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We report benchmark calculations of the energy per particle of pure neutron matter as a function of the
baryon density using three independent many-body methods: Brueckner–Bethe–Goldstone, Fermi hypernetted
chain/single-operator chain, and auxiliary-field diffusion Monte Carlo. Significant technical improvements
are implemented in the latter two methods. The calculations are made for two distinct families of realistic
coordinate-space nucleon-nucleon potentials fit to scattering data, including the standard Argonne v18 interaction
and two of its simplified versions, and four of the new Norfolk �-full chiral effective field theory potentials.
Primarily because of the advancements in the auxiliary-field diffusion Monte Carlo, we observe good agreement
among the three many-body techniques up to nuclear saturation density—the maximum difference in the energy
per particle is within 1.5 MeV for all the potentials we consider. At higher densities, the divergences become
more important, and are mainly driven by the Fermi hypernetted chain/single-operator calculations. We also
study the connection between nucleon-nucleon scattering data and the energy per particle of pure neutron matter.
Our results suggest that fitting to higher-energy nucleon-nucleon scattering helps reduce the spread of energies
among the models.
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I. INTRODUCTION

The quest for understanding static and dynamic properties
of nuclear systems in terms of nucleon-nucleon (NN) and
three-nucleon (3N) forces, and consistent electroweak cur-
rents has long been considered one of the most challenging
efforts of nuclear theory. Over the past 20 years, establishing
this microscopic approach to nuclear physics has undergone
substantial progress, driven by two major factors. First, since
the advent of chiral effective field theory (χEFT), originally
proposed by Weinberg in the early 1990s [1,2], we can now
systematically develop nuclear many-body interactions [3–6]
and consistent electroweak currents [7–13] that are rooted
in the fundamental symmetries exhibited by the underlying
theory of quantum chromodynamics. Second, present com-
putational resources allow us to employ these interactions
and currents in sophisticated many-body methods to com-
pute a variety of nuclear systems with controlled approxi-
mations [14–20]. The chief challenge for this microscopic
approach is to accurately describe atomic nuclei—including
their spectra, form factors, transitions, low-energy scattering,
and response—while simultaneously predicting properties of
infinite matter, e.g., pure neutron matter (PNM), relevant to
the structure and internal composition of neutron stars.

The past few years have marked the birth of the multimes-
senger astronomy era [21], which has opened new windows to
probe the constituents of matter and their interactions under

extreme conditions that cannot be reproduced in terrestrial
laboratories. The first direct detection of gravitational-waves
from coalescing neutron stars by the LIGO-Virgo interfer-
ometer network [22,23], followed by a short burst of γ rays
and later optical and infrared signals–the event GW170817
[21,24]—effectively constrains their masses, spins and tidal
deformability [25–27]. In addition, the multiple measure-
ments of two-solar masses neutron stars [28–32] are posing
intriguing questions about how dense matter can support such
large masses against gravitational collapse.

The equation of state (EoS) of strongly interacting matter
is a thermodynamic relation between the energy (pressure),
the baryon density, and the temperature. While the description
of core-collapse supernovae and the formation and cooling
of proton-neutron stars requires the finite-temperature EoS,
already a few minutes after its birth, neutron star properties
can be safely described using the EoS of cold (zero tempera-
ture) neutron-rich matter [33]. In the region between the inner
crust and the outer core (∼0.5 − 2ρ0, with ρ0 = 0.16 fm−3

being the nuclear saturation density), neutron stars are mainly
composed of neutrons, in β equilibrium with a small fraction
of protons, electrons and muons. Different scenarios have
been suggested to model the high-density regime, from nu-
cleon degrees of freedom only but with many-nucleon forces
and relativistic effects [34–44], to including the formation of
heavier baryons containing strange quarks [45–49], to quark
matter [50–53], or other more exotic condensates [54–56].
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While the determination of the maximum mass of a neutron
star requires knowing the EoS up to several times nuclear
saturation density, it is the region up to ∼2ρ0 that effectively
controls their radii. In this density regime, the PNM EoS
can play an important role for testing the microscopic model
Hamiltonians fit to NN scattering data and few-body observ-
ables against astrophysical constraints. However, microscopic
calculations of the EoS with reliable error estimates up to
2ρ0 provide useful insights on how measurements of the tidal
polarizabilities from binary neutron-star mergers can unravel
properties of matter at supranuclear densities [26].

In addition to the uncertainties arising from modeling
the nuclear Hamiltonian, which can in principle be assessed
by testing the order-by-order convergence of the chiral ex-
pansion [57], microscopic calculations of the EoS are also
affected by the approximations inherent to the method used
for solving the many-body Schrödinger equation. To gauge
them, we perform benchmark calculations of the energy per
particle of pure neutron matter as a function of the baryon
density using three independent many-body methods: the
Brueckner–Bethe–Goldstone (BBG) [15,58], the Fermi hy-
pernetted chain/single-operator chain (FHNC/SOC) [59,60],
and the auxiliary-field diffusion Monte Carlo (AFDMC)
[61]. In our analysis, we consider the widely used Argonne
v18 (AV18) NN potential [62]—and its simplified versions
AV8′ and AV6′ [63]—and the recently derived Norfolk NV2
χEFT NN forces [64,65], which explicitly include the �

isobar intermediate state. While the BBG method is not
limited to interactions that are local in coordinate space,
the latter are simpler to treat in continuum quantum Monte
Carlo (QMC) methods because the two-body propagator is
essentially positive definite [66]. FHNC/SOC is also ideally
suited to deal with local potentials, as nonlocalities introduce
high-order derivatives that are nontrivial to account for in the
hypernetted chain equations.

The scope of this work is not to achieve a realistic descrip-
tion of the EoS of PNM, which would require the inclusion of
many-nucleon forces, as for instance in Refs. [34–36,43,44].
We are rather mostly interested in quantitatively assessing
the systematic error of the different many-body approaches
and how this error depends upon the nuclear interaction of
choice. The authors of Ref. [67] argued that the discrepancies
among the methods are particularly susceptible to the spin-
orbit components of the NN force. To identify and reduce
these differences, we implement two major advancements
in the AFDMC algorithm, both in the sampling procedure
and in the way the fermion sign problem is controlled, in a
similar fashion as recently done for atomic nuclei [68,69]. The
FHNC/SOC approach is also made more accurate by includ-
ing classes of elementary diagrams that have been disregarded
in earlier applications of the method. As compared to the
FHNC/SOC results reported in Ref. [67], here we also include
spin-orbit correlations, which turns out to be the numerically
more important difference.

Recently, the scale dependence of both AV18 and the
local χEFT interactions of Refs. [70,71] has been investi-
gated analyzing their predictions for NN scattering data and
deuteron properties [72]. The main conclusion of that work
is that phenomenological potentials appear to be best suited

to study the high-density region of the EoS. Here, we extend
this analysis comparing the energy per particle of PNM as
obtained from both the Argonne and Norfolk NN interactions,
relating their predictive power in describing the EoS at ρ > ρ0

to their capability of reproducing NN scattering data as a
function of the laboratory energy.

The plan of this paper is as follows. The Argonne and
Norfolk Hamiltonians are described in Sec. II, where we also
show the phase shifts predicted by the various NN potentials.
The many-body methods employed for calculating the EoS of
PNM are reviewed in Sec. III, along with a detailed discus-
sions of their technical improvements. The results obtained
within the BBG, FHNC/SOC, and AFDMC approaches for
the different Hamiltonians are benchmarked in Sec. IV. Fi-
nally, in Sec. V we summarize our findings and draw our
conclusions.

II. NUCLEAR INTERACTIONS

In recent years local, configuration-space chiral interac-
tions, well suited for use in QMC calculations of light-
nuclei spectra and neutron-matter properties, have been de-
rived by two groups [43,70,71,73–76]. In this paper, we
will base our calculations on high-quality local potentials
derived from a χEFT that explicitly includes—in addition
to nucleons and virtual pions—virtual �’s as degrees of
freedom [64,65,76,77]. The two-nucleon part (NN) of such
local interactions is written as the sum of an electromag-
netic interaction component, vEM

i j , (as in Ref. [62]), and a
strong-interaction component, vi j , characterized by long- and
short-range parts [65], respectively, vL

i j and vS
i j . The vL

i j part
includes one-pion-exchange (OPE) and two-pion-exchange
(TPE) terms up to next-to-next-to-leading order (N2LO) in the
chiral expansion [64], derived in the static limit from leading
and subleading πN and πN� chiral Lagrangians. The radial
functions involved in the definition of vL

i j are explicitly given
in Appendix A of Ref. [64]. They are singular at the origin
(they behave as 1/rn

i j with ri j = |ri − r j | and n taking on
values up to n = 6), and each is regularized by a cutoff of
the form

CRL (ri j ) = 1 − 1

(ri j/RL)6 e(ri j−RL )/aL + 1
, (1)

where three values for the radius RL = (0.8, 1.0, 1.2) fm are
considered with the diffuseness fixed at aL = RL/2 in each
case.

