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Parton-hadron-quantum-molecular dynamics: A novel microscopic n-body transport approach
for heavy-ion collisions, dynamical cluster formation, and hypernuclei production
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Cluster and hypernuclei production in heavy-ion collisions is presently under active experimental and
theoretical investigation. Since clusters are weekly bound objects, their production is very sensitive to the
dynamical evolution of the system and its interactions. The theoretical description of cluster formation is
related to the n-body problem. Here we present the novel n-body dynamical transport approach PHQMD
(parton-hadron-quantum-molecular dynamics) which is designed to provide a microscopic description of nuclear
cluster and hypernucleus formation as well as of general particle production in heavy-ion reactions at relativistic
energies. In contrast to the coalescence or statistical models, often used for the cluster formation, in PHQMD
clusters are formed dynamically due to the interactions between baryons described on a basis of quantum
molecular dynamics (QMD), which allows one to propagate the n-body Wigner density and n-body correlations
in phase space, essential for the cluster formation. The clusters are identified by the MST (minimum spanning
tree) procedure or the SACA (simulated annealing cluster algorithm) which finds the most bound configuration of
nucleons and clusters. Collisions among hadrons as well as quark-gluon-plasma formation and parton dynamics
in PHQMD are treated in the same way as in the established PHSD (parton-hadron-string dynamics) transport
approach. In order to verify our approach with respect to the general dynamics, we present here the first PHQMD
results for general “bulk” observables such as rapidity distributions and transverse mass spectra for hadrons
(π, K, K̄ , p, p̄, �, �̄) from SIS (the GSI heavy ion synchrotron) to RHIC (BNL Relativisitic Heavy Ion Collider)
energies. We find a good description of the “bulk” dynamics which allows us to proceed with the results on
cluster production, including hypernuclei.

DOI: 10.1103/PhysRevC.101.044905

I. INTRODUCTION

There is a variety of evidence that a new state of matter, a
quark-gluon plasma (QGP), has been created in experiments
at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
and at the Large Hadron Collider (LHC) at CERN [1]. The
QGP has been predicted by lattice gauge calculations (lQCD)
[2,3], in which the Lagrangian of quantum chromodynamics
(QCD), describing strong-interacting matter, is calculated by
computer. One of the unanswered questions is how the frac-
tion of the matter in the QGP phase changes when lowering
the beam energy and at what beam energy a QGP ceases
to be created. At low beam energies, around a few A GeV,
heavy-ion collisions (HICs) are successfully described by
models which are based on hadronic degrees of freedom
only. From experimental data at RHIC and LHC we know
that at ultrarelativistic energies the baryon chemical potential
in the midrapidity region is close to zero. By decreasing
the beam energies one tests higher baryonic chemical poten-
tials. However, for a large baryon chemical potential lQCD
calculations cannot guide us because of the sign problem.

Phenomenological models, like those based on the Nambu–
Jona-Lasinio Lagrangian, predict that the smooth transition
(crossover) between the hadronic world and the QGP at van-
ishing baryon chemical potential [2,3] becomes a first-order
phase transition for finite chemical potentials [4,5].

In order to study nuclear matter at high baryon densities,
presently two accelerators are under construction: the Facility
for Antiproton and Ion Research (FAIR) in Darmstadt and
the Nuclotron-based Ion Collider fAcility (NICA) in Dubna.
They will become operational in the coming years. Moreover,
the presently running BES-II (Beam Energy Scan) at RHIC,
which includes a fixed target program, provides experimental
data in this energy regime. The scientific goal of all these
experimental efforts is to study those observables which
may carry information on the existence of the QGP and the
nature of its phase transition to the hadronic world. These
observables include the particle yields, rapidity and transverse
momentum spectra of produced hadrons, their fluctuations
and correlations with particular focus on the fluctuations of
baryons, production of strange and multi-strange baryons, as
well as cluster and hypernuclei production.
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The study of cluster and hypernucleus production, which
reflects the phase space density during the expansion phase, is
of particular interest from the experimental as well as from the
theoretical side. Experimentally, clusters have been observed
at all energies: from low energies measured by the ALADIN
[6,7], INDRA [8], FOPI [9], and HypHI [10] Collaborations to
(ultra)relativistic energies measured by the NA49 [11], STAR
[12,13], and ALICE [14–16] Collaborations.

