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Background: In order to study structure of protoneutron stars and those in subsequent cooling stages, it
is of great interest to calculate inhomogeneous hot and cold nuclear matter in a variety of phases. The
finite-temperature Hartree-Fock-Bogoliubov (FT-HFB) theory is a primary choice for this purpose; however,
its numerical calculation for superfluid (superconducting) many-fermion systems in three dimensions requires
enormous computational costs.
Purpose: To study a variety of phases in the crust of hot and cold neutron stars, we propose an efficient method
to perform the FT-HFB calculation with the three-dimensional (3D) coordinate-space representation.
Methods: Recently, an efficient method based on the contour integral of Green’s function with the shifted
conjugate-orthogonal conjugate-gradient method was proposed [Phys. Rev. C 95, 044302 (2017)]. We extend
the method to finite temperature, using the shifted conjugate-orthogonal conjugate-residual method.
Results: We benchmark the 3D coordinate-space solver of the FT-HFB calculation for hot isolated nuclei and
fcc phase in the inner crust of neutron stars at finite temperature. The computational performance of the present
method is demonstrated. Different critical temperatures of the quadrupole and the octupole deformations are
confirmed for 146Ba. The robustness of the shape coexistence feature in 184Hg is examined. For the neutron-star
crust, deformed neutron-rich Se nuclei embedded in the sea of superfluid low-density neutrons appear in the fcc
phase at a nucleon density of 0.045 fm−3 and a temperature of kBT = 200 keV.
Conclusions: The efficiency of the developed solver is demonstrated for nuclei and inhomogeneous nuclear
matter at finite temperature. It may provide a standard tool for nuclear physics, especially for the structure of hot
and cold neutron-star matter.
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I. INTRODUCTION

The mean-field approaches, such as Hartree-Fock (HF) and
Hartree-Fock-Bogoliubov (HFB) theories, have been playing
a central role in studying heavy nuclei and nuclear matter [1].
They are especially useful for studies of ground (stationary)
states. In addition, the time-dependent extension of the mean-
field theories is straightforward and provides a powerful tool
for studies of nuclear response and reaction [2–5]. Includ-
ing the pairing correlations, a number of calculations have
been performed with the BCS approximation [6–9]. Recently,
studies of three-dimensional (3D) nuclear dynamics using
the full time-dependent Hartree-Fock-Bogoliubov (TDHFB)
method have become available [10–17]. The time evolution
of the TDHFB states requires calculations of all the time-
dependent quasiparticle states, which is computationally very
demanding.

The static HFB calculation seems to be easier than the
time-dependent problems, at first sight. However, in fact, it
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is often more difficult than the the time-dependent calcula-
tion. This is due to the requirement of the self-consistency
between the HFB state and the HFB Hamiltonian. A standard
procedure is as follows. The diagonalization of the HFB
Hamiltonian produces the quasiparticle states. The quasi-
particle states define the normal and pair densities which
determine the HFB Hamiltonian. Iteration is necessary to
reach the self-consistency. For the full 3D unrestricted calcu-
lations, finding a self-consistent solution is not as simple as it
might seem. It involves successive diagonalization of matrices
with large dimension N , which normally needs operations
of O(N3). Most of available codes of the HFB calculation
utilize some symmetry restriction on the densities, such as
spatial symmetry and time-reversal symmetry, in order to
reduce both the matrix dimension and the number of iterations
[18–20]. The HFB program HFODD [21] is able to perform
the unrestricted calculation; however, since it is based on the
harmonic-oscillator basis, it is difficult to calculate nuclei near
the neutron drip line and various phases of nuclear matter in
neutron stars.

Recently, a novel computational approach to the HFB
iterative problem was proposed by Jin, Bulgac, Roche, and
Wlazłowski [22]. In contrast to the conventional methods,
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this approach has several favorable aspects, especially in
large-scale calculations. (1) The densities are calculated by
the contour integral in the complex energy plane, without
quasiparticle wave functions. The matrix diagonalization is
unnecessary. (2) It is based on the shifted Krylov subspace
method for calculating the Green’s function G(r, r′; z) with
complex energies z. The shifted method allows us to ob-
tain simultaneously the Green’s function with different en-
ergies z. (3) It is suited for parallel computing, because the
Green’s function G(r, r′; z) is calculable independently for
each point r′. In Ref. [22], they explored the shifted conjugate-
orthogonal conjugate-gradient (COCG) method, and showed
a few benchmark calculations with the coordinate-space rep-
resentation.

In this paper, we propose an extension of the 3D
coordinate-space HFB method of Ref. [22] to that at finite
temperature, namely the finite-temperature HFB (FT-HFB)
calculation. The FT-HFB method is valuable for studying a
variety of aspects in nuclear and many-fermion systems. For
example, the structure and the composition of (proto)neutron
stars depend on the equation of state (EOS) of baryonic matter
at finite temperature. In order to calculate inhomogeneous
baryonic matter in the crust region, the 3D coordinate-space
FT-HFB solver is highly desired. For experimental studies
on nuclear structure, giant dipole resonances in hot nuclei
provide us information on nuclear shapes at finite temperature
[23]. In order to study shape change together with pairing
and shell quenching in hot nuclei, the FT-HFB is a valuable
tool. The shape dynamics at finite temperature may play an
important role in induced fission processes [24,25]. The FT-
HFB method has also been utilized to study the level density
[26,27], which is one of the key ingredients in the statistical
reaction model.

The paper is organized as follows. In Sec. II, we recapit-
ulate the FT-HFB theory, then we present a computational
method of the contour integral to produce the normal and
abnormal densities. It is slightly more complicated than the
zero-temperature HFB method in Ref. [22], because we need
to remove contributions from the Matsubara frequencies on
the imaginary axis. In Sec. III, we demonstrate some numer-
ical results. Finally, the summary and the perspectives are
given in Sec. IV.

II. THEORETICAL FORMULATION

In this section, we first recapitulate the FT-HFB theory,
then we introduce the Green’s function method for that.
Readers are referred to Ref. [22] for the zero-temperature
formulation.

A. Finite-temperature HFB theory

Considering a system of spin-1/2 particles with the volume
V and the Hamiltonian Ĥ , in a thermal equilibrium with a heat
bath of temperature T and chemical potential μ. The grand
partition function is given by Z (T,V, μ) ≡ Tr[e−β(Ĥ−μN̂ )],
where β ≡ (kBT )−1, and N̂ ≡ ∑

σ

∫
V ψ̂†(rσ )ψ̂ (rσ )dr is the

particle number operator. In nuclear physics, we need to treat
both protons and neutrons (isospin degrees of freedom). This

extension can be easily done by incorporating both proton and
neutron densities when we calculate potentials in Eq. (13).

