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Structure factors of the unitary gas under supernova conditions
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We compute with lattice field theory the vector and axial static structure factors of the unitary gas for arbitrary
temperature above the superfluid transition and for fugacities 0.1 < z < 1.0. Using the lattice formulation, we
calculate beyond the validity of the virial expansion, a commonly used technique in many-body physics. We find
qualitative differences in the behavior of the structure factors at high fugacity compared to the predictions of the
virial expansion. Due to the large scattering length of neutrons, we expect the unitary gas structure factors to
approximate the structure factors of hot neutron gases, and we therefore expect our calculations to be useful in
supernova simulations, where neutron gas structure factors are needed to compute in-medium neutrino-neutron
scattering rates.

DOI: 10.1103/PhysRevC.101.045805

I. INTRODUCTION

The unitary gas, a gas of spin 1/2 fermion with short
range interactions tuned so a two-body bound state exists at
threshold, is a classic example of a conformal system. The
challenge in studying it stems from the fact that it is a strongly
coupled theory for which no perturbative method applies.
At the same time, a number of physical systems in nature,
varying over a large range of energy scales, are very close
to being a unitary gas. Besides dilute atomic fermionic gases
in atomic traps, the dilute and warm neutron gas, as found
in core collapse supernova, is close to being a unitary gas.
Indeed, the conditions required for a neutron gas to be close
to the unitary gas is that the typical interparticle distance l
should lie between the scattering length a and the range of the
forces R, while, at the same time, the thermal wavelength λT

should be larger than R, so that the details of the potential
are not probed during collisions. For a neutron gas where
the scattering length is a � −23 fm and the range of the
nuclear forces R set by the inverse pion mass, R ≈ 1/mπ ≈
1.3 fm, the neutron gas will approximate well a unitary gas
over the range of densities and temperatures 0.01n0 � n �
0.1n0 (n0 ≈ 0.16/ fm3 is the density of nuclear matter) and
T � 10 MeV. This is similar to the range of densities and
temperatures found in the neutrino sphere of core collapse
supernovae [1–3], the region where neutrinos decouple from
matter during the explosion, and which is essential to the
modeling of the core collapse supernova process [4,5].

The interactions between the neutrinos and the neutron
matter are controlled not only by the cross section of neutrinos
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scattering off individual neutrons, but also by many-body ef-
fects. As a particularly dramatic demonstration of this, recent
three-dimensional (3D) supernova simulations have shown
that small changes in the scattering rate, of the order that
could be caused by in-medium effects [6], can turn a dud
into an explosion. The in-medium differential scattering rate
of neutrinos due to neutral current scattering processes in the
elastic (zero energy transfer) approximation is given by [7]

d�

d cos θ
= G2

F E2
ν

4π2

[
c2

V (1 + cos θ )SV (q) + c2
A(3 − cos θ )SA(q)

]
,

(1.1)

where Eν is the energy of the neutrino, cos θ is the scattering
angle, and q = 2Eν sin θ/2 is the momentum transfer to the
medium in which the neutrino is scattering. The functions
SV (q) and SA(q) are the vector and axial static structure
factors, respectively, and they encode the properties of the
medium. In the non-relativistic limit relevant here,1 the struc-
ture factors are defined as Fourier transforms of equal time
correlation functions

SV (q) =
∫

d3xe−iq·x〈δn(x, 0)δn(0, 0)〉,

SA(q) =
∫

d3xe−iq·x〈δsz(x, 0)δsz(0, 0)〉,

where n is the density of particles, and sz is the density of
z component of spin. In a supernova, these structure factors
are computed in a high temperature medium composed of

1The conditions of the neutrino sphere, T ≈ 5–10 MeV and n ≈
10−3–10−1n0 are such that the neutrons composing the medium can
be approximated by a nonrelativistic spin-1/2 field. In the nonrela-
tivistic limit, neutrinos couple to neutron density and spin.
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primarily neutrons; we calculate here SV and SA in a hot
medium composed of unitary fermions as a first step toward
calculating the structure factors of the neutron gas.