The multiplicity of the produced clusters at midrapidity
is related to the phase space distribution of baryons
at their creation point, and therefore a change of the
fluctuations—like that expected in the neighborhood of a
first-order phase transition—will be directly reflected in
the cluster multiplicity [17]. On the other hand, without
identifying clusters, single-particle observables such as
the baryon spectra cannot be correctly interpreted. This is
especially important at low collision energies. For example,
in central Au + Au collisions at 1.5A GeV only 65% of the
total baryon charge is observed as protons, as measured by
the FOPI Collaboration [9]; the rest is bound predominantly
in light clusters. Composite clusters show different rapidity
distributions, in-plane flows, and pT spectra than free protons.
Therefore, for the theoretical understanding of single-baryon
spectra measured at those energies, one has to take into
account the formation of clusters, otherwise predictions of
observables are not precise, especially at low energies.

Among the clusters, hypernuclei which contain at least one
hyperon (strange baryon) are the most interesting observables.
The formation of hypernuclei in heavy-ion reactions has been
a subject of many theoretical studies; cf. [17–24]. Recent
experimental results [10,13,15] have shown that hypernuclei
and antihypernuclei can be formed in heavy-ion collisions
from SIS (the GSI heavy ion synchrotron) to LHC energies.
Detailed theoretical calculations have identified two sources
of hypernuclei in these reactions: In the overlap region of
target and projectile, hyperons are produced in energetic first
chance NN collisions. They (a) may migrate into the cold
spectator matter, being there absorbed to form heavy hypernu-
clei, or (b) may stay in the participant region, which expands,
and their interaction with the surrounding nucleons allows
them to form light clusters and hence light hypernuclei. In
view of their small binding energy and their hot environment
this is like the creation of “ice in a fire.” Nevertheless, such
hypernuclei have been found around midrapidity in RHIC and
LHC experiments [10,15].

The two production mechanisms of hypernuclei may
shed light on the theoretical understanding of the dynam-
ical evolution of heavy-ion reactions which cannot be ad-
dressed by other probes. In particular, the formation of heavy
projectile/target like hypernuclei elucidates the physics in the
transition region between spectator and participant matter.
Since hyperons are produced in the overlap region, multi-
plicity as well as rapidity distributions of hypernuclei formed
in the target/projectile region depend crucially on the in-
teractions of the hyperons with the hadronic matter, e.g.,
cross sections and potentials. On the other hand, midrapidity
hypernuclei test the phase space distribution of baryons in
the expanding participant matter, especially whether the phase
space distributions of strange and nonstrange baryons are

similar and whether they are in thermal equilibrium. The
present data [25,26] do not allow for a conclusive answer.
The description of cluster and hypernuclei formation is a chal-
lenging theoretical task which requires (I) the microscopic
dynamical description of the time evolution of heavy-ion
collisions, and (II) the modeling of the mechanisms for the
cluster formation.

The existing transport approaches are based on either
(i) the quantum molecular dynamics (QMD) algorithms for
the propagation of particles with mutual density depen-
dent two-body potential interactions, e.g., QMD [26–29],
IQMD [30], UrQMD [31,32], etc., or (ii) the mean-field
based approaches such as different types of semiclassical
(Vlasov) Boltzmann-Uehling-Uhlenbeck [(V)BUU] models,
realized in terms of different numerical codes known as BUU
[33–35], AMPT [36], HSD [37,38], PHSD [39], GiBUU [40],
SMASH [41], etc. There are also models based on a cas-
cade type propagation, such as the quark-gluon string model
(QGSM) [42].

The mean-field models reproduce well the single-particle
observables; however, they are not suited for describing clus-
ter formation since they propagate the single-particle distri-
bution function (realized with the test particle method) in a
mean-field potential calculated by averaging over many par-
allel ensembles. This approach smears out the initial n-body
correlations as well as the dynamical correlations due to the
interactions which develop during the whole time evolution
of the system.

For the production of clusters, which are n-body correla-
tions in phase space, one needs to calculate the time evolution
of the n-body Wigner density [43]. Most of the presently
available QMD approaches (QMD, IQMD) are limited to
nonrelativistic energies. The only exception is the UrQMD
approach, which has been used for study of deuteron and light
nuclei production via coalescence [44].

Cluster formation has often been described either by a
coalescence model [23,44] or statistical methods [22,45] as-
suming that during the heavy-ion reaction at least a subsystem
achieves thermal equilibration. Both of these models have
serious drawbacks. The most essential is that they are not
able to address the question of how the clusters are formed
and what we can learn from the cluster formation about the
reaction dynamics.

In the coalescence model the multiplicity of clusters de-
pends crucially on external parameters and the time tC , when
instantaneously the coalescence is calculated, as well as on
the coalescence parameters. It neglects that energy and mo-
mentum conservation require the presence of another hadron
during the cluster formation process and assumes that, after
the clusters are identified at tC , no further interactions of the
cluster nucleons take place.