The vS
12 part, however, is described by contact terms up to

next-to-next-to-next-to-leading order (N3LO) [65], character-
ized by 26 low-energy constants (LECs). These interactions
have been recently constrained to a large set of NN-scattering
data, as assembled by the Granada group [78], including
the deuteron ground-state energy and two-neutron scattering
length. The radial functions entering the vS

12 component are
the same as those listed in Appendix B of Ref. [64], and
involve a local regulator (to replace the δ functions) taken as

CRS (ri j ) = 1

π3/2R3
S

e−(ri j/RS )2
, (2)
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where we consider, in combination with RL = (0.8, 1.0,

1.2) fm, RS = (0.6, 0.7, 0.8) fm, corresponding to typical
momentum-space cutoffs 	S = 2h̄c/RS ranging from about
660 MeV down to 500 MeV.

We constructed two classes of NN interactions, which only
differ in the range of laboratory energy over which the fits
were carried out, either 0–125 MeV in class I or 0–200 MeV
in class II. For each class, three different sets of cutoff radii
(RS, RL) were considered (RS, RL) = (0.8, 1.2) fm in set a,
(0.7,1.0) fm in set b, and (0.6,0.8) fm in set c. We are
referring to these high-quality NN interactions generically
as the Norfolk (NV2) potentials, and denote those in class
I as NV2-Ia, NV2-Ib, and NV2-Ic, and those in class II as
NV2-IIa, NV2-IIb, and NV2-IIc.

For the purpose of this paper, we will focus our atten-
tion on calculations of the EoS of neutron matter involving
the NV2 local chiral NN interactions described above and
leave the inclusion of the corresponding three-nucleon force
[13,76,77] to future study. Comparison will be made with the
phenomenological AV18 potential [62]. Both the Argonne and
Norfolk interactions are defined in coordinate space as

vi j =
N∑

p=1

vp(ri j )O
p
i j, (3)

with ri j = |ri − r j |. For the Argonne potential N = 18—
hence the name Argonne v18 or AV18—while the NV2 poten-
tials have N = 16. The bulk of the NN interaction is encoded
in the first eight operators

Op=1−8
i j = [1, σi j, Si j, L · S] ⊗ [1, τi j], (4)

which are the same for both AV18 and the NV2s. In the above
equation we introduced σi j = σ i · σ j and τi j = τ i · τ j with σ i

and τ i being the Pauli matrices acting in the spin and isospin
space. The tensor operator is given by

Si j = 3

r2
i j

(σ i · ri j )(σ j · ri j ) − σi j, (5)

while the spin-orbit contribution is expressed in terms of the
relative angular momentum L = 1

2i (ri − r j ) × (∇i − ∇ j ) and
the total spin S = 1

2 (σ i + σ j ) of the pair. For AV18 there are
six additional charge-independent operators corresponding to
p = 9 − 14 that are quadratic in L, while the p = 15 − 18
are charge-independence breaking terms. In contrast, the NV2
potentials have three charge-independent operators quadratic
in L, and five charge-independence breaking terms.

It is useful to define simpler versions of the AV18 and NV2
potentials with fewer operators: a v′

8 with the eight operators
of Eq. (4) and a v′

6 without the L · S ⊗ [1, τi j] terms [63,79].
The v′

8 is a reprojection (rather than a simple truncation) of
the strong-interaction potential that reproduces the charge-
independent average of 1S0, 3S1-3D1, 1P1, 3P0, 3P1, and
(almost) 3P2 phase shifts by construction, while overbinding
the deuteron by 18 keV due to the omission of electromagnetic
terms. The v′

6 is (mostly) a truncation of v′
8 which reproduces

1S0 and 1P1 partial waves, makes a slight adjustment to
(almost) match the v′

8 deuteron and 3S1-3D1 partial waves,
but will no longer split the 3PJ partial waves properly. We
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FIG. 1. Neutron-proton scattering phase shifts in the 1S0, 3P0,
3P1, and 3P2, ε2, and 1D2 channels, as a function of kinetic energy
of the beam particle in the laboratory frame (bottom axis). The
corresponding densities of PNM—in units of ρ0—are given in the
top axis. The long-dashed-dotted, the dashed- and the solid lines
represent the AV6′, AV8′, and AV18 predictions, while the solid dots
are from the SM16 solution of Ref. [80].

will refer to these variations of the Argonne potential as AV8′
and AV6′.

In strongly degenerate systems of fermions, such as the
low-temperature nucleonic matter forming the interior of neu-
tron stars, collisions primarily involve nucleons occupying
states close to the Fermi surface. As a consequence, in the case
of head-on scattering, a relation can be easily established be-
tween the kinetic energy of the beam particle in the laboratory
frame, Elab, and the Fermi energy EF , which in turn is simply
related to the baryon density ρ. The resulting expression in
PNM is

Elab = 2Ecm = 4EF = 2h̄2

m
(3π2ρ)2/3. (6)

In Ref. [72] the above expression has been utilized to gauge
the predictive power of NN potential models in describing the
high-density regime of PNM. Along the same line, Fig. 1 illus-
trates the energy dependence of the proton-neutron scattering
phase shifts in the 1S0, 3P0, 3P1, 3P2, ε2, and 1D2 partial
waves comparing the AV6′, AV8′, and AV18 potentials with
the analysis of Ref. [80]. In Fig. 2 we show the predictions
for the same quantities obtained from the set of NV2 �-full
local χEFT interactions discussed above. The density of PNM
obtained from Eq. (6) with Elab = 2Ecm is reported on the top
axis of the figures in units of the nuclear saturation density
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FIG. 2. Same as Fig. 1, but for the NV2 �-full local χEFT
interactions. The dashed- and short-dashed-dotted lines represent the
predictions for the NV2-Ia and NV2-IIa models, having RS = 0.8 fm
and, respectively, constrained to NN-scattering data up to 125 and
200 MeV laboratory energy. The long-dashed-dotted and the solid
lines show results for the NV2-Ib and NV2-IIb models, having
RS = 0.7 fm and, respectively, constrained to NN-scattering data up
to 125 and 200 MeV laboratory energy. The solid dots are from the
SM16 solution of Ref. [80].

ρ0 = 0.16 fm−3. The AV18 interaction provides an accurate
description of the scattering data up to Elab � 600 MeV and
appears to be applicable to describe properties of PNM at
least up to ρ � 4ρ0. The greatest discrepancy appears in the
1D2 channel, where inelasticity becomes important at higher
energy.

As opposed to the AV18 potential, χEFT models, which
are based on low momentum expansion, are intrinsically
limited in describing dense systems, in which NN interactions
involve high energies. In addition, chiral potentials depend on
regulator function that smoothly cuts off one- and two-pion
exchange interactions at short distances, and the choice of
such cutoff, here defined as RS , plays a crucial role in describ-
ing short-range dynamics. In Fig. 2, we notice that the chiral
model NV2-IIb, which is fitted at higher energies (Elab =
200 MeV) with a hard cutoff (∼600 MeV in momentum-
space) achieves a better description of the S- and P- phase
shifts up to ∼600 MeV. Such a model performs very like the
AV18, which has been fitted up to the pion production thresh-
old (Elab = 350 MeV) with a very hard cutoff (∼1 GeV).

It has to be noted that the ability of reproducing NN scat-
tering data at relatively large Elab � 600 has to be considered
a necessary, rather than sufficient, condition to accurately

describe neutron matter properties at supranuclear densities.
It is always possible to perform a unitary transformation of
the two-body potential that leaves the phase-shifts unchanged
[81]. In general, the transformed interaction would behave
very differently from the bare one in the infinite medium, and
one needs to account for the induced many-body interactions
to recover the original results.

III. MANY-BODY METHODS

In this section we review the many-body methods em-
ployed for calculating the EoS of PNM and provide a detailed
discussions of their technical improvements. In all approaches
the two-body interaction vi j is the only physical input for
the numerical calculations. We note that while AFDMC and
FHNC/SOC techniques are limited to semi-local interactions,
the BBG method can also treat potentials not formulated in
coordinate space.

