et al. [21]. Various β3-deformed nuclei taken from [21] are
shown in Fig. 3 as a function of atomic number (Z). Figure 3
presents the two categories up to β3-deformed nuclei: (i)
the nuclei with weak or small octupole deformation than
that of quadrupole, and (ii) the nuclei with strong octupole
deformation. In the present work, the optimum orientations
determined for the above-mentioned projectile-target
combinations are further classified as soft-pear shaped
nuclei which have a small effect of β3, and rigid-pear shape
nuclei possessing a strong effect of β3.

For an illustration, Figs. 4 and 5 present the variation of
barrier height (VB) and interaction radius (R) with respect to
the orientation θ2 of deformed nuclei (as target) of 48Ca+soft-
pear (110,111,148La, 224,226,232Rn) and rigid-pear (274,276,280Rn,
276,278,280Ac) nuclear partners. For spherical projectile 48Ca,
the corresponding orientation angle θ1 can be taken as either

FIG. 4. The variation of barrier height VB and interaction radius (R1 + R2 + s) with respect to the orientation (θ2) of soft-pear shape
nuclei in 48Ca (sph) + (a) 110,111,148La and (b) 224,226,232Rn reactions. The difference between the magnitude of β2 and β3 is categorized in
three categories: (1) |β2| − |β3| � 0.2, (2) 0.1 � |β2| − |β3| < 0.2, and (3) 0 < |β2| − |β3| < 0.1. The arrows signify hot and cold optimum
configurations. The insets shows a magnified view of barriers around the hot optimum orientations.
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FIG. 5. Same as Fig. 4, but for rigid-pear shape nuclei (as target) in 48Ca (sph) + (a) 274,276,280Rn and (b) 276,278,280Ac reactions.

0◦ or 180◦. In these figures, the elongated configuration of
colliding nuclei corresponds to the lowest barrier height and
largest interaction radius, which refers to the cold optimum
orientation. For the case of compact configuration, the highest
barrier and smallest interaction radius stand for the hot opti-
mum orientation. It is worth noting that, in Data Table [21], β3

deformations are given for β−
2 β−

3 and β+
2 β−

3 shapes. The opti-
mum orientations for the rest shapes of octupole nuclei (β−

2 β+
3

and β+
2 β+

3 ) are predicted and reported in Table I by changing
the signs of available data for β−

3 . The table presents the
optimum orientations (θopt

2 ) for spherical-plus-deformed (up
to octupole) nuclei. For the case of deformed-plus-deformed

combinations, the optimum angles for β3 deformed cases
remain the same as mentioned in Table I. This is evident
from orientation conditions for octupole nuclei reported in
Fig. 2. In Table I, θ

opt
2 for the cold and hot configurations

of oblate shape (quadrupole; β−
2 ) are 90◦ and 0◦ (or 180◦),

respectively. The spherical-symmetric shapes have the same
configurations at 0◦ and 180◦, however, the asymmetric ones
have different shapes at these angles. The angular separation
between θ

opt
2 |β2 and θ

opt
2 |β3 depends on the strength and sign

of the octupole deformation. Depending on the magnitude of
β3, θ

opt
2 |β3 comes with an addition or subtraction of 2◦. For

the case of the soft-pear shape (i.e., |β2| > |β3|), θ
opt
2 for the

TABLE I. Optimum orientations for spherical-plus-deformed (up to octupole) nuclei, lying in the same plane, leading to ‘cold or elongated’
and ‘hot or compact’ configurations. Note: The optimum orientations obtained for octupole deformed nuclei are developed on the basis of
proximity theorem based nuclear potential [see Eq. (3)] in this work, but is valid for any type of nuclear interaction.

Optimum configuration θ
opt
2 (degree)

shape deformation ‘elongated or cold’ ‘compact or hot’

oblate β−
2 90◦ 0◦ or 180◦

|β2| > |β3| β−
2 β−

3 |β−
2 | − |β−

3 | � 0.2 100◦ ± 2◦a 180◦

0.1 � |β−
2 | − |β−

3 | < 0.2 105◦ ± 2◦ 180◦

0 < |β−
2 | − |β−

3 | < 0.1 110◦ ± 2◦ 180◦

soft-pear shape β−
2 β+

3 |β−
2 | − |β+

3 | � 0.2 85◦ ± 2◦ 0◦

0.1 � |β−
2 | − |β+

3 | < 0.2 80◦ ± 2◦ 0◦

0 < |β−
2 | − |β+

3 | < 0.1 75◦ ± 2◦ 0◦

rigid-pear shape β−
2 β−

3 0◦ 180◦

|β2| � |β3| β−
2 β+

3 180◦ 0◦

prolate β+
2 0◦ or 180◦ 90◦

|β2| > |β3| β+
2 β−

3 |β+
2 | − |β−

3 | � 0.2 0◦ 85◦ ± 2◦

0.1 � |β+
2 | − |β−

3 | < 0.2 0◦ 80◦ ± 2◦

0 < |β+
2 | − |β−

3 | < 0.1 0◦ 75◦ ± 2◦

soft-pear shape β+
2 β+

3 |β+
2 | − |β+

3 | � 0.2 180◦ 100◦ ± 2◦

0.1 � |β+
2 | − |β+

3 | < 0.2 180◦ 105◦ ± 2◦

|β+
2 | − |β+

3 | < 0.1 180◦ 110◦ ± 2◦

rigid-pear shape β+
2 β−

3 0◦ 180◦

|β2| � |β3| β+
2 β+

3 180◦ 0◦

aThe values of optimum orientations for soft-pear shape nuclei come within the range of θ
opt
2 ± 2◦.