Various properties of the unitary gas have been computed
in the past, with particular interest in the low temperature
regime. Thermodynamic functions in the have been calcu-
lated by several groups [8–13]. These calculations are done
in the vicinity of the superfluid phase transition and in the
postulated “pseudogap” regime, both of which occur at low
temperature. The contact has also been calculated by several
groups [14–17], and the vector static structure factor has been
calculated by relatively fewer groups, with a zero temperature
quantum Monte Carlo calculation performed in [18].

Due to the unique conditions of the neutrino sphere, we
explore here a higher temperature regime than in previous
studies; as a result we probe novel regions of parameter space
of the unitary gas. Furthermore, we present here the first non-

perturbative calculation of both the axial and vector structure
factors of the unitary gas at the thermodynamic parameters
found in the neutrino sphere. In particular, we calculate the
structure factors of the unitary gas beyond the domain of
validity of the commonly used virial expansion, which has
been used to calculate structure factors perturbatively in the
past [19].2

This paper is organized as follows. In Sec. II we describe
the methods we used to numerically simulate the unitary gas.
In Sec. III we describe how we tune lattice parameters of
the Hamiltonian to satisfy the unitary condition. In Sec. IV
we derive the observables of interest. In Sec. V we show the
results of our lattice calculation and in Sec. VI we state our
conclusions.

II. FORMALISM

We will use the following lattice Hamiltonian to describe
the unitary gas:

H − μN =
∑
σ ;xy

ψ†
σ ;xkxyψσ ;y

︸ ︷︷ ︸
K

−μ
∑
σ ;x

ψ†
σ ;xψσ ;x − G


x3

∑
x

ψ
†
1;xψ1;xψ

†
2;xψ2;x︸ ︷︷ ︸

V

. (2.1)

Here, ψσ ;x annihilates a fermion with spin σ at site x on a 3D
spatial lattice, the fermionic fields are normalized such that
{ψσ ;x, ψ

†
σ ′;x′ } = δσσ ′δxx′ and the matrix kxy is given by

kxy = 1

2M
x2

∑
p

p2e−ip·(x−y), (2.2)

where p is a lattice momentum. The nonlocal hopping term
generates the correct, continuum dispersion relation, instead
of a lattice approximation that would be generated if a local
hopping term had been used. The nonlocal structure of the
Hamiltonian will not cause any difficulty in the simulations
as this term is treated in momentum space. Of course, the
hamiltonian in Eq. (2.1) is a discretized version of

H =
∫

d3x

[
ψ†

σ

(
− ∇2

2M
− μ

)
ψσ − G

2
(ψ†

σψσ )2

]
, (2.3)

which, for a properly renormalized G, describes nonrelativis-
tic fermions at unitarity. As we will show latter, if we regular-
ize the theory using the lattice discretization in Eq. (2.1), the
unitarity point is given by G ≈ 5.14435
x/M.

Our object of study is the partition function (and its deriva-
tives with respect to local spacetime sources)

Z = Tr(e−β(H−μN ) ) = Tr

(
Nt∏

t=1

e−
tK e−
tV

)
+ O(
t2),

(2.4)

2The virial expansion has also been used to compute dynamic prop-
erties of the unitary gas. For example the shear and bulk viscosities
have very recently been computed in [20].

where 
t = β/Nt .3 The numerical Monte Carlo method we
will use is very similar to the one in [21,22]. The four-fermion
interaction can be written in terms of fermion bilinears by
noting that

e−
tV =
∏

x

exp

(

tμ(n1x + n2x ) + 
tG


x3
n1xn2x

)

=
∏

x

1

f0

∫
dAxe− 1

ĝ (cosh Ax−1)e(n1x+n2x )(Ax+μ̂) (2.5)

with nσ = ψ†
σ ψσ , provided μ, G are related to μ̂, ĝ through

eμ
t = f1

f0
eμ̂ and e

G
t

x3 = f0 f2

f 2
1

, where the functions f (ĝ) are

fα (ĝ) ≡
∫ ∞

−∞
dA exp

(
−cosh A − 1

ĝ
+ αA

)
. (2.6)

