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New extrapolation method for predicting nuclear masses
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In this paper, a practical extrapolation method is proposed to predict nuclear masses which are not
experimentally accessible. Our new method is based on the Garvey-Kelson mass relations and Jänecke formulas.
We demonstrate that the predictive power of this method is very competitive in comparison with other previous
models in the market; the root-mean-squared deviations of our extrapolated results are typically below 200 keV
for mass number A larger than 120, if one predicts nuclear masses within four or five steps beyond the borders
of the Atomic Mass Evaluation (AME) databases.
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I. INTRODUCTION

Nuclear mass (or binding energy) is one of the most funda-
mental quantities in nuclear physics as well as astrophysics. In
addition to great efforts devoted to mass measurements in nu-
clear science facilities worldwide, various theoretical models
and methods have been proposed to predict masses which are
not yet accessible experimentally [1,2]. The theoretical efforts
could be classified into two types. The first type is called
global mass models, such as the finite-range droplet model
(FRDM) [3,4], the Skyrme Hartree-Fock-Bogoliubov (HFB)
theory [5], the Koura-Tachibana-Uno-Yamada (KTUY) for-
mula constructed by Koura and collaborators [6], and a series
of the Weizsäcker-Skyrme model [7–10]. The global mass
models adopt a number of parameters which reflect various
phenomenologies related to nuclear masses, e.g., volume
energy, symmetry energy, surface energy, Coulomb energy,
Wigner energy, shell effect, pairing, deformation, exotic struc-
ture, and so on. The parameters are fixed by using experi-
mentally accessible masses and are adopted in predictions.
The other type is called local mass relations, such as the
Garvey-Kelson relations (GKs) [11–18], the Audi-Wapstra
(AW) extrapolation [19–21], Jänecke formulas [22–27], and
the local mass relations associated with proton-neutron in-
teractions [28–30]. Local mass relations focus on systemat-
ics and correlations between nuclear masses of neighboring
nuclei and are shown to be more accurate in the extrapo-
lation of nuclear masses close to the known borders of an
experimental database in comparison with global models,
which are generally believed to be more reliable in long-range
extrapolations of experimentally unknown masses.
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Among the 7000 or perhaps even 10 000 nuclei through-
out the full nuclear chart, only about 3000 nuclear masses
have been compiled in the Atomic Mass Evaluation (AME)
database [21]. One therefore has to resort to theoretical predic-
tions if one needs inputs of nuclear masses which are beyond
the AME2016 database. On the other hand, the predicted
results based on different models and approaches are very dif-
ferent as one goes far from experimentally accessible borders
[2], and thus the theoretical study of nuclear masses remains
a challenge in nuclear structure physics, despite numerous
efforts in previous studies. It is therefore the purpose of
this paper to suggest a new extrapolation method, which is
demonstrated to be very competitive in comparison with other
previous mass models.

This paper is organized as follows. In Sec. II, we present a
short introduction of the Garvey-Kelson relations and Jänecke
formulas, and then describe our new method. In Sec. III, we
investigate the predictive power of our method by using nu-
merical experiments, i.e., extrapolations from previous AME
databases to the current AME2016 database. Our summary
and conclusion are given in Sec. IV.

II. DESCRIPTION OF THE NEW METHOD

Let us begin the discussion with the famous Garvey-Kelson
mass relations [11], viz.,

DL = M(N + 1, Z + 1) + M(N − 1, Z )

+ M(N, Z − 1) − M(N, Z + 1) − M(N + 1, Z )

− M(N − 1, Z − 1) ∼ 0, (1)

DT = M(N + 1, Z − 1) + M(N − 1, Z )

+ M(N, Z + 1) − M(N, Z − 1) − M(N + 1, Z )