The mean-field approximation replaces Ĥ − μN̂ by the
HFB Hamiltonian which is given in terms of independent
quasiparticles. Using the quasiparticle number operator n̂k ≡
γ̂
†
k γ̂k with the creation and annihilation operators (γ̂ †

k , γ̂k ),
The HFB Hamiltonian is simply written as

ĤHFB = E0 − μN0 +
∑
k>0

Ekn̂k, (1)

where E0 is the energy of the HFB ground state |0〉 with
the particle number N0 = 〈0| N̂ |0〉, and k > 0 means the
quasiparticle states with positive energies Ek > 0. The state
|0〉 is defined as the quasiparticle vacuum.

γ̂k |0〉 = 0 for k > 0. (2)

The trace in the partition function is calculated by summing
up expectation values with respect to all the n-quasiparticle
states with n = 0, 1, . . . :

ZHFB(T,V, μ) = e−β(E0−μN0 )
∏
k>0

(1 + e−βEk ), (3)

which leads to the density matrix

ρ̂HFB(T,V, μ) = e−βĤHFB

ZHFB(T,V, μ)
=

∏
k>0 e−βEk n̂k∏

k>0(1 + e−βEk )
. (4)

Thus, the one-body densities are given as

ρT (ξ, ξ ′) ≡ Tr[ρ̂HFBψ̂†(ξ ′)ψ̂ (ξ )]

=
∑
k>0

{ fkuk (ξ )u∗
k (ξ ′) + (1 − fk )v∗

k (ξ )vk (ξ ′)}, (5)

κT (ξ, ξ ′) ≡ Tr[ρ̂HFBψ̂ (ξ ′)ψ̂ (ξ )]

=
∑
k>0

{(1 − fk )v∗
k (ξ )uk (ξ ′) + fkuk (ξ )v∗

k (ξ ′)}, (6)

where ξ indicates the coordinate and spin, ξ = (r, σ ), and the
quasiparticle occupation is given by

fk ≡ 1

eβEk + 1
. (7)

For Eqs. (5) and (6), we use the Bogoliubov transformation,

ψ̂†(ξ ) =
∑
k>0

[u∗
k (ξ )γ̂ †

k + vk (ξ )γ̂k], (8)

ψ̂ (ξ ) =
∑
k>0

[uk (ξ )γ̂k + v∗
k (ξ )γ̂ †

k ]. (9)

Using the matrix notation of

Uξk = uk (ξ ), Vξk = vk (ξ ), fkk′ = fkδkk′ , (10)

Eqs. (5) and (6) can be denoted in a compact form:

ρT = U f U † + V ∗(1 − f )V T ,

κT = U f V † + V ∗(1 − f )U T . (11)

The quasiparticle energies and wave functions are obtained
by solving the HFB equation[

h 


−
∗ −h∗

][
uk

vk

]
= Ek

[
uk

vk

]
, (12)
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where h(ξ, ξ ′) and 
(ξ, ξ ′) are formally given by the deriva-
tives of the energy density functional (EDF) E[ρ, κ],

h(ξ, ξ ′) = δE
δρ(ξ ′, ξ )

− μδ(ξ, ξ ′),


(ξ, ξ ′) = δE
δκ∗(ξ, ξ ′)

. (13)

Here, we use a simplified notation δ(ξ, ξ ′) ≡ δ(r − r′)δσσ ′ .

B. HFB Hamiltonian for Skyrme EDF

In the Skyrme functional, the nuclear energy is written
as E [ρ, κ] = ∫

drE (r), where the energy density is given by
the sum of kinetic, nuclear potential, Coulomb, and pairing
energies:

E = Ekin + Enuclear + ECoul + Epair. (14)

The energy density is a functional of local densities, such
as normal density ρq(r), kinetic density τq(r), spin-current
density Jq(r), and the pair (abnormal) density νq(r), with
q = n and p. These densities are calculated from the one-body
densities, Eqs. (5) and (6). The energy density of the Coulomb
exchange is given by the Slater approximation,

ECoul(r) = e2

2

∫
ρp(r)ρp(r′)

|r − r′| dr′ − 3e2

4

(
3

π

)1/3

ρ4/3
p (r).

(15)

The pairing energy density depends on the local pairing
density,

Epair (r) =
∑

q=n,p

geff (r)|νq(r)|2, (16)

where the effective pairing strength geff is determined via
a renormalization [28] of the bare pairing strength g0. The
adopted value for g0 in the present paper is given in Sec. III.
The local nature of the Skyrme energy density leads to the
HFB equation (12) in the coordinate representation of the
form

HHFB

⎛
⎜⎝

uk↑
uk↓
vk↑
vk↓

⎞
⎟⎠ = Ek

⎛
⎜⎝

uk↑
uk↓
vk↑
vk↓

⎞
⎟⎠, (17)

HHFB =

⎛
⎜⎜⎝

h↑↑ h↑↓ 0 


h↓↑ h↓↓ −
 0
0 −
∗ −h∗

↑↑ −h∗
↑↓


∗ 0 −h∗
↓↑ −h∗

↓↓

⎞
⎟⎟⎠. (18)

Here and hereafter in this section, the isospin index q = n, p
is omitted for simplicity. hσσ ′ ≡ h(ξ, ξ ′) of Eq. (13) with
ξ = (rσ ) and ξ ′ = (r′σ ′), which are diagonal in the coordi-
nate except for the derivative terms. 
 is strictly diagonal,

(r, r′) = 
(r)δ(r − r′) with


(r) = geff (r)ν(r). (19)

All the local densities are calculable from the one-body
densities, (5) and (6), at temperature T :

ρ(r) =
∑

σ

ρT (rσ, rσ ), (20)

ν(r) = κT (r ↑, r ↓), (21)

τ (r) =
∑

σ

∇1 · ∇2ρT (rσ, rσ ), (22)

J(r) = 1

2i
(∇1 − ∇2) × s(r, r) (23)

where ∇1(2) indicates the differentiation on the first (second)
argument r of the densities. Here, the spin density s(r, r′) is
defined in terms of the Pauli matrix σ as

s(r, r′) =
∑
σσ ′

ρT (rσ, r′σ ′) 〈σ ′| σ |σ 〉 . (24)

In the present paper, we assume time-reversal symmetry.
We use the following relations to reduce the computational
cost:

ρT (rσ, r′σ ′) = sσ sσ ′ρ∗
T (rσ̄ , r′σ̄ ′), (25)

κT (rσ, r′σ ′) = sσ sσ ′κ∗
T (rσ̄ , r′σ̄ ′), (26)

where σ̄ = (↓,↑) for σ = (↑,↓), and s↑ = −s↓ = 1. Thus,
we need to calculate only those with σ ′ =↑. All the time-odd
densities vanish.