Finally, using the identity

Tr
(
e− ∑

ψ
†
x (M1 )xyψy e− ∑

ψ
†
x (M2 )xyψy · · · e− ∑

ψ
†
x (MN )xyψy

)
= det (1 + e−MN · · · e−M1 ) (2.7)

for fermionic operators ψ†
x , ψy, we see that

Z ≈ Tr

(
Nt∏

t=1

e−
tK e−
tV

)
= f −NsNt

0

∫
DA e−Sg(A) det

× [1 + eNt μ̂B−1C(ANt −1) · · · B−1C(A0)]2, (2.8)

3That this trotterization is correct to O(
t2) can be seen by
noting that Tr(

∏Nt
t=1 e−
tK e−
tV ) = Tr(

∏Nt
t=1 e− 
t

2 K e−
tV e− 
t
2 K ) by

cyclicity of the trace.
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where

Bxx′ =
∑

p

e−ip·(x−x′ )eγ̂
p2

2 , C(At )xx′ = δxx′eAx,t , γ̂ ≡ 
t

M
x2
,

(2.9)
Ns is the number of spatial sites, and DA = ∏

xt dAxt .
The same partition function, up to a constant multiplicative

factor, can also be derived from the path integral over the
Euclidean lattice action:

S = 1

ĝ

∑
x,t

(cosh(Ax,t ) − 1) +
∑

σ ;x,y,t

ψ̂
†
σ ;x,t Bxyψ̂σ ;y,t

−
∑
σ ;x,t

ψ̂
†
σ ;x,t+1eAx,t +μ̂ψ̂σ ;x,t

= 1

ĝ

∑
x,t

(cosh(Ax,t ) − 1) +
∑

σ ;xtx′t ′
ψ̂

†
σ ;x,t Dxtx′t ′ψ̂σ ;x′,t ′ ,

(2.10)

where we define the fermion matrix Dxt,x′t ′ = Bxx′δtt ′ −
eAxt +μ̂δt+1t ′ (we implement antiperiodic boundary conditions
in time by taking δNt ,Nt−1 ≡ −δ0,Nt−1 .) Indeed, the integration
over Grassmann variables ψ̂ leads to∫

DADψ̂Dψ̂†e−S[A,ψ†,ψ] =
∫

DAe−Sg[A] det(D)2, (2.11)

where Sg(A) ≡ 1
ĝ

∑
x,t (cosh(Ax,t ) − 1) and D is the fermion

matrix. The determinant det D can be written, by repeated use
of the Schur complement identity, as

det D = det BNt det [1 + eNt μ̂B−1C(ANt −1) . . . B−1C(A0)]

= det (1 + U ), (2.12)

where U ≡ eNt μ̂B−1C(ANt −1) . . . B−1C(A0). Therefore, the ex-
pression for the derived from the action Eq. (2.11) is equiva-
lent to the one derived from the Hamiltonian in Eq. (2.8).

A few words about the Monte Carlo calculation of expres-
sion in Eq. (2.8) [or, equivalently, of expression Eq. (2.11)] are
in order. First, since D is a real matrix det D is real, det D2 � 0
and the theory is sign-problem free. Second, the matrix B−1 is
independent of Axt and can be computed once at the beginning
of the calculation and used thereafter. The matrices C(At )xx′ ,
which depend on Axt , are diagonal and their multiplication has
a computational cost of order O(N2

s ), where Ns is the number
of spatial sites [instead of the O(N3

s ) cost for dense matrices].
Finally, we use the hybrid Monte Carlo algorithm of [23] to
sample fields.

III. UNITARITY CONDITION

To obtain the unitary gas in the continuum and infinite
volume limits, we tune the parameters of the lattice theory
such that there is a zero energy two-particle bound state in
the 1S0 scattering channel at μ = 0. The binding energy of
the two-particle state can be determined from the position
of the appropriate pole in the scattering amplitude. For this
model, conservation of particle number allows us compute ex-
actly the scattering amplitude by summing over all Feynman
diagrams that contribute to two-particle scattering processes.