− M(N − 1, Z + 1) ∼ 0, (2)
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where M(N, Z ) represents the nuclear mass with given neu-
tron number N and proton number Z . Equation (1) is called
the longitudinal Garvey-Kelson relation (GKL) and Eq. (2)
the transverse (GKT). Such relations are not exact, and DL,
DT are used to denote the corresponding deviations from
zero. For a given nucleus, they are also regarded as deviation
of atomic mass, predicted by using experimental values of
its neighboring five masses, in comparison with its experi-
mental value. For mass number A = N + Z � 120, the root-
mean-squared deviations (RMSD) derived from the Atomic
Mass Evaluation database (AME2012) [20] are 148 and 158
keV for GKL and GKT, respectively [16,17]. As for the
AME2016 database [21], the RMSD values of these two
relations are, respectively, 148.8 and 158.2 keV. For A < 120,
the Garvey-Kelson relations become less accurate; this is not
unexpected, as the GK relations is equivalent to identities
of proton-neutron interaction between the last proton and
neutron, usually denoted by δVnp, for nuclei with neutron
number and proton number (N, Z ) and (N − 1, Z − 1), or
(N, Z ) and (N + 1, Z − 1), while δVnp exhibits irregularities
for nuclei with smaller A [29].

From another perspective, the GKL and GKT are rewritten
as follows:

�1,−1�1,0�0,1M(N, Z ) = 0, (3)

�1,1�1,0�0,1M(N, Z ) = 0, (4)

where operators �i, j , introduced by Jänecke et al. [24,25], are
defined below,

�i, jM(N, Z ) = M(N, Z ) − M(N − i, Z − j).

Suppose that both Eqs. (3) and (4) hold mathematically. One
has

�1,0�0,1M(N, Z ) =
{

C1, A odd,

C2, A even.
(5)

The general solution of M(N, Z ) is

M(N, Z ) = h1(N ) + h2(Z ) + λNZ + μ
1 − (−1)NZ

2
, (6)

where hi are arbitrary point functions and λ, μ are constants
[11]; they are determined by χ2 fitting of the available mass
data. Unfortunately, Eq. (6) does not satisfactorily describe
the AME database; in the case of AME2016, the RMSD of
Eq. (6) is as large as ∼2 MeV.

Two improvements of Eq. (6) have been developed. The
first improvement is to introduce so-called inhomogeneous
terms into the original formula [22–25], by either adding
phenomenological terms or combining the formula with other
models. For example, if a phenomenological term λ′NZ/A
is introduced in Eq. (6), similar to the 1/A behavior of
δVnp(N, Z ) [29], the RMSD is reduced to about 0.7 MeV.
Recently, an improved Jänecke mass formula has been pro-
posed by He et al. [26]. In their work, two additional point
functions h3(A = N + Z ) and h4(E = N − Z ) are considered
in Eq. (6), and pairing energy is adopted to be a refined form of

Mendoza-Temis [31]. Without further explanation, we quote
the formula by He et al. [26],

M(N, Z ) = h1(N ) + h2(Z ) + h3(A) + h4(E ) + Ep. (7)

Another type of improvement is to treat neutron-rich and
proton-rich nuclei separately in the process of fitting to
experimental data [27]. This separation is useful to reduce
systematic errors of masses in extrapolation.

Along the same line of [27], in this paper we suggest a new
and practical method to predict unknown nuclear masses by
extrapolation. We adopt the same form of Eq. (6), and assume
that this formula does not hold globally, but locally instead.
The adjective word “local” means that for each nucleus, we
make use of experimental mass values for only neighboring
nuclei in order to determine point functions and corresponding
parameters in Eq. (6). The distance between these neighboring
nuclei and the nucleus to be predicted is optimized by a χ2

fitting procedure, explained below.
Below we add subscript 0 to denote quantities of the

nucleus that we describe or predict by our formulas (for
instance, the proton and neutron numbers of the nucleus that
we study are denoted by Z0 and N0, respectively). Suppose that
we predict M(N0, Z0) by using its neighboring experimental
masses M(N, Z ). Our “locality” constraint is given by

|A − A0| � R, |E − E0| � R,

A �= A0, E �= E0, (8)

where R is neither a large number (because the GKs hold
in local regions) nor a very small number [e.g., for R = 1,
one has maximally 4 inputs which are not sufficient to fix
5 parameters in Eq. (6); for R = 3, one has maximally 24
inputs to fix 15 parameters in Eq. (6)]. Furthermore, we do
not assume R is a constant throughout the nuclide chart; for
cases in which the nucleus in our consideration is far from the
region with compiled experimental data, one needs a larger R
in order to have enough inputs to fix all parameters.