Such a sudden freeze-out is not in line with other ob-
servables like the resonance production. Decay products of
resonances can interact with the surrounding medium; they
are absorbed or rescattered, therefore the resonances cannot
be identified anymore by the invariant mass method. Con-
sequently, one observes experimentally a decrease of the
multiplicity of resonances in comparison to the statistical
model prediction. Such an effect is not properly treated within
coalescence models.
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There are some efforts made to improve the coalescence
picture by extending it to the Wigner density approach. In
this case the cluster formation at tC is calculated by pro-
jecting the n-body Wigner density, which is propagated in
the transport model, on the Wigner density of the ground
states of the two-, three-, or four-body clusters. One uses a
simple parametrization of the ground state wave function of
the clusters which reproduces their rms (root-mean-square)
radius. The Wigner density method allows one to predict the
momentum distribution of these clusters and has been applied
for the deuteron formation in heavy-ion reactions [23]. The
drawbacks, however, remain that the origin of the cluster
formation cannot be studied and that the dynamical cluster
formation is reduced to a projection on the cluster Wigner
density at a given time point tC during the reaction.

Statistical fragmentation models are based on the strong
assumption that a thermal equilibrium is obtained in heavy-
ion reactions, at least in a limited rapidity interval. The
single-particle spectra of protons and produced hadrons do
not support such an assumption [46], at least not at the
intermediate energies (1A � Ebeam � 30A GeV) on which we
focus in this study. The statistical fragmentation model as-
sumes, furthermore, that equilibrium is maintained during the
expansion of the system up to very low densities where cluster
formation sets in. The ingredients of the model—like the
treatment of free and bound neutrons, the initial temperature,
and the baryon chemical potential—are fitted to the exper-
imental observations. The multiplicity of clusters observed
with the high energy beams at RHIC and LHC experiments
can be quantitatively described by statistical model calcula-
tions using the same parameters as for description of hadron
multiplicities. The light cluster production can be described
as well by a coalescence model [15]. Moreover, in Ref. [35]
deuterons are produced and propagated by Green’s function
techniques. In Ref. [47] the deuteron production in Pb + Pb
central collisions at LHC energies is assumed to be a final
state interaction simulated by a two-step process p + n → d ′
and d ′ + π → d + π including a fictitious resonance d ′.

In order to overcome these limitations we advance
the novel parton-hadron-quantum-molecular dynamics
(PHQMD) transport approach. The goal of this approach
is to provide a dynamical description for the formation
of light and heavy clusters and hypernuclei in relativistic
heavy-ion collisions based on a microscopic origin, i.e., on
the interaction between nucleons and hyperons which leads
to the binding of clusters. Since clusters are weakly bound
objects, they are very sensitive to the general dynamics of
the system and to the interactions of the constituents, i.e., to
the propagation and collisional interaction described by the
kinetic equations of motion:

(i) The PHQMD is based on the QMD dynamics for
the propagation of the baryons, realized by density
dependent two-body potential interactions [27,48,49],
which allow (contrary to the mean-field approaches)
one to propagate the n-body phase space correlations
between baryons.

(ii) In high energy heavy-ion collisions the dynamics is
dominated by the multiparticle production at the early

stage with the formation of the QGP and partonic
interactions. For the description of collisions and the
QGP dynamics in PHQMD we adopt the collision in-
tegral of the parton-hadron-string dynamics approach
(PHSD) [39,50–53], which was well tested in the
reproduction of experimental data on “bulk” dynamics
from SIS to LHC energies. Moreover, the original
PHSD mean-field propagation (realized within the par-
allel ensemble method) for baryons is kept as an op-
tion, which will allow us to investigate the differences
between the two approaches, i.e., the influence of
QMD versus mean-field based propagation on “bulk”
observables.

Thus, PHQMD provides a fully microscopic description of
the time evolution of the system and the interactions between
particles, on the hadronic and partonic levels. Due to that,
in PHQMD the clusters are formed dynamically. This means
that at the end of the heavy-ion reaction the same potential
interaction, which is present during the whole time evolution,
forms bound clusters of nucleons which are very distinct
in phase space from other clusters and free nucleons. This
differentiates our approach from coalescence models where
at a given time point a coalescence radius in phase space is
employed without considering whether the coalescing nucle-
ons are still strongly interacting with nucleons which do not
belong to the cluster.

These clusters can be identified by two methods: either
by the minimum spanning tree (MST) procedure [27] or by
a cluster finding algorithm based on the simulated annealing
technique, the simulated annealing clusterization algorithm
(SACA) [54,55]. Presently an extended version—fragment
recognition in general application (FRIGA) [56]—is under
development; it includes symmetry and pairing energy as well
as hyperon-nucleon interactions.