To compute the Feynman rules we start from the action
Eq. (2.11), and integrate over the auxiliary fields:∫ ∞

−∞
dA exp

(
−cosh A − 1

ĝ

)
exp[−ψ̂†eA+μ̂ψ̂]

=
∫ ∞

−∞
dA exp

(
−cosh A − 1

ĝ

)

×
[

1 − ψ̂†eA+μ̂ψ̂ + 1

2
(ψ̂†eA+μ̂ψ̂ )2

]

= f0 − f1ψ̂
†eμ̂ψ̂ + 1

2
f2(ψ̂†eμ̂ψ̂ )2

= f0 exp

[
f1

f0
ψ̂†eμ̂ψ̂ +

(
f2

f0
− f 2

1

f 2
0

)
1

2
(ψ̂†eμ̂ψ̂ )2

]
. (3.1)

The action in terms of Grassmann variables is then

S f =
∑

σ ;x,y,t

ψ
†
σ ;x,t Bxyψσ ;y,t − eμ̂ f1

f0

∑
σ ;x,t

ψ
†
σ ;x,t+1ψσ ;x,t − e2μ̂

×
(

f2

f0
− f 2

1

f 2
0

)∑
x,t

ψ
†
1;x,t+1ψ1;x,tψ

†
2;x,t+1ψ2;x,t . (3.2)

For an infinite lattice in both space and time, the momentum
space action reads

S f =
∫ π

−π

d4 p ψ†
σ (ω, p)[eγ̂ 
p· 
p/2 − eiω+μ̂+ln f1/ f0 ]ψσ (ω, p)

− e2μ̂

(
f2

f0
− f 2

1

f 2
0

)∫ π

−π

d4 p1d4 p2d4 p3d4 p4 δ4

× (p1 + p3 − p2 − p4)eiω1+iω3

×ψ
†
1 (p1)ψ1(p2)ψ†

2 (p3)ψ2(p4) , (3.3)

leading to the Feynman rules in Fig. 1.
In terms of diagrams, the scattering amplitude is given

by the sum of graphs shown in Fig. 2. Choosing kinematics
(E/2, 
p) and (E/2,−
p) on the external legs, the scattering
amplitude has the analytic expression

−A = 1[
e2μ̂

( f2

f0
− f 2

1

f 2
0

)
eiE

]−1 − L(E )
, (3.4)

where

L(E ) =
∫ π

−π

dq0

2π

∫ π

−π

d3q

(2π )3

× G(q0 + E/2, 
q)G(−q0 + E/2,−
q) (3.5)

is the fermion-fermion loop iterated in the bubble sum. To
work at μ = 0, using the map derived above, we set μ̂ =
log f0

f1
and the unitarity condition, that the amplitude has a pole

at E = 0 at zero density, becomes

f2 f0

f 2
1

− 1 = 1

L(0)
with L(0) =

∫ π

−π

d3q

(2π )3

1

eγ̂ q2 − 1
.

(3.6)

Given any γ̂ = 
t/(M
x2), this condition fixes the lattice
coupling ĝ. In principle we could enforce this condition for
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FIG. 1. Feynman rules corresponding to the action in Eq. (3.3) for propagator and vertex.

any value of 
x and 
t and then choose any sensible path
to take the limit 
t → 0, 
x → 0. In practice we find it
advantageous to fix 
x, fix G from the unitarity condition

MG


x
= lim

γ̂→0

1

γ̂ L(0)
= 5.14435 . . . , (3.7)

and take the limit 
t → 0 while ĝ is fixed by 
tG

x3 = log( f2 f0

f 2
1

).
This has the advantage that for fixed 
x, the discretized
partition function has O(
t2) errors, since for this parameter
choice the partition function derived from the action is the
same as the approximation introduced in Eq. (2.4). This is the
condition we use to fix couplings in Monte Carlo calculations.
Of course, a subsequent spatial continuum limit 
x → 0 is
required to get the final results.