Our calculation is performed using a similar procedure as
in Ref. [3]. For a given value of σth, we calculate

∑
j

M j
exp − M j

th

σ
j2

exp + σ 2
th

∂M j
th

∂ pi
= 0, (9)

σ 2
th =

∑
j

(
σ

j2
exp + σ 2

th

)−1[(
M j

exp − M j
th

)2 − σ
j2

exp
]

∑
j

(
σ

j2
exp + σ 2

th

)−1 , (10)

with i = 1, 2, . . . , m and j = 1, 2, . . . , n. Here, m is the num-
ber of parameters and n is the number of inputs. Mi

exp and
Mi

th represent the experimental and theoretical masses of the
ith nucleus. σ i

exp is the experimental uncertainty of the ith
nucleus. pi stand for the parameters, namely, h1(N ), h2(Z ),
λ, and μ, in Eq. (6). Calculations of these two formulas
are performed iteratively until the value of σth converges.
For details of the calculation, one may refer to Appendix.
Eventually, we adopt the value of R which yields the minimal
σth in this process for the prediction of M(N0, Z0).
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FIG. 1. Deviations (in MeV) from experimental masses in
AME2016 for Eq. (7) and this work, respectively.

III. PREDICTIVE POWER OF THE NEW METHOD

In this section, we discuss the predictive power of our
method by numerical experiments, i.e., by extrapolations
from the Atomic Mass Evaluation 2003 (AME2003) [19], the
AME2012 database [20] to the AME2016 database [21]. As
mentioned above, our method is based on the GKs whereas,
due to the existence of the Wigner effect [32], the GKs are not
well applicable to Z > N or Z = N = odd [11], and therefore
those nuclei are excluded from our numerical experiments.

Before going to extrapolations, it is also interesting to
remark on the description of the AME2016 for our method.
We have studied this description by comparing our theoretical
masses using χ2 fitting of their nearby available data with
the compiled experimental values. For 2308 nuclei in 8 �
Z < 106, N � 10, the resultant RMSD is 143 keV, and in
A � 120, the RMSD is 80 keV, the accuracy of which is
clearly superior to the original GKs. We note that Eq. (7) is
indeed an improvement of Eq. (6), and this can be seen from
the RMSD value (231 keV) of Eq. (7) for the same 2308 nuclei
in the AME2016 database [in comparison, the RMSD value
of Eq. (6) is about 2 MeV]. From Fig. 1, one also sees the
substantial improvement of our method in comparison with
Eq. (7), for A � 60.

Here we remark on the point functions h1, h2, λ, and μ

in Eq. (6). These parameters change with (N0, Z0), and are
optimized individually. In Fig. 2, we present some of the
parameters [h1(126), h2(82), λ and μ] for nuclei adjacent to
the 208Pb nucleus. In that figure, each block corresponds to the
nucleus with given (N0, Z0). For example, according to Fig. 2,
h1(126) is 1 343 413 keV for 209Pb and is 1 272 676 keV for
210Pb.

Now let us first come to the extrapolation from the
AME2003 database to the AME2016 database for 8 � Z, N �
10. In Fig. 3, we show the RMSD values for A � 60 and
A � 120, respectively, corresponding to 202 and 115 nuclear
masses which are inaccessible in the AME2003 database, but
compiled in the AME2016 database. As comparisons, we plot
the RMSD values of the Audi-Wapstra extrapolation [19], the

FIG. 2. Parameters h1(126), h2(82), λ, and μ for nuclei adja-
cent to the 208

82 Pb126 nucleus. For instance, the optimized h1(126),
h2(82) are 1 270 084 keV and 1 343 288 keV for 206Pb, and are
1 740 980 keV and 1 877 270 keV for 205Ti, respectively. The
values of λ and μ are also related to N0 and Z0, but independent
of N and Z of neighboring nuclei. For example, when one describes
or predicts the mass of 206Pb, λ = −255 keV and μ = −206 keV
for all neighboring nuclei; and when one comes to the mass of
205Ti, λ = −352 keV and μ = −216 keV. One sees that the “local”
parameters in Eq. (6) evolve with N0 and Z0.