A. Brueckner–Bethe–Goldstone many-body theory

The Brueckner–Bethe–Goldstone many-body theory (see,
e.g., Refs. [15,58]) is based on a linked cluster expansion (the
so-called hole-line expansion) of the energy per nucleon E/A
of nuclear matter. The various terms of the expansion can be
represented by Goldstone diagrams [82] grouped according to
the number of independent hole-lines (i.e., lines representing
empty single particle states in the Fermi sea). The basic
ingredient in this approach is the Brueckner reaction matrix
G [83,84] which sums, in a closed form, the infinite series
of the so-called ladder diagrams and allows treatment of the
short-range strongly repulsive part of the nucleon-nucleon
interaction. The G-matrix can be obtained by solving the
Bethe–Goldstone equation [85]

G(ω) = V + V
∑
ka,kb

|ka, kb〉 Q 〈ka, kb|
ω − ε(ka) − ε(kb) + iη

G(ω), (7)

where V is the bare NN interaction, ε is the single-particle
energy, and the quantity ω is the so-called starting energy.
In the present work we consider spin-unpolarized neutron
matter, thus in Eq. (7) and in the following equations we
drop the spin indices to simplify the mathematical notation.
The Pauli operator |ka, kb〉Q〈ka, kb| projects on intermediate
scattering states in which the momenta ka and kb of the
two interacting neutrons are above their Fermi momentum kF

because single particle states with momenta smaller than this
value are occupied by the neutrons of the nuclear medium.
Thus the Bethe–Goldstone equation describes the scattering
of two nucleons (two neutrons in our case) in the presence
of other nucleons, and the Brueckner G-matrix represents
the effective interaction between two nucleons in the nuclear
medium and properly takes into account the short-range cor-
relations arising from the strongly repulsive core in the bare
NN interaction.

The ε(k) of a neutron with momentum k, appearing in the
energy denominator of the Bethe–Goldstone Eq. (7), is given
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by

ε(k) = h̄2k2

2m
+ U (k), (8)

where U (k) is a single-particle potential which represents the
mean field felt by a neutron due to its interaction with the
other neutrons of the medium. In the Brueckner–Hartree–Fock
(BHF) approximation of the BBG theory, U (k) is calculated
through the real part of the G-matrix [86,87] and is given by

U (k) =
∑

k′�kF

Re〈k, k′|G(ω∗)|k, k′〉A, (9)

where the sum runs over all neutron occupied states, the
starting energy is ω = ω∗ ≡ ε(k) + ε(k′) (i.e., the G-matrix
is calculated on-the-energy-shell) and the matrix elements are
properly antisymmetrized. We make use of the so-called con-
tinuous choice [88–91] for the single-particle potential U (k)
when solving the Bethe–Goldstone equation. As it has been
shown in Refs. [92–94], the contribution of the three-hole-line
diagrams to the energy per nucleon E/A is minimized in
this prescription for the single-particle potential and a faster
convergence of the hole-line expansion for E/A is achieved
compared to the so-called gap choice for U (k).

In this scheme Eqs. (7)–(9) have to be solved self-
consistently using an iterative numerical procedure. Once a
self-consistent solution is achieved, the energy per nucleon of
the system can be evaluated in the BHF approximation of the
BBG hole line-expansion and it is given by

E

A
= 1

A

∑
k<kF

[
h̄2k2

2m
+ 1

2
U (k)

]
. (10)

Making the usual angular average of the Pauli operator
and of the energy denominator [89,91], the Bethe–Goldstone
Eq. (7) can be expanded in partial waves. In all the calcu-
lations performed in this work, we have considered partial
wave contributions up to a total two-body angular momentum
Jmax = 11. We have verified that the inclusion of partial waves
with Jmax > 11 does not appreciably change our results.

B. Fermi hypernetted chain/single-operator chain method

In absence of interactions, a uniform system of A nonin-
teracting neutrons can be described as a Fermi gas at zero
temperature, and its ground state wave function reduces to
the Slater determinant of orbitals associated with the single-
particle states belonging to the Fermi sea

�(X ) = A[
φn1 (x1) . . . φnA (xA)

]
. (11)

In the above equation X = {x1, . . . , xA}, where the general-
ized coordinate xi ≡ {ri, si} represents both the position R =
r1, . . . , rA and the spin S = s1, . . . , sA, variables of the ith nu-
cleon while ni denotes the set of quantum numbers specifying
the single particle state. Translational invariance imposes that
the single-particle wave functions be plane waves,

φni (xi ) = 1√
�

eiki·riχσi (si ). (12)

In the above equations, � is the normalization volume, χσi (si)
is the spinor of the neutron and |ki| < kF = (3π2ρ)1/3. Here
kF is the Fermi momentum and ρ the density of the system.

The variational ansatz of the Fermi hypernetted chain
(FHNC) and single-operator chain (SOC) formalism emerges
as a generalization of the Jastrow theory of Fermi liquids
[60,95]

|�T 〉 = F |�〉
〈�|F †F |�〉1/2

, (13)

where |�〉 is the Slater determinant of Eq. (11) and

F (x1, . . . , xA) = S
⎛
⎝ A∏

j>i=1

Fi j

⎞
⎠ (14)

is the correlation operator. The spin-isospin structure of Fi j

reflects that of the nucleon-nucleon potential of Eq. (3),

Fi j =
8∑

p=1

f p(ri j )O
p
i j . (15)

Since, in general, [Op
i j, Oq

ik] �= 0, the symmetrization operator
S is needed to fulfill the requirement of antisymmetrization
of the wave-function. The f p(ri j ) are finite-ranged functions,
with the conditions

f p(r � dp) = δp1,

df p(r)

dr

∣∣∣∣
r=dp

= 0, (16)

where the dp are “healing distances.” Consequently, the cor-
relation operator of Eq. (14) respects the cluster property: If
the system is split in two (or more) subsets of particles that
are moved far away from each other, then the F factorizes
into a product of two factors in such a way that only particles
belonging to the same subset are correlated. For instance,
consider two subsets, say i1, ...iM and iM+1, ...iA. The cluster
property implies

F (x1, . . . , xA) = F
(
xi1 , . . . , xiM

)
F

(
xiM+1 , . . . , xA

)
. (17)

The radial functions f p(ri j ) are determined by minimizing
the energy expectation value

EV = 〈�T |H |�T 〉 � E0, (18)

which provides an upper bound to the true ground state
energy E0. The cluster property allows one to expand the
expectation value of the Hamiltonian—and of other many-
body operators—between correlated states in a sum of cluster
contributions involving an increasing number of particles.

The energy expectation value in matter is evaluated using
a diagrammatic cluster expansion and a set of 29 coupled
integral equations, which effectively make partial summa-
tions to infinite order—the FHNC/SOC approximation [60].
This is a generalization of the original hypernetted chain
(HNC) method for Bose systems developed by van Leeuwen,
Groeneveld, and de Boer [96], which requires the solution of
a single integral equation, and the corresponding extension
for spin-isospin independent Fermi systems by Fantoni and
Rosati [59], which requires four coupled integral equations.
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The integral equations are used to generate two- and three-
body distribution functions g2(ri j ) ≡ gi j and g3(ri j, rik ) ≡
gi jk , which can then be used to evaluate the energy or other
operators.

For the pure Jastrow case, we evaluate the Pandharipande–
Bethe [97] expression for the energy:

EPB = TF + W + WF + U + UF , (19)

where TF is the Fermi gas kinetic energy. The only terms for
a Bose system are

W = ρ

2

∫ (
vi j − h̄2

m

∇2Fi j

Fi j

)
gi jd

3ri j,

U = − h̄2

2m

ρ2

4

∫ (∇iFi j · ∇iFik

Fi jFik

)
gi jkd3ri jd

3rik, (20)

while WF , UF are additional two- and three-body kinetic en-
ergy terms present due to the Slater determinant. Alternately,
we use the Jackson–Feenberg [98] energy expression

EJF = TF + WB + Wφ + Uφ, (21)

WB = ρ

2

∫ [
vi j − h̄2

2m

(∇2 fi j

fi j
− (∇i fi j )2

f 2
i j

)]
, (22)

where WB is the boson term and Wφ and Uφ are kinetic
energy terms involving the Slater determinant. In principle,
these energies should be equivalent, but in practice there are
differences due to the FHNC/SOC approximation to the dis-
tribution functions. We take the average EV = (EPB + EJF)/2
as our energy expectation value and the difference δEV =
|EPB − EJF|/2 as an estimate of the error in the calculation.