051601-4



OPTIMUM ORIENTATIONS FOR OCTUPOLE DEFORMED … PHYSICAL REVIEW C 101, 051601(R) (2020)

TABLE II. The calculated fusion cross sections σfus (mb) using Wong formula [34] are given as a function of excitation energy E∗
CN [and the

corresponding center of mass energy Ec.m.(MeV)] of an excited compound nucleus 268Sg∗ [40] formed from the 48Ca (sph)+220Rn (β2 = 0.110
and β3 = −0.125) reaction.

Fusion cross sections (σ f us(mb))

β2 β2, β3

E∗
CN (MeV) Ec.m. (MeV) sph cold hot cold hot

34.67 182.06 14.821 138.132 0.831 472.519 0.129
38.67 186.06 113.204 225.469 49.567 595.856 19.751
43.67 191.06 245.612 395.265 177.279 742.765 144.819
48.67 196.06 371.322 527.931 299.821 882.181 272.095
53.67 201.06 490.780 653.998 416.269 1014.662 393.049
58.67 206.06 604.441 773.947 527.067 1140.714 508.135
63.67 211.06 712.717 888.214 632.615 1260.794 617.767
68.67 216.06 815.981 997.191 733.277 1375.316 722.325
78.67 226.06 1008.805 1200.684 921.244 1589.163 917.566

noncompact configuration of β−
2 changes with a maximum

deviation of 20◦, whereas the rigid-pear shape (|β2| < |β3|)
shifts it by 90◦. Similar results are observed for the β+

2 case,
but for compact configuration.

It is important to note that the optimum angles change
significantly with the magnitude of deformation of soft-pear
nuclei. So, the deviations observed in the cold and hot op-
timum cases for β−

2 and β+
2 , respectively, are categorized

in three regions, which show the difference between the
magnitude of β2 and β3, as (1) |β2| − |β3| � 0.2, (2) 0.1 �
|β2| − |β3| < 0.2, and (3) 0<|β2| − |β3| < 0.1. These regions
are exercised for spherical-deformed and deformed-deformed
colliding partners, which involve deformations up to β3 (see
Table I and Fig. 2 for details). The considered choices of
octupole deformation belong to different mass regions of the
Periodic Table.

The present work shows the effect of the sign and mag-
nitude of β3 deformation for both the compact and noncom-
pact fusion configurations of two colliding nuclei. Unlike
quadrupole-deformed nuclei, there are less numbers of exper-
imentally observed octupole nuclei [3,11–16]. That is why
the importance of pear-shape nuclei has not been exposed
much so far in the field of nuclear reactions. On the basis of
our theoretical work, an application of optimized orientations
for octupole deformed nuclei is made in the calculation of
fusion cross sections (σfus) using the Wong formula [34] for
the reaction 48Ca(sph)+220Rn(β2 = 0.110 and β3 = −0.125),
forming a superheavy compound nucleus 268Sg∗, as a function
of excitation energies E∗

CN (or center of mass energy Ec.m.).
The details are given in Table II. Since the experimental data
of this reaction involving the octupole deformed nuclei are not

available, so for the sake of comparison, the calculated fusion
cross section is compared with the experimental data [40] of
the 30Si + 238U reaction, which forms the same compound
nucleus, i.e., 268Sg∗. It is found that the σfus(mb) obtained for
the hot configuration of β3-deformed nuclei (220Rn) seems to
be comparable with the experimental data [40]. In addition to
this, the calculations have also been done for the formation
of a heavy compound nucleus, i.e., 190Ir∗ formed from the
48Ca(sph) + 142La(β2 = 0.108 and β3 = −0.083) reaction,
and the fusion cross sections obtained with the inclusion of β3

are comparable with the data of the 9Be + 181Ta [41] reaction,
which forms the same compound nucleus, i.e., 190Ir∗. The
results obtained for the synthesis of heavy and superheavy
elements from the octupole-based reactions can be verified
in future experiments. Also, the importance of optimized
orientations for different combinations of colliding partners
will be explored in our future work.

The inclusion of soft or rigid-pear shaped deformation of
colliding partner shows a significant impact on the fusion
barrier and the interaction radius. It is emphasised that an
appropriate choice of optimum orientations for the elongated
and compact configurations of octupole-deformed nuclei is
essential in the analysis of the nuclear fusion dynamics.
Such analysis is expected to impart significant relevance
in the synthesis and subsequent decay of heavy/superheavy
nuclei.
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