The MST algorithm is based on spatial correlations and it
is effective in finding the clusters at the end of the reaction. In
order to identify the cluster formation already at early times of
the reaction, when the collisions between the nucleons are still
ongoing and the nuclear density is high, the SACA approach
is used. It is based on the idea of Dorso and Randrup [57] that
the most bound configuration of nuclei and nucleons evolves
in time towards the final cluster distribution. The validity of
this idea has been confirmed in numerical studies [58–60].

First results from the combined PHSD/SACA approach
have been reported in [61]. There we applied SACA at some
fixed time using the nucleon distribution from the PHSD at
11.45 GeV for semiperipheral Au + Au collisions. Moreover,
the first attempt to identify hypernuclei with FRIGA has been
reported in Refs. [56,61].

In this study we present the first results from the PHQMD
approach. In order to validate the general dynamics in the
PHQMD we start by presenting the results on “bulk” ob-
servables, covering the energy range from SIS to RHIC, and
compare the PHQMD results with the PHSD results in order
to identify the difference between the QMD and mean-field
propagation of baryons, its influence on stopping of protons
and, correspondingly, on the “chemistry” production and pres-
sure redistribution in the interacting system, by looking at
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rapidity distributions and transverse mass mT or transverse
momentum pT spectra for hadrons (π, K, K̄ , p, p̄, �, �̄)
from SIS to RHIC energies. Then we proceed with the first
PHQMD results on dynamical cluster formation, including
hypernuclei, based on the MST and SACA models. Further-
more, we verify our model the cluster production in compari-
son to the available experimental data at SIS energies, show
the capacity of PHQMD to create clusters and hypernuclei
at higher energies and make predictions for future FAIR and
NICA experiments.

Our paper is organized as follows: We describe in Sec. II
the basic ideas of the PHQMD model. In Sec. III we detail
the algorithms (SACA and MST) which allow us to identify
clusters in a dynamical model. In Sec. IV we present the
results from the PHQMD for the “bulk” observables such
as rapidity distributions and transverse mass or momentum
spectra and compare them to available data from Ebeam =
1.5A GeV up to 21.3A TeV. Section V is devoted to the study
of clusters. We confront our results with the existing data for
heavy clusters and explore the formation of light clusters at
midrapidity. Finally in Sec. VI we present our conclusions.

II. MODEL DESCRIPTION: THE PHQMD APPROACH

In this section we describe the basic ideas of the PHQMD
approach. The PHQMD is an n-body microscopic transport
approach which describes the time evolution of an interacting
system by solving the kinetic equations of motion which con-
tain (i) the propagation of degrees of freedom with their po-
tential interaction as well as (ii) their scattering described by
“collision integrals.” (iii) Moreover, the dynamically formed
clusters are identified by the SACA and MST algorithms.

(i) The propagation of baryons in PHQMD follows
the quantum molecular dynamics (QMD) approach
where baryons are described by Gaussian wave func-
tions. In QMD the particles propagate under the in-
fluence of mutual two-body forces which are density
dependent in order to approximate n-body forces (n >

2). The density is defined by the sum of the squares of
the wave functions of all other nucleons. Both density
independent and density dependent two-body forces
are necessary to obtain a maximum of the binding
energy at normal nuclear matter density. In such an
approach “actio” is equal to “reactio” and, therefore,
energy and momentum are strictly conserved. The
strength of the interaction is chosen in a way that in
infinite matter a given nuclear EoS is reproduced. The
time evolution of the wave functions is determined ac-
cording to a variational principle [62]. This approach
conserves the phase space correlations in the system
and does not suppress fluctuations as in mean-field
based kinetic approaches. Since clusters are n-body
correlations this approach is well suited to address the
creation and time evolution of clusters.

(ii) The PHQMD incorporates the collision integrals of
the parton-hadron-string dynamics (PHSD) approach
[39,50–53] which describes all interactions in the
system—from primary hadron collisions to the

formation of the QGP in terms of strongly interacting
quasiparticles (massive quarks and gluons); partonic
interactions with further dynamical hadronization up
to hadronic interactions during the final stage of the
expansion. Moreover, the propagation of partonic de-
grees of freedom is adopted from the PHSD, too, and
based on the Kadanoff-Baym equations [63] for the
dynamics of strongly interacting systems [39,50,64].

(iii) At the later stage of the reaction, after hadroniza-
tion and resonance decays, the cluster recognition is
performed by the SACA or MST algorithms which
determine whether baryons are bound in clusters or
not.