FRDM12 model [4], the HFB-17 model [5], the KTUY model
[6], and the WS [7], WS3 [8], and WS3 + RBF [9] models. In
addition, we also show the results of Jiang’s work [30] based
on the AME2003 database. Here one sees that our method
works quite well in the extrapolation for A � 60; in particular,

FIG. 3. Histogram of the RMSD values by extrapolations from
the AME2003 database to the AME2016 database for our new
method and some previous works, which include the Audi-Wapstra
(AW) extrapolation [19], Eq. (7), FRDM12 [4], HFB-17 [5], KTUY
[6], Jiang’s work [30], this work, WS [7], WS3 [8], and WS3 + RBF
[9]. The black slashed bars correspond to A � 60 and the red slashed
bars correspond to A � 120, respectively. The blue dashed horizontal
line denotes the RMSD of this work for A � 120.
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FIG. 4. Differences between predicted masses based on the
AME2003 database and the values in the AME2016 database, for
the AW extrapolation [19], Jiang’s method [30], and this work. The
deviations from the experimental mass of 138Sb by these three meth-
ods are marked due to the very large experimental mass uncertainty
for this nucleus.

this method is best applicable to cases with A � 120. For
A � 60, the RMSD is 466 keV, and for A � 120, it is only
230 keV; for the same extrapolated mass values with A � 120,
the RMSD of the Audi-Wapstra extrapolation is 314 keV, that
of Ref. [30] is 295 keV, and the global WS3 with radial basis
function correction is 268 keV.

Let us look at deviations between extrapolated results
based on theoretical models and experimental data compiled
in the AME2016 database, but not in the AME2003 database,
in more detail. In Fig. 4, we present the deviations of such
predicted masses (totaling 115 nuclei) from the experimental
values in the AME2016 database, for our method and two
local mass relations, i.e., the Audi-Wapstra extrapolation [19]
and the systematics of neutron-proton interaction [30], as well
as the average deviations (with an interval �A = 10) of all
three sets of extrapolations. One sees that the Audi-Wapstra
extrapolation generally underestimates masses for nuclei with
120 � A � 160, but overestimates the masses in A � 220. For
Ref. [30], the underestimation in Ref. [19] for 120 � A �
160 is improved, but deviations are large for A � 230. For
the results of our method, the deviations of both 120 � A �
160 and A � 230 are relatively small. Here we note 138Sb,
whose uncertainty of atomic mass compiled in the AME2016
is 1.064 MeV. In Fig. 4, we have put the deviation of the
extrapolated atomic mass for 138Sb inside a circle in black;
in case this deviation is excluded, the RMSD values of the
Audi-Wapstra extrapolation, Ref. [30], and this work become
303, 274, and 206 keV, respectively.

Our numerical experiments are also exemplified by ex-
trapolation from the AME2012 database to the AME2016
database. For A � 120, the extrapolation has only 29 nuclei
and we present predicted results by using our new method
in Table I. For comparison, the results of the Audi-Wapstra
extrapolation [20], Bao et al. [18] based on GKs, and WS4 +
RBF [10] are also listed. According to the table, mass(es) of

FIG. 5. (a) The RMSD of extrapolations from the AME2003 to
the AME2016 for the Audi-Wapstra (AW) extrapolation [19], the
approach of Jiang et al. [30], our approach, and WS3 + RBF [9] with
respect to different numbers of parameter R, for A � 120. (b) The
same as (a), but from the AME2016 to unknown nuclei for the AW
extrapolation [21], FRDM12 [4], the approach of Jiang et al. [30],
and WS4 + RBF [10], with reference to our predicted results.