IV. OBSERVABLES

We compute three observables: the density, the vector
structure factor, and the axial structure factor. The density is
defined through the standard thermodynamic relation, and has
the path integral expression

〈n〉 = 1

V

∂

∂μ
(T log Z )

= 1


x3

1

Ns

1

Z

∫
DAe−Sg(A) det(1 + U (A))2 Tr

× [1 − (1 + U (A))−1]

= 1


x3

1

Ns
〈Tr[1 − (1 + U )−1]〉 , (4.1)

where U (A) = eNt μ̂B−1C(ANt −1) . . . B−1C(A0). Our results
are derived using cubic boxes with Nx sites in each dimension,
so the total number of sites in a time slice is Ns = N3

x .
The vector and axial structure factors are defined as Fourier
transforms of equal time correlation functions of the density

n = n1 + n2 and spin sz = n1 − n2, respectively:

SV (q) =
∑

x


x3e−iq·x〈δn(x, 0)δn(0, 0)〉 ,

SA(q) =
∑

x


x3e−iq·x〈δsz(x, 0)δsz(0, 0)〉 . (4.2)

Here, we have defined the Heisenberg operators

δn(x, t ) = n(x, t ) − 〈n〉 ,

δsz(x, t ) = sz(x, t ) − 〈sz〉 . (4.3)

It is possible to derive path integral expressions of SV (q)
and SA(q) by taking derivatives with respect to local sources.
Coupling the theory to a spacetime dependent source on the
t = 0 time slice, then setting the source to a constant after
taking derivatives, one derives the following path integral
expressions:


x6〈n1(x, 0)n1(0, 0)〉

= 1

Z

∫
DAe−Sg(A) det(1 + U (A))2

×[(1 − (1 + U (A))−1)00(1 − (1 + U (A))−1)xx]

+ 1

Z

∫
DAe−Sg(A) det(1 + U (A))2

×[
(1 − (1 + U (A))−1)0x(1 + U (A))−1

x0

]
,


x6〈n1(x, 0)n2(0, 0)〉

= 1

Z

∫
DAe−Sg(A) det(1 + U (A))2

×[(1 − (1 + U (A))−1)00(1 − (1 + U (A))−1)xx] . (4.4)

Since the action is invariant under SU (2) spin rotations
on the lattice (and in the continuum) 〈n1(x, 0)n1(0, 0)〉 =
〈n2(x, 0)n2(0, 0)〉 and 〈n1(x, 0)n2(0, 0)〉 = 〈n2(x, 0)n1(0, 0)〉,
therefore the two correlation functions above are the only two

−A = + + + ...

FIG. 2. The scattering amplitude A is given by the bubble sum above. To tune to unitarity on the lattice, we compute the bubble sum with
lattice vertices and propagators on a lattice of infinite spacetime extent, corresponding to the zero temperature and infinite volume limits, and
demand that there exist a zero energy bound state.
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TABLE I. Three sets of parameters used in finite volume, space and time continuum extrapolations.

Volume extrapolation Space continuum extrapolation Time continuum extrapolation


x = 0.4, 
t = 0.01, Nt = 40, 
x = 0.4 5
Nx

, 
t = 0.01, Nt = 40, 
x = 0.4, Nx = 7, 
t = 0.01 40
Nt

, Nt = 40,

Nx = 5, 7, 9 Nx = 5, 7, 9 Nt = 40, 60, 80

independent density-density correlation functions. We com-
pute these in our lattice calculations, then form the necessary
linear combinations to compute SV and SA. We also take
advantage of translation invariance and hypercubic rotation
invariance by summing over all such transformations in our
calculation. This process reduces stochastic fluctuations of
observables.