In the next subsections we will discuss the ideas of the
PHQMD approach in more detail; however, for the readers
who are familiar with the PHSD and QMD approaches we
can summarize by saying that PHQMD combines the de-
scription of the QGP and hadronic interactions of the PHSD
approach with the n-body dynamics and initial distributions
of baryons from QMD. Additionally, cluster recognition algo-
rithms MST and SACA, which are based on finding configu-
rations with minimal binding (negative) energy calculated by
the Weizsäcker mass formula, are applied.

A. Stages of the nucleus-nucleus collisions: The collision integral

Nucleus-nucleus collisions in the PHQMD (similarly to the
PHSD) follow the following steps:

(1) In the beginning of the nucleus-nucleus collision (an
initialization of the nuclei as well as QMD propagation
of nucleons will be discussed in the next section) two
nuclei are approaching each other until they start to
overlap such that individual nucleon-nucleon primary
collisions take place. At relativistic energies the de-
scription of such primary collisions with multiparticle
production is based on the Lund string model [65]
which describes the energetic hadron-hadron colli-
sions by the creation of excited color-singlet states, de-
noted “strings,” which are realized within the FRITIOF

[65] and PYTHIA models [66] (cf. the HSD review [38]
for the description of string dynamics in HICs). A
string is composed of two string ends corresponding
to the leading constituent quarks (antiquarks) of the
colliding hadrons and a color flux tube (color-electric
field) in between. As the string ends recede, virtual qq̄
or qqq̄q̄ pairs are produced in the uniform color field
by a tunneling process (described by the Schwinger
formula [67]), causing the breaking of the string.
The produced quarks and antiquarks recombine with
neighboring partons into “prehadronic” states which
will approach hadronic quantum states (mesons or
baryon-antibaryon pairs) after a formation time τ f ≈
0.8 fm/c (in the rest frame of the string). In the calcula-
tional frame of the heavy-ion reaction (which is chosen
to be the initial NN center-of-mass frame) the forma-
tion time then is tF = τF γ , where γ = 1/

√
1 − v2 and

v is the velocity of the particle in the calculational
frame.
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In the string decay, the flavor of the produced
quarks is determined via the Schwinger formula
[66,67], which defines the production probability of
massive ss̄ pairs with respect to light flavor production
(uū, dd̄ ) pairs:

P(ss̄)

P(uū)
= P(ss̄)

P(dd̄ )
= γs = exp

(
−π

m2
s − m2

u,d

2κ

)
, (1)

with κ ≈ 0.176 GeV2 denoting the string tension
and mu,d,s the constituent quark masses for strange
and light quarks. For the constituent quark masses
mu ≈ 0.35 GeV and ms ≈ 0.5 GeV are adopted in
the vacuum; the production of strange quarks thus is
suppressed by a factor of γs ≈ 0.3 with respect to the
light quarks, which is the default setting in the FRITIOF

routines. We note that in Refs. [68,69] the PHSD has
been extended to include the chiral symmetry restora-
tion (CSR) effect in the string decay by changing of
constituent quark masses due to the dropping of the
scalar quark condensate in a hadronic environment of
a finite baryon and meson density. After string decay
the “leading hadrons,” which originate from the string
ends, can reinteract with hadrons almost instantly with
reduced cross sections (according to the constituent
quark number) [38].

(2) If the local energy density in the cell is above the
critical value of εc ≈ 0.5 GeV/fm3, the “deconfine-
ment” (i.e., a transition of hadronic to partonic de-
grees of freedom) is implemented by dissolving the
“prehadrons” (the string decay products which are in
this cell) into the massive colored quarks/antiquarks
and mean-field energy, keeping “leading hadrons” out
of dissolution (cf. Refs. [39,51] for the details). This
procedure allows one to keep the microscopic descrip-
tion of changing degrees of freedom by conserving the
energy-momentum, charge, flavor, etc.

In PHQMD (as well as in PHSD) the partonic (or
the QGP phase) is based on the dynamical quasi-
particle podel (DQPM) [70,71] which describes the
properties of QCD (in equilibrium) in terms of re-
summed single-particle Green’s functions. Instead of
massless partons of pQCD, in PHSD the gluons and
quarks are massive strongly interacting quasi particles,
which reflects the nonperturbative nature of the strong
interaction. The properties of off-shell quasiparticles
are described by spectral functions (imaginary parts of
the complex propagators) with temperature dependent
masses and widths. The widths and pole positions of
the spectral functions are defined by the real and imag-
inary parts of the parton self-energies and the effective
coupling strength which is fixed by adjusting lQCD
results for the entropy density [72–74] (using in total
three parameters). The details of the DQPM model,
adopted in the PHQMD, can be found in Appendix A.