one nucleus or more nuclei are not accessible by the Audi-
Wapstra extrapolation [20], Bao et al. [18], or Jiang et al. [30].
In Table I, 21 among the 29 nuclei are evaluated using those
five methods, and the RMSD values of these 21 nuclei are
175, 169, 216, 215, and 158 keV (see the last row of Table I),
respectively. Once again, if we exclude the result of 138Sb,
the RMSD values are reduced to 164, 160, 209, 212, and
130 keV, respectively. According to this comparison, Ref. [18]
yields comparably good predictions with the Audi-Wapstra
extrapolation, and the RMSD value of Jiang et al. [30] is
very close to that of WS4 + RBF [10]; still, our method is
superior to all previous predictions for A � 120. It is also
worthwhile to point out that the theoretical uncertainties of our
extrapolated masses are in general smaller than other previous
methods, as shown in Table I.

The above success of extrapolation encourages us to dis-
cuss the advantages of our new method in comparison with
other local mass relations. In our method, we begin with the
general solution of the GKs, but remove specific combinations
in the GKs. In the GKs, one needs the inputs of neighboring
nuclei with specific N and Z , while in our present method, one
could make use of all available data of neighboring nuclei.
For instance, in the case of extrapolation from the AEM2003
to the AME2016, the average number of nuclei whose masses
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TABLE I. Predicted mass excesses and their uncertainties (in keV) predicted by Audi-Wapstra (AW) extrapolation [20], Bao et al. [18],
Jiang et al. [30], WS4+RBF [10], and this work, respectively, for the nuclei with A � 120, from the AME2012 database [20] to the AME2016
database [21]. The last row presents the RMSD (in keV) of the 21 calculated masses in this table with and without consideration of 138Sb,
given outside and inside the parentheses, respectively.

Element AME2016 AW Bao et al. Jiang et al. WS4+RBF This work

121Rh −56250 ± 619 −56430 ± 298 −56390 ± 190 −56325 ± 144 −55859 −56325 ± 149
123Pd −60430 ± 789 −60417 ± 196 −60322 ± 199 −60531 ± 192 −60391 −60276 ± 128
129Cd −63058 ± 17 −63509 ± 196 −63569 ± 124 −63638 ± 96 −63646 −63338 ± 194
131Cd −55219 ± 102 −55331 ± 196 −54984 ± 159 −55822 ± 170 −55385 −54954 ± 363
138Sb −54220 ± 1064 −54539 ± 298 −54521 ± 157 −54552 ± 117 −54493 −54653 ± 65
141I −59927 ± 16 −59904 ± 196 −59951 ± 135 −59930 ± 100 −59882 −59943 ± 78
149Ba −53120 ± 438 −53021 ± 196 −53171 ± 149 −52947 ± 395 −53069 −53153 ± 154
150La −56130 ± 435 −56383 ± 196 −56432 ± 136 −56337 ± 174 −56299 −56450 ± 144
151La −53310 ± 435 −53729 ± 196 −53472 ± 224 −53275 ± 153 −53701 −53238 ± 121
137Eu −60146 ± 4 −60119 ± 196 −60100 ± 94 −59998 ± 94 −60147 −60145 ± 96
190Ti −24372 ± 8 −24379 ± 50 −24416 ± 83 −24410 ± 56 −24431 −24376 ± 111
215Pb 4342 ± 52 4416 ± 101 4466 ± 114 4499 ± 66 4328 4456 ± 68
194Bi −16029 ± 6 −16036 ± 51 −15958 ± 85 −15957 ± 56 −16167 −15957 ± 62
198At −6715 ± 6 −6721 ± 51 −6659 ± 87 −6636 ± 60 −6872 −6715 ± 69
197Fr 10254 ± 54 10488 ± 145 10441 ± 117 10282 10334 ± 60
198Fr 9574 ± 32 9613 ± 105 9597 ± 90 9184 9514 ± 84
202Fr 3096 ± 7 3092 ± 51 3140 ± 91 3123 ± 69 2876 3057 ± 41
232Fr 46073 ± 14 45986 ± 155 45984 ± 114 46091 ± 71 46030 45941 ± 57
233Fr 48920 ± 20 49034 ± 298 48894 ± 132 48907 ± 107 49062 48898 ± 48
201Ra 11937 ± 20 11841 ± 106 11950 ± 94 12033 ± 100 11820 11970 ± 73
205Ac 14107 ± 51 13940 ± 105 14049 ± 119 13973 14032 ± 62
206Ac 13479 ± 50 13462 ± 71 13446 ± 103 13392 ± 94 13250 13376 ± 82
215U 24923 ± 88 24917 ± 154 25184 ± 128 25212 24817 ± 62
216U 23066 ± 28 23191 ± 123 23283 ± 130 23118 23072 ± 56
221U 24520 ± 51 24483 ± 102 24498 ± 111 24468 ± 88 24546 24541 ± 107
222U 24273 ± 52 24222 ± 101 24204 ± 98 24292 ± 89 24321 24236 ± 96
219Np 29457 ± 88 29277 ± 196 29606 ± 249 29316 29115 ± 154
229Am 42150 ± 87 41891 ± 199 41912 ± 170 42148 42168 ± 170
259No 94079 ± 7 94111 ± 100 94107 ± 93 93995 94121 ± 60