V. RESULTS

Since the interactions in a unitary gas do not have any
scale (the scattering length is infinite) the static structure
factors SV,A of the unitary gas are function of the momentum
q, chemical potential μ, temperature T , and mass M. The
dimensionless quantity SV,A/n (where n is the density of the
system) is therefore a dimensionless function of only two
variables

SV (q)/〈n〉 = FV

(
q

qT
, z

)
,

SA(q)/〈n〉 = FA

(
q

qT
, z

)
(5.1)

with qT = √
6MT and z = eμ/T . The presence of a lattice

introduces three unphysical scales, the finite volume and the
lattice spacings 
t and 
x. However, we will demonstrate
below that our calculations are performed at large enough
volumes and small enough 
t,
x that the dependence of FV,A

on qT 
x and T 
t can be neglected.
Since the supernova collapse simulations are an important

motivation for our calculations, we will concentrate on a
subset of parameters relevant for the neutrino propagation
on the neutrino sphere, namely, densities in the range of
0.001n0 < n < 0.03n0 (where n0 is the density of nuclear
matter) and 3 MeV < T < 10 MeV, corresponding to fugac-
ities in the 0.01 � z � 3 range. This range of values is moti-
vational only. A realistic evaluation of structure factors to be
used in supernova modeling should include a more realistic
neutron-neutron interaction (with a nonzero scattering length
and effective range) as well as a small amount of protons and
light nuclei. This corrections will be investigated in a future
study.

In order to explore the uncertainties arising from the finite
volume and lattice spacing employed in our calculations we
first compute the structure factors for two values of the
fugacity, z = 0.1 and z = 1.0 using three sets of parameters
(and M = 1, T = 4.13) shown in Table I. We use lattices with
odd number of points in the spatial direction because such
lattices converge to the infinite volume limit faster than those
with even number of sites. For nuclear astrophysics applica-
tions it is useful to think of the systems of units we use as
corresponding to 
x = 1 = 5 fm, M = 1 = 938 MeV,
t =

0.01 = 1.19 fm. The results we find are shown in Figs. 3
and 4. They show that the calculations performed on the
smallest volume and coarsest lattices are already sufficient to
determine the infinite volume and continuum results, within
the statistical errors. The only exception are the results for the
densest systems in our range (z = 1.0). Only the two finest
lattice results for SA (
x = 0.4 × 5/7, 0.4 × 5/9), agree well
within the statistical uncertainties while the results SV are
different for all three values of 
x. Even in this case, however,
signs of convergence are clear, with the difference between
the 
x = 0.4 and 
x = 0.4 × 5/7 results being much smaller
than between 
x = 0.4 × 5/7 and 
x = 0.4 × 5/9. Due to
this dependence on 
x, we assign a systematic uncertainty of
5% on the results for the vector structure factors at the largest
values of z.

The asymptotic limit of the structure factors are known on
general grounds:

SV (q → ∞) = SA(q → ∞) = n . (5.2)

Since we are limited by the lattice cutoff to values of q <

π/
x we can see that this limit is reached in less dense
system (z = 0.1) but larger values of the momentum would
be needed to verify it at more dense systems (z = 1.0), as can
be seen on Fig. 5. In the same figure we compare our results
to some known analytic results. The SV,A(q → 0) limits are
determined by thermodynamics

SV (q → 0) = T
( ∂n

∂μ

)
,

SA(q → 0) = T
( ∂s

∂h

)
. (5.3)

These have been computed up to fourth order in the virial
expansion [1] and are shown in blue. The second and fourth
order virial results are shown as small segments on the vertical
axis. The second order in the virial expansion of a free gas can
also be easily computed and is shown in Fig. 5 as a grey dotted
line. Virial results for nonzero value of the momentum are not
yet available. However, a calculation up to second order in
z using a pseudopotential interaction (tuned to unitarity) and
finite values of q is available [19] and shown as dashed lines in
Fig. 5.4 As expected, all virial calculations agree well with our
data at small (z � 0.5) but differ significantly at larger values
of z.