(3) Within the QGP phase, the partons (quarks, antiquarks,
and gluons) scatter and propagate in a self-generated
scalar mean-field potential [51]. On the partonic side
theelastic and inelastic interactions qq ↔ qq, q̄q̄ ↔

q̄q̄, gg ↔ gg, gg ↔ g, qq̄ ↔ g are included, exploiting
“detailed balance” with temperature dependent cross
sections (as in the PHSD 4.0) (cf. [53,75]). The prop-
agation of off-shell partons in PHQMD (as well as in
PHSD) is fully determined by the Cassing-Juchem off-
shell transport equations based on the Kadanoff-Baym
equations (cf. the review [50]).

(4) The expansion of the system leads to a decrease of the
local energy density and, once the local energy density
becomes close to or lower than εc, the massive colored
off-shell quarks and antiquarks hadronize to color-
less off-shell mesons and baryons. The hadronization
process is defined by covariant transition rates (see
Appendix B) and fulfills the energy-momentum and
quantum number conservation in each event [51].

(5) In the hadronic “corona” (i.e. the region with low
energy density) as well as in the late hadronic phase
after hadronization, or even the whole dynamics at
low bombarding energies (without the formation of
the QGP), the hadrons are interacting and propagating.
The hadronic degrees of freedom in the PHQMD
are the baryon octet and decouplet, the 0− and 1−
meson nonets, and higher resonances. The hadronic
interactions include elastic and inelastic collisions be-
tween baryons, mesons, and resonances (including the
backward reactions through detailed balance) in line
with the HSD approach [37,38]. We note that in the
PHQMD (as well as in the PHSD) the multimeson
fusion reactions to baryon-antibaryon pairs and back-
ward reactions (n mesons ↔ B + B̄) are included, too
[76,77]. The PHQMD (as well as PHSD) incorpo-
rates also the in-medium effects, i.e., the changes of
hadronic properties in the dense and hot environment,
such as a collisional broadening of spectral functions
of vector mesons (ρ, ω, φ, a1) [78], strange mesons
K, K̄ [79], and strange vector mesons K∗, K̄∗ [80].
The propagation of the off-shell mesonic states is
described also by the Cassing off-shell transport equa-
tions [50,79]. Contrary to the PHSD, the propagation
of baryonic states in the PHQMD follow the QMD
equations (see Sec. II C).

In the PHQMD approach the full evolution of a
relativistic heavy-ion collision—from the initial hard
NN collisions out of equilibrium, to the formation
of a partonic state, the hadronisation as well as final
interactions of the resulting hadronic particles—is de-
scribed on the same footing.

B. Initialization of the nuclei

As mentioned above, we adopt the parallel ensemble
method for the PHQMD approach for both dynamical options:
QMD (where the parallel ensembles are independent) and
mean field (MF) used in the PHSD. In the MF (i.e., PHSD)
mode the initialization in coordinate space is realized by
pointlike test particles, randomly distributed according to the
Wood-Saxon density distribution and in momentum space
according to the local Thomas-Fermi distribution in the rest
frame of the nucleus.
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FIG. 1. The averaged (over 250 events) density distribution of
target (blue squares) and projectile (red dots) nucleons in Au + Au
collisions obtained from the QMD initialization in comparison to the
Wood-Saxon distribution, Eq. (4) (solid line).

In the QMD mode we use the single-particle Wigner den-
sity of the nucleon i, which is given by

f (ri, pi, ri0, pi0, t ) = 1

π3h̄3 e− 2
L [ri−ri0(t )]2

e− L
2h̄2 [pi−pi0(t )]2

, (2)

where the Gaussian width L is taken as L = 2.16 fm2. We
will use the h̄ = c = 1 convention for further consideration.
The corresponding single-particle density is obtained by an
integration of the single-particle Wigner density over the
momentum of nucleon i:

ρsp(ri, ri0, t ) =
∫

dpi f (ri, pi, ri0, pi0, t )

=
(

2

πL

)3/2

e− 2
L [ri−ri0(t )]2

. (3)

The total one-body Wigner density is the sum of the
Wigner densities of all nucleons. To initialize the nuclei we
choose randomly the position of nucleons ri0(t = 0) accord-
ing to the Wood-Saxon density distribution. We take care that
the distribution is smooth by requiring a minimal phase space
distance between the nucleons. Figure 1 shows the nucleon
density distribution (averaged over 250 QMD events) of target
and projectile nucleons in Au + Au collisions in comparison
to the Wood-Saxon distribution

ρW S (r) = ρ0

1 + e
r−RA

a

, (4)

where RA = r0A1/3 is the radius of nuclei with mass number
A with r0 = 1.125 fm, ρ0 = 0.1695 fm−2, a = 0.535 fm.