C. Green’s functions and local densities

Now, let us present a method using the Green’s function to
calculate the local densities at finite temperature. The Green’s
functions of the HFB equation (17),

G(z) =
(

Guu(z; ξ, ξ ′) Guv (z; ξ, ξ ′)
Gvu(z; ξ, ξ ′) Gvv (z; ξ, ξ ′)

)
, (27)

are defined by a solution of

(zI − HHFB)G(z) = I, (28)

with a proper boundary condition. Here, I is the unit matrix.
Each element of Eq. (27) can be expressed as

Guu(z; ξ ; ξ ′) =
∑
k>0

[
uk (ξ )u∗

k (ξ ′)
z − Ek

+ v∗
k (ξ )vk (ξ ′)

z + Ek

]
,

Guv (z; ξ, ξ ′) =
∑
k>0

[
uk (ξ )v∗

k (ξ ′)
z − Ek

+ v∗
k (ξ )uk (ξ ′)

z + Ek

]
,

Gvu(z; ξ, ξ ′) =
∑
k>0

[
vk (ξ )u∗

k (ξ ′)
z − Ek

+ u∗
k (ξ )vk (ξ ′)
z + Ek

]
,

Gvv (z; ξ, ξ ′) =
∑
k>0

[
vk (ξ )v∗

k (ξ ′)
z − Ek

+ u∗
k (ξ )uk (ξ ′)
z + Ek

]
.

(29)

For zero temperature, the densities are given by Eq. (11)
with fkk′ = fkδkk′ = 0, namely, ρ0 = V ∗V T and κ0 = V ∗U T .
Consider a contour C1 that encloses the section [−Ecut,−E1]
on the real axis, and C2 that does the section [E1, Ecut], where
E1 > 0 is the lowest quasiparticle energy and Ecut is the cutoff
energy of the pairing model space. It is easy to find from
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C
Re z

Im z

Ecut‒Ecut

ih

‒ih

iωn

Ek

FIG. 1. Schematic illustration of the contour C and poles of
the Green’s function G(z) (closed circles) and of the Fermi-Dirac
function fT (z) (open circles) in the complex plane.

Eq. (29) that the generalized density matrix R0 = RT =0 can
be calculated as

1

2π i

∫
C1

G(z)dz =
(

ρ0 κ0

−κ∗
0 1 − ρ∗

0

)
≡ RT =0, (30)

1

2π i

∫
C2

G(z)dz =
(

1 − ρ0 −κ0

κ∗
0 ρ∗

0

)
= I − RT =0. (31)

Utilizing this property, the authors in Ref. [22] proposed a
coordinate-space solver of the HFB calculation.

1. Finite temperature and Matsubara frequencies

The idea to extend this formulation to finite temperature is
formally straightforward. Using the Fermi-Dirac distribution
function fT (z) ≡ (1 + eβz )−1,

1

2π i

∮
C1+C2

fT (z)G(z)dz = RT , (32)

1

2π i

∮
C1+C2

fT (−z)G(z)dz = I − RT , (33)

where we assume that the contour C1 (C2) is confined in the
left (right) half-plane of Re(z) < 0 [Re(z) > 0]. Note that
fT (−z) = 1 − fT (z). Equations (32) and (33) are formally
correct; however, they are not so useful in actual numerical
calculations. Since we do not know the lowest quasiparticle
energy E1, we must adopt the contours, C1 and C2, passing
through the origin z = 0. The Fermi-Dirac function fT (z) has
poles at the Matsubara frequencies z = iωn = i(2n + 1)π/β

with the integer n ≷ 0. At lower temperature (β → ∞), the
Matsubara poles are closer to the origin, and the numerical
integration becomes more demanding.

The integrands in Eqs. (32) and (33) are smooth functions
far away from the real axis. Even near the Matsubara frequen-
cies on the imaginary axis, the absolute value is reduced as
1/z. Therefore, numerically, the contour integration is easier
with a contour further away from the real axis. We consider
here the contour C that encloses the section [−Ecut, Ecut] on
the real axis and [−ih, ih] on the imaginary axis. See Fig. 1.
Since the function fT (±z) has residues ∓β−1 at z = iωn, we

have

RT = 1

2π i

∮
C

fT (z)G(z)dz + 1

β

∑
|ωn|<h

G(iωn), (34)

I − RT = 1

2π i

∮
C

fT (−z)G(z)dz − 1

β

∑
|ωn|<h

G(iωn). (35)

The sum of these leads to an identity for the Green’s function,

1

2π i

∮
C

G(z)dz = I. (36)

According to Eqs. (34) and (35), the normal and pair
densities are calculated in various ways. Since we parallelized
the computation with respect to the second argument ξ ′, each
processor can calculate column vectors of Eq. (27) with fixed
ξ ′. For instance, from Eq. (35),

ρ∗
T (ξ, ξ ′) = 1

2π i

∮
C

Gvv (z; ξ, ξ ′)
1 + exp (−βz)

dz

− kBT
∑

|ωn|<h

Gvv (iωn; ξ, ξ ′), (37)

−κT (ξ, ξ ′) = 1

2π i

∮
C

Guv (z; ξ, ξ ′)
1 + exp (−βz)

dz

− kBT
∑

|ωn|<h

Guv (iωn; ξ, ξ ′), (38)

with

ωn = ±πkBT,±3πkBT,±5πkBT, . . . . (39)

The densities, Eqs. (37) and (38), can be obtained from
the solution of the linear equations (28) without finding wave
functions (uk (ξ ), vk (ξ )). We parametrize the contour C as an
ellipse of

z(θ ) = Ecut cos θ + ih sin θ, (40)

where 0 � θ � 2π and the height of ellipse h is chosen as the
midpoint of two neighboring Matsubara frequencies,

h = 2mπ/β, m = integer. (41)

In practice, the contour integral is performed by divid-
ing C into four intervals, (0, π/2), (π/2, π ), (π, 3π/2),
and (3π/2, 2π ). We adopt the Gauss-Legendre integration
for each of these intervals. The value of the integrand
rapidly changes near the end points of these intervals,
φ = 0, π/2, π, 3π/2, 2π , where the number of the Gauss-
Legendre integral points increases.