The FHNC two-body distribution function can be written
as

gi j = f 2[(1 + Gde + Ede)2 + Gee + Eee

− ν(Gcc + Ecc − �/ν)2] exp(Gdd + Edd ), (23)

where the chain functions Gxy are sums of nodal diagrams,
with direct (d), exchange (e), or circular exchange (c) end
points, Exy are elementary diagrams, � ≡ �(kF r) is the Slater
function, and ν is the degeneracy. An example of the structure
of the integral equations is

Gdd,i j = ρ

∫
d3rk[(Xdd,ik + Xde,ik )Sdd,k j + Xdd,i jSde,k j],

(24)

where Sdd = f 2 exp(Gdd + Edd ) − 1 is a two-point superbond
and Xdd = Sdd − Gdd is a link function.

The introduction of spin-isospin correlations with opera-
tors that do not commute complicates the calculation. For-
tunately, the first six operators p = 1, 6 form a closed spin-
isospin algebra, allowing single continuous chains of operator
links—the SOCs—to be evaluated. These involve five chain
functions Gp

xy for each of the five operators p = 2–6, with
xy = dd, de, ee, ca, cb in addition to the four Jastow chain
functions in Eq. (23), making the total of 29 coupled integral
equations to be solved. There are significant contributions

from unlinked diagrams in the SOC cluster expansion, but
these can be accommodated by means of “vertex” corrections,
as discussed in Ref. [60]. Additional higher-order corrections
coming from (parallel) multiple operator chains and rings are
also calculated, as discussed in Ref. [35].

As opposed to the FHNC/SOC calculations reported in
Ref. [67], in this work we include spin-orbit correlations,
corresponding to the p = 7, 8 terms in Eq. (15). Because of
the presence of a derivative operator, these correlations cannot
be “chained” so they are treated explicitly only at the two- and
three-body cluster level. It has to be noted that while the two-
body cluster contribution is evaluated exactly, following the
prescription of Ref. [35] only a limited number of three-body
terms in the cluster expansion are kept.

In standard FHNC calculations, the elementary diagrams
of Eq. (23) are generally neglected. Inclusion of the leading
four-body elementary diagram leads to the FHNC/4 approxi-
mation [99], while additional contributions have been studied
in liquid atomic helium systems [100]. In the present work
we include many central (p = 1) Exy diagrams, beyond the
FHNC/4 approximation, by introducing three-point super-
bonds Sxyz, such as

Sddd,123 = ρ

∫
d3r4{Sdd,14Sdd,24(Sdd,34 + Sde,34)

+ (Sdd,14Sde,24 + Sde,14Sdd,24)Sdd,34}, (25)

and then evaluating

Edd,12 = 1

2
ρ

∫
d3r3{Sddd,132[Sdd,13(Sdd,32 + Sde,32)

+ Sde,13Sdd,32 ] + Sded,132Sdd,24Sdd,32}. (26)

With six Sxyz, where xyz = ddd , dde, dee, eee, ccd , and cce,
many elementary diagrams at the four-, five-, and higher-body
level contributing to gi j and gi jk can be evaluated. These
central elementary diagrams also dress the SOCs.

In matter calculations, the correlations of Eq. (16) are gen-
erated by solving a set of coupled Euler-Lagrange equations in
different pair-spin and isospin channels for S = 0, 1 and T =
0, 1. For pure neutron matter, only T = 1 channels are needed,
leaving a single-channel equation for S = 0, producing a
singlet correlation, and a triple-channel equation for S = 1,
which produces triplet, tensor, and spin-orbit correlations. The
singlet and triplet correlations are then projected into central
and σi j combinations. Three (increasing) healing distances
are used: ds for the singlet correlation, dp for the triplet and
spin-orbit, and dt for the tensor.

Additional variational parameters are the quenching factors
αp whose introduction simulates modifications of the two–
body potentials entering in the Euler–Lagrange differential
equations arising from the screening induced by the presence
of the nuclear medium

vi j =
8∑

p=1

αpv
p(ri j )O

p
i j, (27)

whereas the full potential is used when computing the energy
expectation value. In practice we use just two such param-
eters: αp=1 = 1 and αp=2,8 = α. In addition, the resulting
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correlation functions f p may be rescaled according to

Fi j =
8∑

p=1

βp f p(ri j )O
p
i j, (28)

with βp=1 = 1, βp=2,4+7,8 = βσ , and βp=5,6 = βt . However,
these are usually invoked only in the presence of three-body
forces. For the present work, the variational parameters are
the three healing distances and one quenching factor. These
are varied at each density with a simplex search routine to
minimize the energy.

One measure of the convergence of the FHNC/SOC in-
tegral equations is that the volume integral of the correla-
tion hole from the central part of the two-body distribution
function gi j [which has operator components like the Fi j

of Eq. (15)] should be unity. To help guarantee that the
variational parameters entering the FHNC/SOC correlations
are well behaved—and to ensure that in a given region of
the parameter space the cluster expansion is converged—we
minimize the energy plus a constant times the deviation of the
volume integral from unity:

E + C

{
1 + ρ

∫
d3r[gc(r) − 1]

}2

,

as discussed in Ref. [35]. A value of C = 1000 MeV is suf-
ficient to limit the violation of this sum rule to 1% or less at
normal density, and 3% or less at twice normal density for all
the potentials considered here. There is a related sum rule for
the isospin component gτ that applies in symmetric nuclear
matter, but there is no sum rule for the spin correlation hole
for realistic potentials with tensor forces.

C. Auxiliary-field diffusion Monte Carlo

Over the past two decades, the auxiliary-field diffusion
Monte Carlo (AFDMC) method [61] has become a mainstay
for neutron-matter calculations [43,74,101]. Within AFDMC,
properties of the infinite uniform system are simulated with a
finite number of neutrons obeying the periodic-box boundary
condition (PBC). The trial wave function is a simplified
version of the one reported in Eq. (13),

�T (X ) = 〈X |�T 〉 = 〈X |
⎛
⎝∏

i< j

f c(ri j )

⎞
⎠|�〉. (29)

The antisymmetric mean-field part |�〉 is the Slater determi-
nant of Eq. (11). To satisfy the PBC, the single-particle wave
vector is discretized as

ki = 2π

L
{nx, ny, nz}, ni = 0,±1,±2, . . . , (30)

L being the size of the simulation box. When not otherwise
specified, in our simulations we typically employ A = 66
neutrons in a box. Finite-size errors in PNM simulations have
been investigated in Ref. [102,103] by comparing the twist
averaged boundary conditions with the PBC. Remarkably, the
PBC energies of 66 neutrons differ by no more than 2% from

the asymptotic value calculated with twist averaged boundary
conditions. This essentially follows from the fact that the
kinetic energy of 66 fermions approaches the thermodynamic
limit very well. Additional finite-size effects due to the tail
corrections of two- and three-body potentials are accounted
for by summing the contributions given by neighboring cells
to the simulation box [104].

The spin-independent correlation ansatz of Eq. (29) has
proven to be inadequate to treat atomic nuclei and infinite
nucleonic matter composed of both neutrons and protons.
In fact, the expectation value of the tensor components of
the NN potential, which is large for neutron-proton pairs in
the T = 0 channel, is nearly zero when tensor correlations
are not included in �T (X ). To overcome these difficulties, a
linearized version of spin-dependent two-body correlations,
in which only one pair of nucleons is correlated at a time, was
first implemented in the AFDMC method in Ref. [68]. Very
recently, the trial wave function has been further improved by
including quadratic pair correlations [69]. These more sophis-
ticated wave functions have enabled a number of remarkably
accurate AFDMC calculations, in which properties of atomic
nuclei with up to A = 16 nucleons [105] have been investi-
gated utilizing the local χEFT interactions of Ref. [43,70].

Analogously to the FHNC case, the two-body correlation
functions are obtained by minimizing the two-body cluster
contributions of the energy per particle, solving the same
set of coupled Euler-Lagrange equations. However, since in
�T we only retain spin-independent terms, we found that
replacing f c(ri j ) → f c(ri j ) + βσ f σ (ri j ), βσ being a varia-
tional parameter, provides a better variational energy than
when βσ = 0. The relatively simple trial wave function of
Eq. (29) is completely determined by three variational pa-
rameters: βσ , the spin-isospin potential quencher αp=2,8 =
α, and the central healing distance dc, as for simplicity we
assume ds = dp = dc. As a consequence, it is unnecessary to
use advanced optimization algorithms, such as the “stochastic
reconfiguration” [106] or the “linear method” [107] algorithm,
to minimize the variational energy.