To initialize the nuclei in momentum space, we chose ran-
domly the momenta of nucleons, pi0(t = 0), according to the
Thomas-Fermi distribution with the additional requirement
that the nucleons are bound:

0 �
√

m2 + pi0
2(t = 0) − m � −〈V (ri0)〉, (5)

where m is the mass of a nucleon. Here the expectation value
of the potential energy 〈V (ri0)〉 (which we discuss in the
next subsection) is negative. This procedure gives a lower
momentum to those nucleons which are located close to the

surface because there the density is lower. Finally we take care
that

∑
i pi0(t = 0) = 0 by adding a common momentum to all

nucleons.
With such determined momenta and positions we calculate

the average binding energy of the nucleons and compare the
result with the Bethe-Weizsäcker mass formula. It turns out
that we underestimate slightly the average binding energy
independently of the size of the nucleus. To obtain the right
binding energy we multiply the momenta of all nucleons by a
common factor (close to 1). This factor depends on the value
of L. Before the nuclei collide, target and projectile nucleons
are boosted into the nucleus-nucleus center-of-mass frame and
get Lorentz contracted.

C. QMD propagation

The propagation of the Wigner density is determined by a
variational principle [62], which has been developed for the
time dependent Hartree-Fock approach:

δ

∫ t2

t1

dt〈ψ (t )|i d

dt
− H |ψ (t )〉 = 0. (6)

In our approach we assume that the n-body Wigner density
is the direct product of the single-particle Wigner densities.
There are also QMD versions which use a Slater determi-
nant, FMD [62] and AMD [81], but due to the difficulty of
formulating collision terms these approaches have only been
applied to low energy heavy-ion collisions. Assuming that the
wave functions have a Gaussian form and that the width of
the wave function is time independent, one obtains for the
time evolution of the centroids of the Gaussian single-particle
wave functions two equations which resemble the equation of
motion of a classical particle with the phase space coordinates
ri0, pi0 [27]. The difference is that here the expectation value
of the quantal Hamiltonian is used and not a classical Hamil-
tonian:

˙ri0 = ∂〈H〉
∂ pi0

, ṗi0 = −∂〈H〉
∂ri0

. (7)

These time evolution equations are specific for Gaussian
wave functions. For other choices of wave functions the time
evolution equations would be different. The Hamiltonian of
the nucleus is the sum of the Hamiltonians of the nucleons,
composed of kinetic and two-body potential energies:

H =
∑

i

Hi =
∑

i

(Ti + Vi ) =
∑

i

⎛
⎝Ti +

∑
j 
=i

Vi, j

⎞
⎠. (8)

The interaction between the nucleons has two parts, a local
Skyrme type interaction and a Coulomb interaction:

Vi, j = V (ri, r j, ri0, r j0, t ) = VSkyrme + VCoul

= 1

2
t1δ(ri − r j ) + 1

γ + 1
t2δ(ri − r j )ρ

γ−1

× (ri, r j, ri0, r j0, t ) + 1

2

ZiZ je2

|ri − r j | , (9)
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with the density ρ(ri, r j, ri0, r j0, t ) defined as

ρ(ri, r j, ri0, r j0, t )

= C
1

2

⎡
⎣∑

j,i 
= j

(
1

πL

)3/2

e− 1
L [ri−r j−ri0(t )+r j0(t )]2

+
∑
i,i 
= j

(
1

πL

)3/2

e− 1
L [ri−r j−ri0(t )+r j0(t )]2

⎤
⎦. (10)

where C is a correction factor explained below.
We define the “interaction” density ρint (ri0, t ), which for

the nonrelativistic case can be written as

ρint (ri0, t ) = C
∑
j, j 
=i

(
1

πL

)3/2

e− 1
L [ri0(t )−r j0(t )]2

. (11)

The interaction density has twice the width of the par-
ticle density, Eq. (3), and is obtained by calculating the
expectation value of the local Skyrme potential which is ∝
δ(ri − r j ). The correction factor C in Eq. (10) depends on
L. It is introduced because nuclear densities are calculated
differently in mean-field approaches—for which the Skyrme
parametrization has been developed—and QMD approaches.
In mean-field transport or hydrodynamical approaches the
density which enters the density dependent two-body in-
teraction is obtained by summing over all particles in the
system: ρMF

int (ri0, t ) = ∑
j · · · . In QMD type approaches we

have to exclude self-interactions and therefore the density
which enters the density dependent interaction is the sum
over all nucleons with the exception of that nucleon on which
this density dependent potential acts: ρint (ri0, t ) = ∑

j 
=i · · · .