Finally, we have compared with a recent calculation by
Jensen et al. [9] of the thermodynamics of the unitary gas,

4The main motivation of the calculation in [19] was the computa-
tion of dynamical structure factors which cannot be computed with
Monte Carlo methods of the kind discussed in this paper.
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FIG. 3. Extrapolations of the vector (top row) and axial (bottom row) structure factors at z = 1.0. The first column are infinite volume
limits, the second column is the 
x → 0 limit and the last column is the 
t → 0 limit. The structure factors vary little as the infinite volume
and time continuum limit are taken. There is more variation of the structure factors as the spatial continuum limit is taken, however the the
structure factors appear more or less converged on the finest lattice spacing.

including the SA(q → 0) limit. The authors explore the pa-
rameter space 0.1 < T/TF < 0.4, where TF = (3π2n)2/3/2M.
We extended our calculations to lower temperatures to be able
to compare with their values. Jensen et al. report SA(q →
0)/S0 = 0.403(1) at T/TF = 0.353 (where S0 = 3n

2
T
TF

) on 93

lattices, while we obtain SA(q → 0)/S0 = 0.39(1) at T/TF =
0.371(5). Our results therefore appear consistent with those

of Jensen et al. Another calculation [13] reports values about
20% higher.

Our main results are summarized in Fig. 6. The error bar
include the statistical errors but it should be kept in mind
that an additional systematic for the vector structure factor
reaching up 5% for the highest z = 1.0 should be added to
the uncertainties.

FIG. 4. Extrapolations of the vector (top row) and axial (bottom row) structure factors at z = 0.1. The first column are infinite volume
limits, the second column is the 
x → 0 limit and the last column is the 
t → 0 limit. There is little variation in the structure factors for all
three limits.
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FIG. 5. Lattice results vs virial expansion calculations. We plot the scaled structure factors as a function of q/qT for z = 0.1 (left) and
z = 1.0 (right). The red data is the vector structure factor and the black is the axial structure factor. The dashed curves are calculations using
a combination of the virial expansion to second order plus the pseudopotential method [19]. The dashed gray lines are the static structure
factors computed in the free theory to O(z2), scaled by the density computed to O(z2). It is clear that, even at small z, interactions produce a
sizable correction to the structure factors. The short horizontal bands in blue at small q/qT are the various sum rules, calculated to O(z2) and
O(z4) as discussed in the text. The horizontal line at SV,A(q)/〈n〉 = 1 corresponds to the q → ∞ limit derived from operator product expansion
(OPE) [24].

VI. CONCLUSIONS

We computed the static structure factors of the unitary gas
in the 0.6TF � T � 6TF using Monte Carlo methods, corre-
sponding to fugacities in the 0.1 � z � 1.0 range. The unitary
gas at low densities is a reasonable model for a dilute neutron
gas and this range of fugacities is the one relevant to the
neutrino sphere (the region around a protoneutron star where
neutrinos decouple) in core collapse supernova. The structure
factors are the relevant many-body information to describe the
interactions between the neutrinos and the neuron matter that
drives the explosion. We compared our lattice calculations of
the static structure factors with an O(z2) calculation using the
pseudopotential approach. We find reasonable agreement with
the second order virial expansion at z = 0.1, while we find
qualitative differences between the lattice and virial expansion
at z = 1.0. In particular, the dramatic bump in the O(z2)
vector structure factor at small q/qT is in fact not present.

We demonstrate that, for all densities explored, both the
infinite volume and the 
t → 0 limits are very well behaved,
with negligible variation in both structure factors. At small
density, the 
x → 0 limit also yields negligible variation
in the structure factors. At z = 1.0, the densest system we
consider, we see some variation in the structure factors at
the coarsest lattice spacings. We expect, however, that our
calculations are within 5% of the exact result at our finest
lattice spacing.

We also leave for future work an extension of this calcula-
tion to hot neutron matter that will require a more realistic
interaction between neutrons, at least one leading to finite
scattering lengths and non-zero effective range. We also leave
for future work a more careful 
x → 0 extrapolations. Such
extrapolations require calculations on larger lattices, which
are more expensive, but there is no fundamental difficulty in
doing so.

FIG. 6. Scaled structure factors for different fugacities as a function of the momentum in units of the thermal momentum qT .
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