It is instructive to consider the limit of T → 0. In this limit,
the Fermi-Dirac function fT (z) is nothing but a step function,
θ ( − Re(z)). It vanishes in the half-plane of Re(z) > 0, while
it is unity in the other half-plane of Re(z) < 0. Thus, in
the first term of Eq. (34), the integrand can be replaced by
G(z), then the closed contour C can be changed into the open
one (π/2 < θ < 3π/2) for Re(z) < 0 and terminated on the
imaginary axis at z = ±ih. It is known that the summation
with respect to the Matsubara frequencies becomes the in-
tegration of the Green’s function on the imaginary axis at
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C’

Re z

Im z

Ecut‒Ecut

ih

‒ih

Ek

FIG. 2. Schematic illustration of the contour C′ and poles of the
Green’s function G(z) (closed circles).

T → 0. So, the second term of Eq. (34) becomes

1

2π i

∑
|ωn|<h

G(iωn)
2π i

β
→ 1

2π i

∫ ih

−ih
G(z)dz, β → ∞.

(42)

Therefore, Eq. (34) at the zero-temperature limit is identical
to

RT = 1

2π i

∫
C′

G(z)dz, (43)

where the contour C is shown in Fig. 2. In this way, we
recover the zero-temperature formula, (30). Following the
same argument, it is easy to obtain Eq. (31) from the zero-
temperature limit of Eq. (35).

2. Kinetic and spin-current densities in parallel computing

The numerical calculation is parallelized by allocating the
calculation of densities ρT (ξ, ξ ′) and κT (ξ, ξ ′) with different
r′ of the second argument ξ ′ = (r′, σ ′) on different processors.
Therefore, it is useful to eliminate the derivative ∇2 in expres-
sions of Eqs. (22) and (23). The calculation of the spin-current
density J(r) is done by

Jx(r) = − Im

[
∂

∂y1
ρ∗

T (r ↑; r ↑) − ∂

∂y1
ρ∗

T (r ↓; r ↓)

]

+ Re

[
∂

∂z1
ρ∗

T (r ↓; r ↑) − ∂

∂z1
ρ∗

T (r ↑; r ↓)

]
, (44)

Jy(r) = Im

[
∂

∂x1
ρ∗

T (r ↑; r ↑) − ∂

∂x1
ρ∗

T (r ↓; r ↓)

]

− Im

[
∂

∂z1
ρ∗

T (r ↓; r ↑) + ∂

∂z1
ρ∗

T (r ↑; r ↓)

]
, (45)

Jz(r) = Im

[
∂

∂y1
ρ∗

T (r ↓; r ↑) + ∂

∂y1
ρ∗

T (r ↑; r ↓)

]

− Re

[
∂

∂x1
ρ∗

T (r ↓; r ↑) − ∂

∂x1
ρ∗

T (r ↑; r ↓)

]
. (46)

The densities of Eqs. (20), (21), and (23) at r = r′ can be
computed by each processor without any communication.
The local densities necessary for construction of the HFB

Hamiltonian, ρ(r), ν(r), and J(r), are obtained locally (r = r′)
at each processor then broadcast to all the processors. The
kinetic density of Eq. (22) is calculated according to

τ (r) = 1

2
∇2ρ(r) − Re

∑
σ

∇2
1ρT (rσ ; rσ ). (47)

Here, every processor calculates the Laplacian in the first
term after broadcasting ρ(r), then constructs an updated HFB
Hamiltonian.

D. Shifted-COCR method

In numerical calculations, the most computationally de-
manding parts are solutions of the linear equations (28). This
is suitable for massively parallel computing, because Eq. (28)
can be solved independently for different values of r′ in the
calculation of G(z; ξ, ξ ′).

Another advantageous feature of Eq. (28) is that the
shifted Krylov subspace method is applicable to these linear
equations, in which a family of the linear algebraic equa-
tions (28) for different values of z are solved simultane-
ously. For the numerical integration in Eqs. (34) or (35),
we need to solve Eq. (28) with many values of z, at dis-
cretized contour points zm (m = 0, 1, . . . , M ). In Ref. [22],
the shifted conjugate-orthogonal conjugate-gradient (COCG)
method [29] is adopted. In this paper, we use a similar but dif-
ferent algorithm, the shifted conjugate-orthogonal conjugate-
residual (COCR) method [30]. The COCG method is an
efficient method for positive-definite symmetric matrices. In
the present case, the Hamiltonian HHFB is clearly not positive
definite, and we have found that the COCR method is more
stable than the COCG method for our purpose. Here, we
briefly present the algorithm of the shifted-COCR method.

Given a symmetric matrix A, we solve the reference equa-
tion

Ax = b, (48)

and shifted equations

(A + σ I )xσ = b, (49)

where σ is a complex scalar factor. In the present case, σ is
nothing but z. Note that, hereafter, the superscript σ indicates
merely the index, not the power σ . The reference equation
(48) is solved by the COCR method. An approximate solution
xk+1 and its residual vector rk+1 in the (k + 1)th iteration are
calculated according to the following iterative algorithm:

αk = (Ark, rk )/(Apk, Apk ), (50)

xk+1 = xk + αk pk, (51)

rk+1 = rk − αkApk, (52)

βk = (Ark+1, rk+1)/(Ark, rk ), (53)

pk+1 = rk+1 + βk pk, (54)

Apk+1 = Ark+1 + βkApk, (55)

with the initial conditions x0 = 0, r0 = b, α0 = 1, β0 = 0.
Here, the inner product (v, v′) is defined by a scalar product
vT · v′ without complex conjugation. The matrix-vector oper-
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ation is necessary only for evaluating Ark , which is the most
time-consuming part in this iteration.