AFDMC is an extension of standard diffusion Monte Carlo
(DMC) algorithms, in which the ground-state �0 of a given
Hamiltonian is projected out from the starting trial wave
function using an imaginary-time evolution,

|�0〉 = lim
τ→∞ e−(H−ET )τ |�T 〉. (31)

In the above equation τ is the imaginary time, and ET is
a parameter used to control the normalization. For strongly
interacting systems, the direct computation of the propagator
e−(H−E0 )τ involves prohibitive difficulties. For small imagi-
nary times δτ = τ/N , with N being a large number, one can
compute the short-time propagator, and the full propagation
can be recovered inserting complete sets of states. The propa-
gated wave function then reads

〈XN |�(τ )〉 =
N−1∏
i=1

∫
dXi〈XN |e−(H−E0 )δτ |XN−1〉 . . .

〈X2|e−(H−E0 )δτ |X1〉〈X1|�T 〉. (32)
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By using the Suzuki-Trotter decomposition to order δτ 3, the
short-time propagator can be cast in the form

G(X, X ′, δτ ) = 〈X |e−(H−E0 )δτ |X ′〉
� 〈X |e−V δτ

2 e−T δτ e−V δτ
2 |X ′〉. (33)

In the above equation, V is the nuclear potential and T
is the nonrelativistic kinetic energy, giving rise to the free
propagator

G0(X, X ′, δτ ) = 〈X |e−T δτ |X ′〉

=
(

m

2πδτ

) 3A
2

e− m(R−R′ )2

2δτ δ(S − S′), (34)

where R and S denote the spatial and spin coordinates, respec-
tively. Monte Carlo techniques are used to sample the paths Xi.
In practice, a set of configurations, typically called walkers,
are simultaneously evolved in imaginary time, and then used
to calculate observables once convergence is reached.

Within the Green’s function Monte Carlo (GFMC) method
used in light nuclei, the positions of the particles are sampled,
but the full sum over the spin-isospin degrees of of freedom
is retained, leading to an exponential growth of the compu-
tational cost with A. The AFDMC method overcomes this
limitation using a spin-isospin basis given by the outer product
of single-nucleon spinors,

|S〉 = |s1〉 ⊗ |s2〉 · · · ⊗ |sA〉. (35)

Realistic nuclear potentials, such the ones employed in this
work, contain quadratic spin-isospin operators. To preserve
the single-particle representation, the short-time propagator is
linearized utilizing the Hubbard-Stratonovich transformation,

e−λO2δτ/2 = 1√
2π

∫ ∞

−∞
dxe−x2/2ex

√−λδτ O, (36)

where x are the auxiliary fields and the operators O are ob-
tained as follows. The first six terms defining the NN potential
of Eq. (3) can be conveniently separated in a spin-isospin
dependent VSD and spin-isospin independent VSI contributions.
Since in purely neutron systems τi j = 1, VSD can be cast in the
form

VSD = 1

2

∑
iα jβ

Aiα, jβσ α
i σ

β
j = 1

2

3A∑
n=1

O2
nλn, (37)

where the operators On are defined as

On =
∑
i,α

σ α
i ψn

iα. (38)

In the above equations λn and ψn
iα are the eigenvalues and

eigenvectors of the matrix A. The spin-orbit term of the NN
potentials is implemented in the propagator as described in
Ref. [104] and appropriate counter terms are included to
remove the spurious contributions of order δτ .

Importance sampling techniques are routinely imple-
mented in the AFDMC—in both the spatial coordinates and
spin-isospin configurations—to drastically improve the effi-
ciency of the algorithm. To this aim, the propagator of Eq. (33)

is modified as

GI (X, X ′) = GI (X, X ′)
�I (X ′)
�I (X )

. (39)

At each time-step, each walker is propagated sampling a 3A-
dimensional vector to shift the spatial coordinates and a set
of auxiliary fields X from Gaussian distributions. To remove
the linear terms coming from the exponential of Eqs. (34)
and (36), in analogy to the GFMC method, we consider four
weights, corresponding to separately flipping the sign of the
spatial moves and spin-isospin rotations

wi = �I [±R′, S′(±X )]

�I (R, S)
. (40)

In the same spirit as the GFMC, only one of the four con-
figurations is kept according to a heat-bath sampling among
the four normalized weights wi/W , with W = ∑4

i=1 wi/4
being the cumulative weight. The latter is then rescaled
by W → W exp[−VSI(R)/2 + VSI(R′)/2 − ET ]δτ } and asso-
ciated to this new configuration for branching and computing
observables. This “plus and minus” procedure, introduced in
Ref. [68] and so far only applied to systems including protons,
is adopted in this work to compute the energy of PNM, as it
significantly reduces the dependence of the results on δτ .

The expectation values of observables that commute with
the Hamiltonian are estimated as

〈O(τ )〉 =
∑

X OT (X )WT (X )∑
X WT (X )

, (41)

where

OT (X ) = 〈�T |O|X 〉
〈�T |X 〉 , WT (X ) = W (X )

〈�T |X 〉
〈�I |X 〉 . (42)

For all other observables we compute the mixed estimates

〈O(τ )〉 � 2
〈�T |O|�(τ )〉
〈�T |�(τ )〉 − 〈�T |O|�T 〉

〈�T |�T 〉 , (43)

where the first and the second term correspond to the DMC
and variational Monte Carlo expectation value, respectively.

As in standard fermion diffusion Monte Carlo algorithms,
the AFDMC method suffers from the fermion sign problem.
This originates from the fact that the importance-sampling
wave-function is not exact and entails spuriosities from the
bosonic ground-state of the system. As a consequence, the
numerator and denominator of Eq. (41) are plagued by a
decreasing signal-to-noise ratio for a finite sample size and
large imaginary times. To alleviate the sign problem, as
in Ref. [108], we implement an algorithm similar to the
constrained-path approximation [109], but applicable to com-
plex wave functions and propagators. The weights wi of
Eq. (40) are evaluated with

�I (R′, S′)
�I (R, S)

→ Re

{
�T (R′, S′)
�T (R, S)

}
. (44)

and they are set to zero if the ratio is negative. Unlike
the fixed-node approximation, which is applicable for scalar
potentials and for cases in which a real wave function can be
used, the solution obtained from the constrained propagation
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is not the a rigorous upper-bound to the true ground-state en-
ergy [110]. To remove the bias associated with this procedure,
the configurations obtained from a constrained propagation
are further evolved using the following positive-definite im-
portance sampling function [69,111]:

�G(X ) =
√

Re{�T (X )}2 + α Im{�T (X )}2, (45)

where the α parameter serves to make the guiding function
positive definite. Throughout this work we take α = 0.5 and
we explicitly checked for selected cases that our result are
unchanged for α = 0.25 and α = 1.

Following the unconstrained propagation, the expectation
value of the energy EUC(τ ) is estimated according to Eq. (41).
The only difference, needed to compensate for the change
of the guiding wave function, is that the weights need to be
rescaled as

W (X ) → W (X )
�G(X0)

�T (X0)
, (46)

where X0 is the initial configuration of the unconstrained prop-
agation at τ = τ0. In a typical calculation, ∼400 independent
unconstrained propagations, each composed of an average of
∼140, 000 configurations, are performed to control statisti-
cal fluctuations. The asymptotic value E0 = limτ→∞ EUC(τ )
is found by fitting the imaginary-time behavior of EUC(τ )
with a single-exponential function, as in Ref. [79]. Since
the expectation values are substantially correlated in τ , the
likelihood function is computed by fully taking into account
the covariance matrix of the data. We have explicitly checked
that the number of independent unconstrained propagations
is large enough to avoid potential instabilities arising when
the covariance matrix has at least one very small eigenvalue
[112]. The confidence interval associated with E0 is estimated
as discussed in Sec. 15.6 of Ref. [113]. The best value of the
fit is perturbed in such a way that �χ2 = 1 from its minimum
while varying the other fitting parameters to minimize the χ2.
Since this procedure brings about an asymmetric confidence
interval, in our results we report a symmetric error bar conser-
vatively corresponding to the largest interval.

Unconstrained propagations have been performed in the
latest AFDMC studies of atomic nuclei [69,105,114], even
though a relatively simpler fitting procedure was employed
to determine the asymptotic E0 and its error. However, the
accuracy of the constrained approximation for neutron sys-
tems has been erroneously assumed, even in the state-of-
the art AFDMC neutron-matter calculations with local chi-
ral interactions [70,74,115]. Figure 3 indeed shows that for
the AV6′ potential at ρ = ρ0 releasing the constraint brings
about tiny changes to the constrained results. The situation is
drastically different for NN potentials that include spin-orbit
terms. The unconstrained propagation for the AV8′ potential
at ρ = 0.16 fm−3 is displayed in Fig. 4—note the scale
difference with Fig. 3. For this potential, EUC(τ ) exhibits
a clear exponentially-decaying behavior, lowering the en-
ergy per particle by as much as ∼3 MeV. Nearby points in
imaginary-time are strongly correlated. If one assumes that
the covariance matrix is diagonal, this correlation is lost, and
the fit is dominated by the first values of EUC(τ ), as they
have small errors. Once the covariance matrix is accounted

0.0 1.0 2.0 3.0 4.0

 τ  [10-3 MeV-1]

14.7

14.8

14.9

15.0

15.1

15.2

15.3

E(
τ)

  [
M

eV
]

EUC(τ)
fit
E0

FIG. 3. PNM unconstrained evolution for the AV6′ potential at
ρ = 0.16 fm−3 for 14 neutrons in PBC. Data points (in blue) refer
to EUC(τ ) while the dashed line and the shaded (green) area indicate
the asymptotic value E0 with the associated uncertainty as estimated
from the fit, represented by the solid (red) line.

for, the values of the unconstrained energy at large τ become
relatively more important in the fit.