RMSD (keV) 175 (164) 169 (160) 216 (209) 215 (212) 158 (130)

were used to predict 115 unknown masses is about 31. This
value is larger than the GKs (which are 14) to predict an
unknown mass of nucleus. The second advantage is that we
adopt experimental data by different weights according to
their experimental uncertainties, namely, experimental data
with large uncertainties are taken with smaller weight factors,
as shown in Eqs. (9) and (A7). The third advantage is that we
have a procedure to optimize the number of R which leads to
the smallest theoretical error σth; e.g., the selected numbers
are R = 5 and R = 6 for 202Fr and 222U, respectively, but not
the smallest numbers R = 4 and R = 5, whose predictions,
3030 and 24 235 keV, are further away from the experimental
values.

It is interesting to survey how far our extrapolation method
can go from the borders of the available experimental data.
First, we investigate the numerical experiment in Fig. 3 in
more detail. The three most accurate methods, i.e., AW ex-
trapolation, Jiang et al., and WS3 + RBF, as well as our
method are compared with respect to the range number R. The
RMSD results for A � 120 (138Sb is expelled) are illustrated
in Fig. 5(a). Apart from R = 4 and R = 8, our method yields
RMSD lower than 200 keV. One sees visible improvements in

accuracy of our method compared with other convincing mass
predictions, from R = 3 to R = 7. For R = 8, our method
yields a slightly large deviation compared with WS3 + RBF,
whereas it is still better than AW and Jiang’s extrapolation.
There are no available data in the R � 9 cases. As an extension
of this investigation, we apply both our method and the
extrapolation method of Jiang et al. [30] to the AME2016
database. In Ref. [30], the systematics of the neutron-proton
interaction versus A and the subtle shell effects are considered,
and therefore it is expected to be reliable even for extrap-
olation rather far from the borders of the AME database
in the nuclear chart. In Fig. 5(b), we plot the deviation of
predictions between the approach of Jiang et al. [30] and this
work using the same diagram as Fig. 5(a). We also include
the comparison of predictions in this work with those in
the FRDM12, WS4 + RBF, and Audi-Wapstra models. One
sees that, in general, the deviations between this work and
other models increase with R. We should note here that the
abnormal decreases of the RMSD from R = 9 to R = 10 and
R = 11 for the Audi-Wapstra extrapolations are essentially
originated from the fact that there are very few results in the
AME2016 database which correspond to R � 9: For R = 10,
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FIG. 6. Deviations of theoretically predicted masses for previ-
ous efforts with respect to predictions of this work by using the
AME2016, with the constraint of A � 120, vs neutron number N
and proton number Z . Deviations are denoted in different colors
according to the magnitude of the deviations. (a) Audi-Wapstra (AW)
extrapolation [21]; (b) FRDM12 [4]; (c) Jiang et al. by using the sys-
tematics of proton-neutron interactions and the AME2016 database
[30]; and (d) the WS4 + RBF method by Wang et al. [10]. The
black contours correspond to the region with R � 8 in this paper, and
the dots in black correspond to nuclei whose experimental masses
compiled in the AME2016. (b)–(d) The magic numbers N = 82 and
126 and Z = 40 and 82 are sandwiched by solid lines in orange.

there are only six predictions, and for R = 11, there is only
one predicted mass, in the Audi-Wapstra systematics [21].