We can also solve shifted equations (49) using the COCR
method with the same initial condition as the reference sys-
tem. However the residual vectors in shifted systems have a
linear relation with the reference system,

rσ
k = ρσ

k rk, (56)

ρσ
k+1 = ρσ

k ρσ
k−1αk−1

ρσ
k−1αk−1(1 + αkσ ) + αkβk−1

(
ρσ

k−1 − ρσ
k

) . (57)

with the initial conditions ρσ
0 = 1. This linear relation reduces

the computational cost from O(N2M ) to O(N2 + NM ), where
N is the dimension of the matrix A and M is the number of
complex shifts σ , because we can avoid the time-consuming
calculation of the matrix-vector product Arσ

k . The coefficients,
ασ

k and βσ
k , are also obtained from those of the reference

system. Thus, for the shifted systems, we simply perform the
following calculations:

ασ
k = ρσ

k+1

ρσ
k

αk, (58)

βσ
k =

(
ρσ

k+1

ρσ
k

)2

βk, (59)

xσ
k+1 = xσ

k + ασ
k pσ

k , (60)

pσ
k+1 = rσ

k − ασ
k pσ

k . (61)

The iterations for the reference and the shifted systems are
performed simultaneously.

In practice, it is unnecessary to calculate all the elements
of xσ

k and pσ
k for the shifted systems (σ = 0), because wanted

physical quantities are often sparse in the coordinate space.
For instance, any quantity local in the coordinate requires us
to calculate only one component for each r′. This is similar to
the reduced-shifted-COCG method proposed in Ref. [31].

The COCR method is designed for a symmetric matrix A,
but the HFB Hamiltonian is a Hermitian matrix, in general.
Following Ref. [22], we also transform linear Hermitian prob-
lems into real symmetric ones. Dividing a Hermitian matrix
A into real and imaginary parts, the equation Ax = b can be
converted into(

Re[A] −Im[A]
Im[A] Re[A]

)(
Re[x]
Im[x]

)
=

(
Re[b]
Im[b]

)
. (62)

Because ReA (ImA) is symmetric (antisymmetric), the matrix
in Eq. (62) is a real symmetric matrix. The shifted systems
with complex scalar shifts σ are defined as(

σ I + Re[A] −Im[A]
Im[A] σ I + Re[A]

)(
x1

x2

)
=

(
Re[b]
Im[b]

)
, (63)

where x1 and x2 are no longer real but complex vectors,
namely, (x1, x2) = (Re[x], Im[x]). Nevertheless, the solution
of the original problem (σ I + A)x = b is constructed by the
relation x = x1 + ix2.

The performance of the shifted-COCR method will be
shown in Sec. III B. In practice, it is not necessary to obtain
a full convergence of the shifted-COCR method with all the
complex shifts σ , because what we need is the accurate

estimation of the densities, ρ and κ , by the contour integration,
Eqs. (37) and (38). Therefore, we calculate the densities
every 100 iterations, and estimate the difference between
the “old” and the “new” densities, δρ ≡ ρ (new) − ρ (old) and
δν ≡ ν (new) − ν (old). Then, the convergence condition is set as
follows:

|δρ(r′ ↑)| < ε1, |δν(r′))| < ε′
1, (64)

∣∣∣∣ δρ(r′ ↑)

ρ (old)(r′ ↑)

∣∣∣∣ < ε2,

∣∣∣∣ δν(r′)
ν (old)(r′)

∣∣∣∣ < ε′
2, (65)

with ε1 = 10−8 fm−3, ε′
1 = 10−6 fm−3, and ε2 = ε′

2 = 10−6.
We stop the COCR iteration when either Eq. (64) or (65) is
satisfied.

E. Self-consistent solutions

The iterative calculation is performed according to the
following procedure.

(1) Input the initial densities and chemical potentials,
V (i) = {ρ (i)(r), ν (i)(r), τ (i)(r), J (i)(r), μ(i)

q } (i = 0).
(2) Calculate the HFB Hamiltonian, hσσ ′ (r) and 
q(r),

and the total energy E (i).
(3) Solve the shifted linear equations (28) to determine

the Green’s functions G(z).
(4) Calculate the contour integrals of Eqs. (37) and (38)

to determine the densities and the chemical poten-
tials, V (i)

out . The updated chemical potential is given by
(μq)(i)

out = μ(i)
q + α0 tanh [α1/α0(〈Nq〉 − Nq)].

(5) Calculate the energy Eout. If the convergence condi-
tion, |Eout − E (i)

in | < η, is satisfied, the iteration stops.
(6) Determine the new densities and chemical potentials

using the modified Broyden mixing, V (i+1) = V (i) +∑i
j=i−n w j[V

( j)
out − V ( j)]. Go back to Step 2.

In Step 4, α0 and α1 are the parameters to ensure conver-
gence, whose typical values are α0 = 5 and α1 = 0.1–1.0. In
Step 5, the parameter η is taken as η = 10−5 × A MeV for
finite nuclei (Secs. III C and III D) and η = 10−6 × A MeV
for the inner crust of neutron stars (Sec. III E), where A is
the number of nucleons. In Step 6, w j are obtained by the
modified Broyden method [32]. We store the densities and
the chemical potentials of the last n iterations for the Broyden
mixing, with n = 10.

III. NUMERICAL RESULTS

We present a few benchmark results of the FT-HFB cal-
culation in this paper, with some numerical details and its
computational performance. In the following calculations, the
Skyrme energy density functional of SLy4 [33] is adopted.
The pairing energy functional is in the form of Eq. (16) with
the bare pairing strength g0 = −250 MeV fm3. This pairing
energy functional well reproduces the two-neutron separation
energies for Sn and Pb isotopes [34]. We adopt either a
square or a rectangular box with a square mesh, and impose a
periodic boundary condition.
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A. Symmetry restriction

We have constructed a computer program of the full 3D
coordinate-space representation. This is used for the FT-HFB
calculation for 146Ba in Sec. III C. However, in order to
speed up the calculation, reflection symmetry with respect to
the three planes x = 0, y = 0, and z = 0 is assumed in the
calculations in Secs. III D and III E.

In the conventional calculation of the quasiparticle wave
functions, to be benefited by this restriction, we need to take
care of symmetry properties of the wave functions. Each of
the three types of reflection produces eigenvalues (quantum
numbers) of πk = ±1 (k = x, y, z) for the wave functions.
Therefore, the HFB Hamiltonian is block diagonal into eight
blocks, which means that the dimension of each block is
1/8 of the full 3D Hamiltonian matrix. The coordinate space
can be also reduced into the first octant (x > 0, y > 0, z > 0)
however, we need to impose a proper symmetry on the wave
functions of each block: (πx, πy, πz ) = (+ + +), (+ + −), ...,
(− − −).