We checked that including linearized spin-dependent cor-
relations in the trial wave function yields only ∼0.3 MeV of
additional binding in the constrained propagation. Since their
calculation increases the computational cost by a factor ∼A2,
we have decided not to include them as we need large statistics
to reliably perform the imaginary-time extrapolation. How-
ever, the spin-dependent backflow correlations of Ref. [116]
seems to be more effective: some preliminary calculations
indicate that the constrained results can be lowered by more
than ∼1 MeV per particle. However, given the complexity of
the analytic calculation of the derivatives, particularly for the
operators in the AV18 potential that are quadratic in L, we de-
cided to stick to the simple central Jastrow ansatz of Eq. (29).

For both AV6′ and AV8′, we simulated PNM using 14
neutrons in PBC, correcting for the tails of the potential and

0.0 1.0 2.0 3.0 4.0
 τ  [10-3 MeV-1]
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fit
E0

12.4(4)

FIG. 4. Same as Fig. 4 for the AV8′ interaction.
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FIG. 5. PNM unconstrained evolution of 〈v18 − v′
8〉 for AV18 at

ρ = 0.16 fm−3 for 14 neutrons in PBC. The notation is the same as
in Fig. 4.

Jastrow correlations. The dependency on the box size of the
AV8′ results has been tested by performing an additional
calculation with 38 neutrons in a PBC. It turns out that
EUC(τ ) − EUC(τ0) obtained with the two simulation boxes
are fully compatible within statistical errors. Our findings for
the AV8′ interaction are consistent with the GFMC results of
Ref. [117] and with the discrepancies in the spin-orbit splitting
of neutron drops between AFDMC and GFMC calculations
[111].

Analogously to the GFMC method, when computing the
full AV18 and NV2 two-body interactions, the propagation
is performed with the simplified v′

8 potential, described in
Sec. II. The expectation value 〈v18 − v′

8〉 is evaluated in
perturbation theory according to Eq. (43). As shown in Fig. 5
for ρ = 0.16 and 14 neutrons with PBC, the potential en-
ergy difference remains fairly stable during the unconstrained
propagation. We fit its imaginary time behavior with a simple
inverse polynomial formula with up to 1/τ 2 powers and
estimate the error on the asymptotic value accordingly.

IV. RESULTS

We compare the PNM equation of state as obtained
from the three independent many-body methods described
in Sec. III, using the Argonne and the Norfolk families of
NN interactions. As for the AFDMC, we present results
corresponding to both the constrained (AFDMC-CP) and
unconstrained (AFDMC-UC) imaginary-time propagations.
To minimize finite-size effects, AFDMC-CP calculations are
carried out with 66 neutrons in a box with PBC. How-
ever, the unconstrained energy is estimated by adding to the
AFDMC-CP values the energy difference EUC(τ ) − EUC(τ0)
computed simulating 14 neutrons with PBC. This procedure
significantly reduces the computational cost of the calculation.
Its accuracy is validated by the successful comparison of
unconstrained propagations with 14 and 38 neutrons with
PBC, discussed in the previous section.
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FIG. 6. Energy per particle of PNM as a function of density
calculated with the BHF (green diamonds), FHNC/SOC (red tri-
angles), AFDMC-CP (grey squares) and AFDMC-UC (solid blue
points) many-body approaches. Results for the AV6′, AV8′, and
AV18 potentials are shown in the upper, middle, and lower pan-
els, respectively. The curves correspond to the polynomial fit of
Eq. (47).

In the upper, middle, and lower panels of Fig. 6 we show
the PNM equation of state for the AV6′, AV8′, and AV18
potentials, respectively. The curves in the plot correspond to
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TABLE I. Total energy and spin-orbit potential per particle at
nuclear saturation density for the AV6′, AV8′, and AV18 NN po-
tentials as obtained from the BHF, FHNC/SOC, AFDMC-CP, and
AFDMC-UC methods.

BHF FHNC/SOC AFDMC-CP AFDMC-UC

E/A [MeV]
AV6′ 15.89 14.98 ± 0.22 14.93 ± 0.02 14.92 ± 0.05
AV8′ 11.97 11.17 ± 0.19 15.55 ± 0.02 12.51 ± 0.39
AV18 13.40 12.38 ± 0.17 16.32 ± 0.02 13.32 ± 0.40

〈vLS〉 [MeV]
AV8′ −9.50 −6.71 −0.65 ± 0.03 −5.4 ± 1.2
AV18 −7.93 −5.80 −0.55 ± 0.03 −5.2 ± 1.1

the following polynomial fit for the density dependence of the
energy per particle

E (ρ)

A
= a2/3

(
ρ

ρ0

)2/3

+ a1

(
ρ

ρ0

)
+ a2

(
ρ

ρ0

)2

, (47)

where ρ = 0.16 fm−3 is the nuclear saturation density. The
first term corresponds to a free Fermi gas, while the sec-
ond and third are inspired by the cluster expansion of the
energy expectation value, truncated at the three-body level.
We have checked that the four-parameter fitting function of
Ref. [118] produces overlapping curves to the one obtained
from Eq. (47).

To facilitate the comparison among the many-body meth-
ods, in Table I we list the energy per particle and the spin-
orbit contribution at nuclear saturation density. As for the
latter, since in neutron-matter τi j = 1, we directly report
the expectation value of sum of the p = 7, 8 operators of
Eq. (4), denoted as 〈vLS〉. The FHNC/SOC method allows to
directly access the expectation value of the spin-orbit terms
of the potential. However, within both BHF and the AFDMC,
〈vLS〉 is obtained employing the Hellman-Feynman theorem.
This amounts to computing the two ground-state energies
E±ε = 〈H ± ε vLS〉, where ε is a small number. The spin-orbit
contribution is estimated as

〈vLS〉 � E+ε − E−ε

2ε
. (48)

Consistently with Ref. [67], when the AV6′ interaction
is employed, the three many-body methods provide similar
results for E (ρ)/A. Generally, BHF yields the most repulsive
EoS, FHNC/SOC the softest, and the AFDMC-CP values are
in between. Even at ρ = 2ρ0, the maximum spread among
the different methods remains within ∼5 MeV per particle.
Note that the FHNC/SOC calculations shown in this work are
more sophisticated than those of Ref. [67], as more elementary
diagrams–at and beyond the FHNC/4 approximation—are
accounted for. This leads to accurate estimates for the energy
per particle, particularly when spin-orbit correlations are not
included. The AFDMC-UC energies for AV6′ are not shown,
as, within error bars, they overlap with the AFDMC-CP
ones—see the unconstrained propagation of Fig. 3.

The inclusion of spin-orbit components of the AV8′ poten-
tial brings about an overall attraction in PNM with respect
to the AV6′ results, for both BHF and FHNC/SOC methods.

This appears to be a consequence of the isospin asymmetry:
in GFMC calculations for light nuclei, AV6′ is more attractive
for isospin-symmetric nuclei, but AV8′ is more attractive in
neutron-rich systems [63]. For example, as seen in the asso-
ciated force evolution table [119], the two models give the
same energy for 6He, while in 8He, AV8′ is �1 MeV more
bound. Also, the difference in binding between 8Be and 8He
is 26.9 MeV for AV6′ and 24.2 MeV for AV8′, implying that
AV8′ is bringing in relatively more attraction for the neutron-
rich systems.