In Fig. 6, we plot the deviations of the above four models
with respect to this work versus N and Z with A � 120. In
Fig. 6(a), one sees that deviations of the AW extrapolation
from the predictions in this work are very small, and most of
the masses in the AW extrapolation are able to be evaluated
in this work (if the R � 8 constraint is used). In Figs. 6(b)–
6(d), one sees that the systematic differences between the
predictions in our work and the predictions in the other three
works, i.e., the FRDM12 by Moller et al., the systematics
of the neutron-proton interactions by Jiang et al. [30], and
the WS4 + RBF model by Wang et al. [10], are larger than
1 Mev for R > 8. In addition, one sees from Figs. 6(b)–6(d)
that the approach in this work generally overestimates the
nuclear masses when R � 9; meanwhile, it underestimates
the masses near the N = 82, N = 126, Z = 82 (and probably
Z = 40 for WS4 + RBF) neutron-rich shells. This means that
this approach is not able to take the shell effect into account
properly in long-range extrapolations.

We tabulate our predicted nuclear masses based on the
AME2016 database [21] for A � 120 in the Supplemental
Material [34], where we have excluded results for which
theoretical uncertainties are larger than 1 MeV or R > 8.
The results of Ref. [30] based on the AME2016 database
and the experimental data (as well as the estimated values)
in the AME2016 database are also listed therein for con-
venience. In addition, the fitted parameters for each predic-
tion over the whole nuclide chart are provided in another
material.

IV. SUMMARY

To summarize, in this paper we suggest a new and practical
method to predict nuclear masses which are inaccessible
experimentally. This method is based on the Garvey-Kelson
mass relations and Jännecke mass formula. We have demon-
strated, by extrapolations from the AME2003 and AME2012
databases to the AME2016 database, that the predictive power
of our new method is very competitive. For mass number
A larger than 120, our extrapolated results have the smallest
root-mean-squared deviations from the latest experimental
results. With the practice of other popular approaches, we
put a constraint on our method: our extrapolation should be
within six steps (namely, R � 8) from the borders of the AME
database.

We enclose our predicted atomic masses for about 600
nuclei, whose masses are not yet experimentally accessible
according to the AME2016 database, in the Supplemental
Material [34]. As this new method is highly accurate in ex-
trapolation, our predictions are hopefully useful in theoretical
studies and future experimental measurements.
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APPENDIX: DETAILS OF FITTING PROCEDURE

In Sec. II, we have mentioned that the prediction of mass
M(N0, Z0) and the corresponding theoretical error σth are
derived by convergence of Eqs. (9) and (10). Here we begin
from the equation used to predict M(N0, Z0) as

M(N0, Z0) =
k∑

i=1

h1(N ′
i )δN0,N ′

i
+

l∑
j=1

h2(Z ′
j )δZ0,Z ′

j

+ λN0Z0 + μ
1 − (−1)N0Z0

2
, (A1)

where the prime in N ′
i and Z ′

i is used to discriminate respec-
tively from Ni and Zi in the fitting procedure, and k, l represent
the size of the region of nuclei whose masses are going to be
fitted. In our present approach, Eq. (6) holds “locally,” which
means k and l cannot be very large numbers. To be more
specific, we introduce another parameter, R, in Eq. (8). The
relation between k, l , and R is as follows: k, l <= 2R + 1,
where R gives the upper limit for the difference between A
and A0, E and E0, for nuclei used to optimize our parameters.
It is different from the “global” use of Eq. (6), in which one
changes k and l as flexibly as one wishes. δN0,N ′

i
and δZ0,Z ′

j
are

Kronecker δ functions. Here we note that there is collinearity
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as
k∑

j=1

δNi,N ′
j
=

l∑
j=1

δZi,Z ′
j
(=1) (A2)

holding for arbitrary input (Ni, Zi ). Thus one of these δ inputs should be replaced with the others and disappear from Eq. (A1).
For convenience, we exclude the δZi,Z ′