In contrast, the symmetry restriction can be treated much
more easily in the present Green’s function method, because
we do not calculate the quasiparticle wave functions. The
Hamiltonian is invariant with respect to the three reflections.
Therefore, the Hamiltonian in the first octant can be simply
copied to the other spatial regions. Then, Eq. (28) is solved
only for G(z; ξ, ξ ′) with r′ in the first octant. This reduces the
computational cost to 1/8 of the full calculation. Here, we do
not need to take care of different symmetry properties of the
wave functions, according to their quantum numbers.

B. Performance of shifted-COCR method

In this paper, we adopt the shifted-COCR method for the
solution of the linear algebraic equations (28). In contrast, the
shifted-COCG method was adopted for the zero-temperature
HFB calculation in Ref. [22]. First, let us show differences in
their convergence behavior.

In Fig. 3, we show an example of convergence properties.
The HFB Hamiltonian HHFB at the converged solution is
used for showing performance of the shifted-COCR and the
shifted-COCG methods to solve Eq. (28). The pure imaginary
shift of z = ih = 16π ikBT (θ = π/2) with the COCR method
shows the fastest convergence. The convergence behavior at
z = 0 best demonstrates superiority of the COCR method over
the COCG. The convergence with the COCR is faster by
about 1000 iterations than the COCG. Moreover, it indicates
a monotonic decrease of the residue, while the COCG shows
a strong oscillating behavior. In general, we may expect that
the convergence is slower when the shift z is closer to the pole
of the integrand. In this respect, z = Ecut represents the worst
case. In fact, Fig. 3 shows that the solution at z = Ecut = 100
MeV (θ = 0) fails to converge within 4000 iterations in both
the COCG and COCR methods, and the residue |rσ

n /rσ
0 | keeps

oscillating between 10−2 and 1. This is not a serious problem
in the calculation, because the quasiparticle states with Ek ≈
Ecut hardly contribute to the densities. In addition, moving z
away from the real axis, the convergence property is quickly
improved.

FIG. 3. The convergence behavior of the shifted-COCG and
shifted-COCR methods for solutions of Eq. (28). Three typi-
cal points, z(θ = 0) (COCG/COCR: purple/green) and z(π/2)
(orange/black) on the contour of Eq. (40) with Ecut = 100 MeV and
h = 16πkBT , in addition to the reference point z = 0 (red/blue),
have been taken as examples. The norms of the residual vectors
|rσ

k /rσ
0 | are shown as functions of the iteration number. This is a case

of the FT-HFB calculation for the center of mass of a 146Ba nucleus
(r′ = rc) with a temperature of kBT = 200 keV. The mesh and box
sizes are the same as those in Sec. III C.

We calculate the normal and pair densities, ρ(r ↑) and ν(r),
using the Green’s function G(z) at each iteration before the
convergence. In Fig. 4, we show the densities as functions
of the iteration number for the COCG and COCR methods.
Note that the HFB Hamiltonian HHFB is not updated during the
iteration. The densities are well converged after a few hundred
iterations in the scale of Fig. 4. Again, the convergence is
faster and more stable with the COCR method than with the
COCG. Even though the shifted-COCR/COCG methods fail
to converge at z very near Ecut, the densities constructed by
the contour integrals, Eqs. (37) and (38), can be accurately
estimated. To achieve the convergence condition of Eq. (64),
typically about 3000 iterations are required.

In order to reach the final self-consistent solution, another
self-consistent iteration is necessary. In Sec. II E, we present
the iterative procedure with the Broyden mixing to obtain
the self-consistent solutions. This self-consistent iteration re-
quires about several tens to hundreds of iterations.

Finally, let us give short comments on comparisons with
other typical approaches to the HFB problem. The standard
approach to the HFB calculation is based on the diagonal-
ization of the HFB matrix (see Sec. I). This approach be-
comes more and more difficult for larger systems without the
symmetry restriction, because the diagonalization of matrices
with dimension N requires a computational task of O(N3).
The comparison with the shifted-COCG method (T = 0) is
shown in Ref. [22]. The performance of the present shifted-
COCR method at T = 0 should be similar to that of the
shifted-COCG at T = 0. Another well-known approach to
the HFB calculation is the gradient method [35–37]. The
gradient method does not require the diagonalization of the
HFB matrix; however, it directly treats the wave functions
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FIG. 4. The convergence behavior of (a) the neutron spin-up
density ρ(r′ ↑, r′ ↑) and (b) the neutron pair density ν(r′) = κ (r′ ↑
, r′ ↓) at the center of mass of a 146Ba nucleus (r′ = rc) with kBT =
200 keV. The shifted-COCG method is shown by red lines and the
shifted-COCR method by black lines. See text for details.

(uk, vk ) which are basically N × N matrices. Therefore, in
parallel computing, it involves a large amount of communi-
cation to broadcast these to all the processors. Furthermore,
the orthonormalization of the wave functions is necessary,
which numerically costs O(N3). The present shifted-COCR
method needs the broadcast of local densities (“vectors,” not
“matrices”) only, and does not require the orthonormalization
procedure since we do not treat the wave functions. See also
Sec. II C 2.

C. Octupole deformation in 146Ba at finite temperature

We perform the FT-HFB calculation for the neutron-rich
nucleus 146Ba as the first benchmark calculation. A full 3D
box of lattice size 25 × 25 × 30 with a square mesh of 
x =

y = 
z = 1 fm is used in the calculation. The calculations
are performed with a temperature spacing of kBT = 100 keV.

The nucleus of 146Ba has Z = 56 and N = 90, which is in
a region of strong octupole correlations [38]. The excitation
energies of negative-parity states decrease as the neutron num-
ber approaches to 90, and a signature of the octupole instabil-
ity, alternating parity bands, was observed in experiments at
spins higher than I = 6 [39,40]. This is due to particle-hole
octupole correlations associated with π [h11/2(d5/2)−1] and
ν[i13/2( f7/2)−1]. Thus, we may expect an octupole deformed
shape in the ground state of the zero-temperature HFB theory

(a)

(b)

(c)

FIG. 5. (a) Calculated neutron average paring gap,
(b) quadrupole and octupole deformation parameters, and
(c) specific heat as functions of temperature for 146Ba. In panel
(b), the quadrupole deformation of the dripped uniform neutrons is
shown by the solid line.

[41] and it is interesting to see effects of finite temperature on
its structure.