However, the AFDMC-CP energies per particle for AV8′
are slightly larger than those obtained with AV6′, and they lie
well above both BHF and FHNC/SOC results, already at rel-
atively small densities. As shown in Table I, at ρ = ρ0, BHF,
FHNC/SOC, and AFDMC-CP provide 11.97 MeV, 11.17 ±
0.19 MeV, and 15.55 ± 0.02 MeV per particle, respectively.
The unconstrained propagation significantly lowers the
AFDMC-CP estimates, bringing them in much better agree-
ment with the other calculations. At ρ = ρ0, the AFDMC-UC
value turns out to be 12.51 ± 0.39 MeV, while at ρ = 2ρ0

the unconstrained propagation yields 22.13 ± 0.52 MeV, to
be compared to the 29.01 ± 0.01 MeV of the constrained
approximation. The curve corresponding to the AFDMC-CP
calculations of Ref. [118] lies below the AFDMC-CP obtained
with the “plus and minus” importance-sampling algorithm.
The differences between the two constrained approximations
are largely due to the dependence on the central Jastrow
correlations of the importance-sampling algorithm utilized
in Ref. [118]. As noted in Ref. [70], for the local N2LO
χEFT potential this unphysical dependence on the Jastrow
function can be as large as 0.6 MeV per particle already at ρ =
0.1 fm−3. Note that this dependence is completely removed
once the “plus and minus” procedure is employed.

The FHNC/SOC results stay well below both the BHF
and AFDMC-UC ones, with the spread increasing with the
density. This behavior is most likely due to the oversim-
plified treatment of spin-orbit correlations, which becomes
less accurate at higher densities, as contributions arising
from clusters involving more than three nucleons should
not be neglected. We explicitly checked that, as pointed out
in Refs. [67,115,120], when the spin-obit correlations are
turned off, FHNC/SOC and AFDMC-CP are in much better
agreement. It is remarkable that the AFDMC-UC and BHF
predictions are quite similar, the differences remaining well
below 1 MeV per particle up to ρ = 2ρ0. This corroborates
the accuracy of the extrapolation of the unconstrained energy.

As in light nuclei, the AV18 potential, is more repulsive
than AV8′ for all the many-body methods considered in this
work. In particular, as the density increases, the differences
in partial waves higher than P become more and more im-
portant. The AFDMC-CP results turn out to be biased to a
similar extent as in the AV8′ case: the unconstrained propa-
gation at ρ = ρ0 and ρ = 2ρ0 lowers the energy per particle
by ∼3.0 MeV and ∼6.8 MeV, respectively. The BHF and
AFDMC-UC predictions are again very close: the maximum
difference remains below ∼1 MeV per particle. Contrary to
the AV8′ case, AFDMC-UC yields slightly less repulsion
than BHF. At ρ > ρ0, the FHNC/SOC results lie significantly
below those computed within both AFDMC-UC and BHF.
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FIG. 7. Same as Fig. 6 for the NV2-Ia (upper left panel), NV2-Ib (upper right panel), NV2-IIa (lower left panel), and NV2-IIb (lower right
panel) potentials.

This might once more be ascribed to the three-body truncation
in the cluster expansion of the spin-orbit correlations.

In the lower panel of Fig. 6, we also compare our BHF re-
sults for the AV18 interaction with those reported in Ref. [67].
We do not display the BHF curve, as it is almost coin-
cident with ours. At ρ = 0.3 fm−3, we obtain an energy
per particle of 26.0 MeV, to be compared to the 25.4 MeV
of Ref. [67]. The small difference can be attributed to the
different number of partial waves: Jmax = 11 in our case and
Jmax = 8 in Ref. [67]. In fact, using Jmax = 8 we also get
25.6 MeV. The results of the energy per particle up to the
three-hole line diagrams contribution of the BBG hole-line
expansion, as taken from Ref. [67] are represented by the
purple triangles labeled as BBG3. As shown in Refs. [92,93]
and as stressed in Sec. III A of the present work, comparing
the BBG3 and the BHF predictions numerically demonstrates
the fast convergence of the hole-line expansion when the
continuous choice for the auxiliary single particle potential
U (k) of Eq. (9) is used. Finally, in the same figure, we also plot
the self-consistent Green’s function (SCGF) results reported
in Ref. [67].

The differences among the many-body methods discussed
above are reflected in the contribution of the spin-orbit terms

to the energy per particle. AFDMC-CP calculations clearly
underestimate 〈vLS〉, as it turns out to be much smaller than
1 MeV per particle for both the AV8′ and AV18 potentials—
see Table I. The unconstrained propagation enhances the
spin-orbit contribution. Nevertheless, the AFDMC-UC values
remain well below the BHF and FHNC/SOC results. The
Hellman-Feynman procedure brings about sizable uncertain-
ties in the AFDMC-UC estimates, of about 1.2 MeV per
particle for all the potentials that we consider. Applying the
error propagation formula to Eq. (48), the individual errors on
E±ε are enhanced by a factor ∼1/ε, and we take ε = 0.1. In
addition, a stronger spin-orbit term, even by only 10%, brings
about significantly larger statistical errors in the unconstrained
propagation. However, the AFDMC-CP estimates for 〈vLS〉
do not suffer from these additional statistical fluctuations. To
control this AFDMC-UC error, when computing 〈vLS〉 we
accumulate more statistics (more Monte Carlo configurations)
than in standard calculations of the energy per particle. As a
consequence, the uncertainties on the AFDMC-CP estimates
for the spin-orbit term are not �1/ε larger than those of the
energy per particle.

Figure 7 displays the energy per particle of the NV2-Ia,
NV2-Ib, NV2-IIa, and NV2-IIb potentials as computed within
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TABLE II. Same as Table I for the NV2-Ia, NV2-Ib, NV2-IIa,
and NV2-IIb potentials.

BHF FHNC/SOC AFDMC-CP AFDMC-UC

E/A [MeV]
NV2-Ia 14.19 12.77 ± 0.67 15.71 ± 0.02 13.75 ± 0.34
NV2-Ib 15.14 13.64 ± 0.74 17.67 ± 0.02 14.67 ± 0.48
NV2-IIa 12.89 11.77 ± 0.76 14.97 ± 0.02 12.74 ± 0.32
NV2-IIb 13.15 12.01 ± 0.36 15.49 ± 0.02 12.94 ± 0.27

〈vLS〉 [MeV]
NV2-Ia −5.32 −7.88 −0.37 ± 0.03 −5.0 ± 1.1
NV2-Ib −8.88 −9.95 −0.50 ± 0.03 −6.2 ± 1.3
NV2-IIa −6.23 −7.78 −0.39 ± 0.03 −4.6 ± 1.2
NV2-IIb −6.56 −7.48 −0.50 ± 0.03 −4.9 ± 1.1

the different many-body methods and their polynomial fit
using the expression of Eq. (47). The picture that emerges
is fully consistent with the one already discussed for the
AV8′ and AV18 interactions. Looking at the values listed in
Table II, it is apparent that AFDMC-CP calculations suffer
from a substantial systematic error: releasing the constraint in
the imaginary-time propagation lowers the energy per particle
by at least ∼2 MeV per nucleon, improving the agreement
with BHF and FHNC/SOC calculations. Consistently with
the AV8′ and AV18 potentials, the AFDMC-UC values for
〈vLS〉 are smaller than those obtained within the BHF and
FHNC/SOC methods. The bias of the AFDMC-CP results
increases with the density: releasing the constraint in the
imaginary-time propagation lowers the energy per particle
by as much as ∼8 MeV at ρ = 2ρ0 for the NV2-Ib model.
The good agreement between BHF and AFDMC-UC is to
a large extent confirmed, as the discrepancies between the
two methods are smaller than ∼2.5 MeV for all the densities
and potentials we analyzed. Once again, for densities larger
than ρ0, FHNC/SOC calculations yield considerably lower
energies than BHF and AFDMC-UC. Comparing Tables I
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FIG. 8. AFDMC-UC energy per particle of PNM as a function of
density for the AV18 (black triangles), NV2-Ia (red triangles), NV2-
Ib (solid blue points), NV2-IIa (green diamonds), and NV2-IIb (grey
squares) potentials.

TABLE III. Best-fit parameters from Eq. (47) for the AFDMC-
UC energy per particle displayed in Fig 8. All values are in MeV.

a2/3 a1 a2

AV18 26.99 ± 0.24 −18.61 ± 0.38 5.18 ± 0.12
NV2-Ia 26.65 ± 1.09 −18.79 ± 1.59 5.58 ± 0.44
NV2-Ib 27.08 ± 0.86 −19.46 ± 1.34 7.07 ± 0.40
NV2-IIa 26.17 ± 0.86 −17.81 ± 1.37 4.24 ± 0.42
NV2-IIb 27.01 ± 0.60 −18.80 ± 0.95 4.84 ± 0.30

and II, we see that for the Argonne interactions, the 〈vLS〉
is smaller in the FHNC/SOC calculations compared to BHF,
while the opposite is true for the Norfolk potentials. Also,
the error bar on the total energy attached to the FHNC/SOC
calculations is much larger for all the Norfolk interactions.