1
and construct the matrices as

X =

⎛
⎜⎜⎜⎜⎜⎝

δN1,N ′
1

... δN1,N ′
k

δZ1,Z ′
2

... δZ1,Z ′
l

N1Z1
1−(−1)N1Z1

2

δN2,N ′
1

... δN2,N ′
k

δZ2,Z ′
2

... δZ2,Z ′
l

N2Z2
1−(−1)N2Z2

2

...
...

...
...

...
...

...
...

δNn,N ′
1

... δNn,N ′
k

δZn,Z ′
2

... δZn,Z ′
l

NnZn
1−(−1)NnZn

2

⎞
⎟⎟⎟⎟⎟⎠

and

Yexp = (Mexp(N1, Z1) Mexp(N2, Z2) ... Mexp(Nn, Zn))T , (A3)

where Mexp represents the experimental mass value used in the
fitting procedure,

W =

⎛
⎜⎜⎜⎝

σ−1
1 0 ... 0
0 σ−1

2 ... 0
...

...
. . .

...
0 0 ... σ−1

n

⎞
⎟⎟⎟⎠, (A4)

in which σi = (σ i2
exp + σ 2

th )1/2 and the matrix of parameters

β = (h1(N ′
1), . . . , h1(N ′

k ), h2(Z ′
2), . . . , h2(Z ′

l ), λ, μ)T . (A5)

Here, X , Yexp, W , and β are n × m (m = l + k + 1), n × 1, n ×
n, and m × 1 matrices, respectively. n is the number of inputs
and m is the number of parameters. Once the β is determined,
the theoretical masses Mi

th of the fitted subset are given as

Yth = (
M1

th M2
th . . . Mn

th

)T = Xβ. (A6)

To solve Eq. (9), we mention that it is equivalent to minimiz-
ing S2 with respect to β [3], where

S2 = (Yexp − Yth )T W 2(Yexp − Yth )

= (Yexp − Xβ )T W 2(Yexp − Xβ ). (A7)

Therefore,

∂S2

∂β
= 2

∂ (Yexp − Xβ )T

∂β
W 2(Yexp − Xβ )

= −2X T W 2(Yexp − Xβ ) = 0 (A8)

yields [33]

β = (X T W 2X )−1X T W 2Yexp. (A9)

According to β, the theoretical value Mi
th(Yth ) is derived by

Eq. (A6). Here it is better to note that in our application, the
number of parameters is always smaller than that of the fitted
data, leading X to be a nonsquare matrix, which has no well-
defined inverse matric. (X T W 2X )−1 cannot be decomposed
as X −1W 2−1

X T −1 and would not result in Yth = Yexp. Then,
Yth are used in Eq. (10) to iterate σth until the value of σth

converges. The prediction of M(N0, Z0) is

Mth(N0, Z0) = x0β, where

x0 =
(

δN0,N ′
1

. . . δN0,N ′
k
, δZ0,Z ′

2
. . . δZ0,Z ′

l
N0Z0

1 − (−1)N0Z0

2

)
. (A10)

Our theoretical uncertainty is given by

t
S√

n − m

√
σ 2

th + x0(X T W 2X )−1xT
0 , (A11)

where the value of t is fixed by an integral as follows [33]:

∫ t

−t

	
(

n−m+1
2

)
√

π (n − m)	
(

n−m
2

)
[

1 + z2

n − m

]− n−m+1
2

dz

= 0.6826.

Here, 	(x) is the usual 	 function, 	(x) = (x − 1)!, x! =
x(x − 1)!, with 	(1)! = 1 and 	( 3

2 )! = √
π .
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