The proton pair density is calculated to vanish. We show
the neutron average pairing gap in Fig. 5(a). The neutron
gap is finite at low temperature but disappears at kBT =
500 keV. In this calculation, the transition from super to nor-
mal phases for neutrons is predicted at 400 < kBT � 500 keV.
In contrast, the nuclear deformation is more stable against
the temperature. At the ground state (zero temperature), the
calculation predicts finite values for both quadrupole and
octupole deformations, β2 ≈ β3 ≈ 0.13. Figure 5(b) shows
the temperature dependence of these deformation parameters.
At kBT = 500 keV, where the neutron pairing collapses, the
temperature effects on β2 and β3 are very little. They are
almost identical to their values at T = 0. Beyond kBT =
500 keV, the octupole deformation starts decreasing and be-
comes negligibly small at kBT > 1 MeV. The quadrupole
deformation is even more robust but suddenly vanishes at
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FIG. 6. Nucleon density profiles in the z-x plane for 146Ba at
different temperatures: (a) T = 0, (b) kBT = 0.8 MeV, (c) kBT = 1.2
MeV, and (d) kBT = 1.6 MeV.

kBT = 1.6 MeV. At temperature between 1 and 1.6 MeV, the
nuclear shape is almost prolate. Beyond kBT = 1.6 MeV, the
shape becomes spherical. These shape changes can be clearly
seen in the density distributions in Fig. 6.

The quadrupole deformation is finite and slightly increases
with temperature at kBT > 1.6 MeV. This is due to effects
of dripped neutrons at finite temperature. Because of the
adopted rectangular box, the dripped “free” neutrons form a
rectangular shape which has a nonzero value of β2. To confirm
this, assuming a uniform density distribution of neutrons with
calculated density values at the box boundary, we estimate the
β2 value which is shown by the solid line in Fig. 5(b).

Finally, the specific heat CV (T ) is shown in Fig. 5(c).
The specific heat is estimated by the finite difference of the
total energies calculated at kBT ± 0.01 MeV. The calculated
CV (T ) is approximately a linear function of the temperature
T , similar to that of the Fermi gas. However, at very low
temperature T ≈ 0, because of the proton shell gap and the
neutron pairing gap, it deviates from linear dependence. In
addition, we observe sudden decreases of CV (T ) at special
points of T , where abrupt changes in nuclear structure take
place. The first drop is associated with the collapse of the
neutron pairing at kBT ≈ 500 keV, while the second one is
associated with the shape change from prolate to spherical at
kBT ≈ 1.6 MeV. On the other hand, the disappearance of the
octupole shape around kBT ≈ 1 MeV has very little influence
on it. In contrast, the transition to the spherical shape (kBT ≈
1.6 MeV) leads to a significant impact on the specific heat, a

FIG. 7. Potential energy surface, calculated with the constrained
FT-HFB method, as a function of the quadrupole deformation, for
184Hg. Panel (a) is the total energy E , while panel (b) is the free
energy F . See text for details.

sudden decrease by more than 30 %. This may be due to an
enhanced shell effect by the recovered spherical symmetry.

D. Shape coexistence in 184Hg at finite temperature

The neutron-deficient Hg isotopes are known to be typical
nuclei showing shape coexistence phenomena [42–44]. Much
evidence of the shape coexistence has been observed, includ-
ing coexisting bands with different deformation in even iso-
topes and anomalously large isotope shifts in odd-A isotopes.
Note that the Hg isotopes also exhibit superdeformed bands at
high spins [45] on which octupole vibrations are built [46].

We have studied the temperature effect on the shape co-
existence with the FT-HFB calculation using a constraint on
the quadrupole deformation β20. A 3D box of lattice size 303

with a square mesh of 
x = 
y = 
z = 1 fm is adopted
however, we assume reflection symmetry with respect to the
three planes (x = 0, y = 0, and z = 0) and reduce the com-
putational cost. The calculations are performed with different
temperatures: kBT = 0, 0.4, 0.8, 1.6, 3.2 MeV. A quadratic
constraint on the deformation β20 is used with a spacing of

β20 = 0.04.

Figure 7 shows the temperature dependence of the potential
energy surface for 184Hg. The total energy E (β, T ) is calcu-
lated at each deformation and temperature, then, the energy
relative to the value at β20 = 0 is plotted in the panel (a),
while the free energy F (β, T ) is shown in the panel (b). We
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can clearly see two local minima at prolate and oblate shapes.
At T = 0, the deformation and the pairing gaps at the oblate
minimum are calculated as β20 ≈ −0.1, 
n ≈ 1.4 MeV, and

p = 0. Those at the prolate minimum are β20 ≈ 0.2, 
n ≈
0.8 MeV, and 
p ≈ 1 MeV. The shape coexistence feature
is quite robust against the finite temperature. Although the
lowest minimum at zero temperature is in the oblate side, the
prolate minima is more stable as increasing the temperature.
The oblate minima are lower than the prolate ones at kBT �
400 keV, while the prolate becomes lower at kBT � 800 keV.
The main features are the same for E (β, T ) and F (β, T ),
except that a shallow prolate minimum exists for E (β, T ) but
not for F (β, T ).

It is interesting to see that the nonzero temperature does
not necessarily favor the spherical shape. The potential energy
surfaces E (β, T ) at kBT = 0.8 and 1.6 MeV indicate deeper
prolate minima than that of zero temperature. This is also
true for the free energy F (β, T ) at kBT = 0.8. This may be
partially due to the pairing collapse at finite temperature. For
instance, at kBT = 0.8 MeV, the proton pairing vanishes for
all the values of deformation β20. The neutron pairing gap still
has nonzero values but only in the vicinity of the spherical
shape (β20 ≈ 0). The vanishing pairing may lead to stronger
shell energy that favors the deformation.

We should note that the calculation of the free energy F
requires an additional computation. In order to calculate F ≡
E − T S, we evaluate the entropy S using the formula

S = −kB

∑
k>0

[ fk ln fk + (1 − fk ) ln(1 − fk )], (66)

where fk is given by Eq. (7) in which the quasiparticle
energies Ek are defined as the eigenvalues of the constrained
HFB Hamiltonian, namely, the mean-field approximation to
Ĥ − μN̂ − λQ̂20. In the present Green’s function method,
since we do not explicitly calculate the quasiparticle states
(and their energies), an additional diagonalization of the con-
strained HFB Hamiltonian is needed after the self-consistent
iteration converges. We use the SCALAPACK library for this
diagonalization.