By taking the AFDMC-UC results as our reference, in
Fig. 8 we display the EoS obtained using the AV18 and
the NV2 potentials. The parameters of the polynomial fit
of Eq. (47) along with their uncertainties are reported in
Table III. The latter are determined assuming that the energy
per particle and their errors are statistically independent and
have a Gaussian distribution. Comparing the EoS obtained
using the AV18 and the NV2 potentials we observe that,
with the exception of the NV2-Ib case, the maximum spread
among the curves is well within 5 MeV per particle up to
ρ = 2ρ0. In fact, for densities smaller than nuclear saturation,
the differences are always below ∼1 MeV per particle.

The NV2 energy results are ordered from most repulsive
to least repulsive as Ib > Ia > IIb > IIa. This is the same
order observed in GFMC calculations of the energy of 4He
in Ref. [65], where they give −22.89, −25.13, −25.21, and
−25.71 MeV, respectively, with Ib the least bound (by a wide
margin) and IIa the most bound. As noted there, the spread
in characteristics due to variations in the cut-off parameters is
noticeably reduced by fitting the NN data to higher laboratory
energy, i.e., models IIa and IIb are closer together than Ia and
Ib. Also, the “softer” the potential, the more attractive it is,
i.e., Ia is below Ib and IIa is below IIb. Finally, the fit to
higher energy has produced somewhat more attraction, i.e.,
both models II are more attractive than models I. Comparing
the phase shifts in Fig. 2, it would appear that NV2-IIb has the
best reproduction of data and it is fairly close to AV18.

It is also interesting to compare the uncertainties on the
EoS arising from the many-body method versus those associ-
ated to the nucleon-nucleon interaction. At saturation density,
the AFDMC-UC, BHF and FHNC/SOC calculations for all
the potentials we consider are within 1.5 MeV per particle.
The maximum difference among the AFDMC-UC values for
the energy per particle obtained from different interactions is
slightly larger, of about 1.9 MeV. At twice saturation density,
the spread among the many-body methods is 9.7 MeV per
particle, to be compared to the 8.7 MeV associated with the
nuclear potentials (less if model NV2-Ib is excluded).

V. CONCLUSIONS

We have carried out benchmark calculations of the energy
per particle of pure neutron matter as a function of the
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baryon density, employing two distinct families of coordinate-
space nucleon-nucleon potentials in three independent nuclear
many-body methods: AFDMC, FHNC/SOC, and BHF. As
for the nuclear Hamiltonians, we have considered the phe-
nomenological Argonne AV6′, AV8′ [63], and AV18 two-
body interactions [62], and the set of Norfolk χEFT NV2
potentials [64,65], which explicitly includes �-isobar inter-
mediate states. With the exception of AV6′, these potentials
are characterized by relatively strong spin-orbit components,
needed to reproduce the NN phase shifts in P and higher odd
partial waves.

Our pure neutron matter AFDMC calculations are per-
formed using the “plus and minus” importance-sampling al-
gorithm, introduced in Ref. [68] to treat atomic nuclei and
isospin-symmetric and asymmetric nuclear matter. However,
previous application of the AFDMC method to purely-neutron
systems used a different importance sampling for both the
spacial coordinates and the auxiliary fields. Extending the
analysis of Refs. [111,117], we have investigated the system-
atic error of the AFDMC method arising from constraining
the imaginary-time propagation to alleviate the fermion-
sign problem. We have performed unconstrained imaginary-
time propagations up to 0.004 MeV−1, extrapolating the
asymptotic value for the energy per particle using a single-
exponential fit. By computing the covariance matrix of the
data to account for the correlations among the AFDMC sam-
ples, we are able to estimate the uncertainty of the asymptotic
energy by varying the χ2 contour of the fit. The FHNC/SOC
method has been improved by systematically including sets
of elementary diagrams, at and beyond the FHNC/4 approx-
imation, through the use of three-point superbonds in the di-
agrammatic expansion. However, the most relevant numerical
difference with the FHNC/SOC results reported in Ref. [67]
is the inclusion of spin-orbit correlations.

When the AV6′ interaction is employed, AFDMC,
FHNC/SOC, and BHF yield similar energies per particle, the
maximum difference among the methods remaining smaller
than 5 MeV per particle up to ρ = 2ρ0. The excellent agree-
ment between AFDMC and FHNC/SOC calculations has to
be ascribed to both the improved sampling in the AFDMC
method and to the inclusion of the elementary diagrams
in FHNC/SOC. Releasing the constraint on the imaginary-
time propagation does not bring about appreciable differ-
ence with respect to the AFDMC-CP results. Notice that the
moderate differences between the BHF EoS and those for
the AFDMC and FHNC/SOC methods are partially reduced
when the contribution of the three-hole line diagrams is added
to the BHF results (BBG3). For example, at ρ = 2ρ0 one
has (E/A)BBG3 = 28.7 MeV [67] which is in better agree-
ment with the AFDMC and FHNC/SOC results. Clearly we
checked that for the AV6′ potential our BHF results overlap
with those of Ref. [67].

However, when spin-orbit terms are present in the nuclear
interaction, we find that performing unconstrained propaga-
tions is crucial to reliably compute the equation of state
of neutron matter. Simple constrained propagation signifi-
cantly overestimates the energy per particle, with the bias
increasing with the density. For instance, when the AV18
potential is used, the difference between AFDMC-CP and

AFDMC-UC calculations can be as large as ∼3 MeV at ρ =
ρ0 and ∼7 MeV at ρ = 2ρ0. Similar trends are also found
for the AV8′ potential and all NV2 interactions and we can
reasonably expect that analogous systematic errors affect the
AFDMC calculations of neutron-matter properties carried out
with local N2LO χEFT Hamiltonians [43,70,71,74,101].

The AFDMC-UC predictions are in good agreement with
those of the BHF approach. For both AV18 and the NV2
potentials, the discrepancies between the two methods remain
well within 3 MeV per particle, with the AFDMC-UC method
always providing less repulsion than the BHF. This highly
non trivial outcome of our comparison has been enabled by
the possibility of performing unconstrained propagations in
AFDMC. As a matter of fact, the AFDMC-CP equations of
state are sizably above both BHF and AFDMC-UC ones.
The FHNC/SOC energies per particle are consistently below
those computed within the other two many-body methods,
particularly for densities larger than ρ0. This is likely to be
ascribed to the somewhat oversimplified treatment of spin-
orbit correlations, whose contributions are exactly treated
only at the two-body cluster level. Only a limited number
of three-body terms in the cluster expansion are kept, as
in Ref. [35]. An alternate selection of three-body terms is
followed in Ref. [36]. We plan to compare with this latter
choice in the future to see if there is better agreement with
the new AFDMC and BHF results. Limiting our analysis to
ρ � ρ0, where higher-order terms in the cluster expansion are
smaller, FHNC/SOC and AFDMC-UC agree within 1 MeV
per particle, while the difference between AFDMC-CP and
FHNC/SOC turns out to be significantly larger.

The AV18 potential fits NN scattering data with χ2 ∼ 1 in
the energy range 0 � Elab � 350 MeV, while NV2 potentials
are constrained up to lower energies: 0 � Elab � 125 and
0 � Elab � 200 MeV for class I and class II, respectively.
Hence, the AV18, NV2-IIa, and NV2-IIb reproduce the ex-
perimental proton-neutron scattering phase shifts in the 1S0,
3P0, 3P1, 3P2, ε2, and 1D2 partial waves to higher energies
than NV2-Ia and NV2-Ib. Since in highly degenerate matter
neutron-neutron collisions mostly take place in the vicinity
of the Fermi surface, one can reasonably expect that poten-
tial models capable of reproducing NN scattering to higher
Elab will more reliably predict the EoS at larger densities.
Our AFDMC-UC calculations indicate that this is indeed the
case. The maximum spread among the energies per particle
obtained using the AV18, NV2-IIa, and NV2-IIb potentials
is well within 4 MeV per particle up to twice nuclear satu-
ration density. However, including NV2-Ia and NV2-Ib, the
spread among the models can be as large as ∼9 MeV per
particle.

This work extends the benchmark calculations carried out
in the literature [67,121,122] and it is not aimed at obtaining
a realistic description of the neutron matter EoS, for which
three-body forces are required. Two classes of χEFT three-
nucleon interactions consistent with the �-full NN potentials
employed in this work have been derived and successfully
applied to describe the spectrum of light nuclei [76] and the
β-decay of 3H [77]. Once implemented in our many-body
methods, we will compute the EoS and check their com-
patibility with astrophysical constraints, gauging potential
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regulator artifacts [74,120,123] and the convergence of the
chiral expansion.
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