E. Neutron-star inner crust at finite temperature

Neutron stars are a sort of macroscopic nucleus in the
universe. They are assumed to be synthesized by explosive
stellar phenomena, such as supernovae. Protoneutron stars are
hot, but subsequently cool down to become cold neutron stars.
It would be of great interest to study neutron star matter at
a variety of temperatures, especially various inhomogeneous
phases predicted to exist in the crust region near the surface.

Microscopic studies of the inner crust are theoretically very
challenging, because the calculation requires a large space
in which extremely neutron-rich nuclei and free neutrons
coexist. In addition, the energy difference between different
configurations is very small. Thus, to predict the structure of
the inner crust, large-scale and highly accurate calculations
are needed.

In this subsection, we present our first benchmark FT-HFB
calculation for the inner crust. The full 3D box of (45 fm)3

with a square mesh of 
x = 
y = 
z = 1.5 fm is reduced
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FIG. 8. Nucleonic density distribution in the inner crust of neu-
tron stars at beta equilibrium with the neutron chemical potential
μn = 10 MeV and the proton chemical potential μp = −58.5 MeV:
(a) 3D plot of baryon density, (b) 2D contour plot of neutron density
in the z = 0 plane, and (c) the same as (b) but for protons.

by 1/8 assuming reflection symmetry. The calculation is
performed for a temperature of kBT = 200 keV. We use an
initial state for the iteration with the face-centered cubic(fcc)
configuration. The adopted square box contains 4 nuclei.
We fix the neutron chemical potential as μn = 10 MeV, and
determine the proton chemical potential μp to satisfy the beta
equilibrium condition, μp + mpc2 + μe = μn + mnc2, where
the electrons are assumed to be uniform with the chemical
potential μe =

√
mec4 + p2

F c2 − e2(3ne/π )1/3.
The self-consistent procedure converges to a fcc state

shown in Fig. 8(a). The neutron and proton density distribu-
tions in the z = 0 plane are shown in Figs. 8(b) and 8(c), re-
spectively. The protons are localized and form a fcc crystalline
structure. The neutrons are dripped with a large number of free
neutrons. The average nucleon density is 0.045 fm−3, and the
lowest neutron density between the nuclei is 0.036 fm−3.
The obtained average pairing gap for neutrons is 1.48 MeV
and the proton gap vanishes. The proton and neutron numbers
in the box shown in Fig. 8(a) are approximately 136 and
3936. Since the protons are all confined in the crust nuclei, we
may say that emergent nuclei are very neutron-rich Se nuclei
(Z = 34).

The most interesting feature we find in this result is that
those Se nuclei are well deformed. This can be clearly seen
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FIG. 9. Calculated neutron gap 
n(r) on the x axis. The protons
are clustered near the both edges.

in the density distributions on the z = 0 plane shown in
Figs. 8(b) and 8(c). They have prolate shape. We naively
expect that, near the transition to the rod phase, elongated
nuclei may appear, which is supported by the present micro-
scopic calculation. This is certainly a self-consistent solution
of the FT-HFB with the beta equilibrium at kBT = 200 keV.
However, we have not confirmed yet that this is really the
optimal configuration at the given density. Further studies
with various configurations, such as bcc and pasta phases, is
necessary to find the structure of the inner crust.

In this state, the protons are in the normal phase, while
the neutrons are in the superfluid phase. These superfluid
neutrons are assumed to be responsible for pulsar glitches
[47]. Figure 9 shows the neutron pairing gap 
n(r) on the
x axis. The left and the right ends correspond to the center of
the Se nuclei, while only dripped neutrons exist near the center
(x = 0). The magnitude of the gap is about 1 MeV for dripped
neutrons and even larger inside the nuclei. This is somewhat
opposite to our naive expectation, since the pairing gap cal-
culated with the bare force for uniform matter is larger at low
density (ρn < ρ0 ≈ 0.08 fm−3) than at high density (ρn � ρ0)
[48,49]. However, it is premature to conclude the pairing
property in the inner crust from this calculation. Since the
present pairing energy functional is based on a simple zero-
range interaction fitted to specific regions of finite nuclei [34],
it is desirable to test the other functionals as well. Especially,
the explicit density dependence of the coupling constant g0

may be necessary for more realistic simulations [50,51].

IV. SUMMARY

We have developed the finite temperature Hartree-Fock-
Bogoliubov (FT-HFB) method in the three-dimensional

coordinate-space representation with the Green’s function.
This is an extension to finite temperature of the method
proposed in Ref. [22]. In this method, neither quasiparticle
wave functions nor the quasiparticle energies are necessary
for the calculation. Thus, we can avoid the diagonalization of
the HFB Hamiltonian. Various kinds of densities are evaluated
by the contour integral in the complex energy plane. For the
calculation of the Green’s function with the complex energy,
we have tested two different shifted Krylov methods: shifted-
COCG and shifted-COCR methods. We find that the shifted-
COCR methods are more stable and reach convergence faster.
However, since the performance of the shifted-COCG and
shifted-COCR may vary according to systems, energy func-
tionals, space size, etc., we cannot conclude in this study that
the COCR is always superior to the COCG. Further study is
desired to find the best algorithm.

For the benchmark calculations, we showed the structure
change in 146Ba as a function of the temperature. The octupole
deformation at the ground state disappears at kBT ≈ 500
keV, while the quadrupole deformation is much more stable
and persists up to kBT ≈ 1.6 MeV. The effect of the shape
transition to spherical is clearly visible in its specific heat.

The shape coexistence in 184Hg is also studied with the
FT-HFB calculation. It is somewhat surprising that the de-
formation minima become even deeper at finite temperature
compared to those at zero temperature. The shape coexistence
is quite robust with respect to the increasing temperature and
seems to sustain up to kBT ≈ 2–3 MeV. The barrier height
between prolate and oblate shapes is calculated to be more
than 3 MeV, even at kBT = 1.6 MeV.

The structure of inner crust of (hot and cold) neutron
stars is a prime motivation of the present development [52].
The method has a significant advantage over the conventional
methods for systems requiring such large spatial lattice sizes.
For a benchmark, we have presented a beta-equilibrium fcc
state at a nucleon density of 0.045 fm−3 and kBT = 200 keV.
Neutron-rich Se nuclei emerge and they are well deformed in
the prolate shape. The transition from spherical to deformed
nuclei is an interesting issue in the future study of the structure
of the inner crust, as a function of density and temperature.
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