The two densities differ by ( 1
πL )

3/2
. To compensate for the

lower density in the QMD type approaches compared to the
mean-field approaches, we introduce the correction factor C
which is adjusted numerically to achieve equality of the two
densities. With this correction factor we can use the Skyrme
potentials also for the QMD approach.

The expectation value of the potential energy Vi, 〈Vi〉 =
〈V (ri0, t )〉, of the nucleon i is given by

〈V (ri0, t )〉 =
∑
j, j 
=i

∫
d3rid

3r jd
3 pid

3 p jV (ri, r j, ri0, r j0)

× f (ri, pi, ri0, pi0, t ) f (r j, p j, r j0, p j0, t ).
(12)

Numerical tests have shown that the time evolution of the sys-
tem does not change if we replace 1

2 [ρint (ri0, t ) + ρint (r j0, t )]
by ρint (ri0, t ) or by ρint (r j0, t ). For the Skyrme potential we
can therefore use the analytical form

〈VSkyrme(ri0, t )〉 = α

(
ρint (ri0, t )

ρ0

)
+ β

(
ρint (ri0, t )

ρ0

)γ

. (13)

The expectation value of the Coulomb interaction can also be
calculated analytically.

TABLE I. Parameter sets for the nuclear equation of state used in
the PHQMD model.

α (MeV) β (MeV) γ K (MeV)

S −390 320 1.14 200
H −130 59 2.09 380

The expectation value of the Hamiltonian which enters in
Eq. (7) is finally given by

〈H〉 = 〈T 〉 + 〈V 〉
=

∑
i

(√
p2

i0 + m2 − m
) +

∑
i

〈VSkyrme(ri0, t )〉. (14)

The nuclear equation of state (EoS) describes the variation
of the energy E (T = 0, ρ/ρ0) when changing the nuclear den-
sity in infinite matter to values different from the saturation
density ρ0 for zero temperature. In infinite matter the density
is position independent and we can use Eq. (13) to connect
our Hamiltionian with nuclear matter properties, because for
a given value of γ the parameters t1, t2 in Eq. (9) are uniquely
related to the coefficients α, β of the EoS, Eq. (13). Values of
these parameters for the different model choices can be found
in Table I.

Two of the three parameters of the Skyrme potential can
be fixed by the condition that the energy per nucleon has a
minimum of E

A (ρ0) = −16 MeV at ρ0.
The third equation is historically provided by fixing the

compression modulus K of nuclear matter, the inverse of the
compressibility χ = 1

V
dV
dP , which corresponds to the curvature

of the Skyrme energy at ρ = ρ0 (for T = 0) that is also given
in Table I:

K = −V
dP

dV
= 9ρ2 ∂2[E/A(ρ)]

(∂ρ)2

∣∣∣∣
ρ=ρ0

. (15)

Here P is the pressure in the system of volume V . An equation
of state with a rather low value of the compression modulus
K yields a weak repulsion against the compression of nuclear
matter and thus describes “soft” matter (denoted by “S”). A
high value of K causes a strong repulsion of nuclear matter
under compression (called a hard EoS, “H”). The hard and soft
equations of state used in this study are illustrated in Fig. 2.

We stress again that for the present study we use a “static”
form of Skyrme potential which depends only on the lo-
cal density according to Eq. (12). A momentum dependent
Skyrme interaction is more realistic. This will be the subject
of future studies. Many observables show for a soft mo-
mentum dependent interaction and a static hard interaction
quite similar results [28]. We also note that in the PHQMD
we propagate nonstrange baryon resonances (such as �’s) in
the same manner as nucleons, assuming the same potential
interaction as the nucleon-nucleon one, while for strange
baryon resonances (such as �’s, �’s) we assume 2/3 of the
nucleon-nucleon potential.

The influence of the nucleon potential and hence of the EoS
on hadronic observables as well as on the cluster formation in
heavy-ion collisions is well established at low energies (cf.,
e.g., [46]) where the nonrelativistic Hamiltonian formulation
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FIG. 2. The energy per nucleon for the two EoS: hard (solid blue
line) and soft (dotted red line).

of QMD (presented in this section) is applicable. With in-
creasing bombarding energies a relativistic dynamics becomes
more important. The relativistic formulation of molecular
dynamics has been developed in Ref. [48]; however, the
numerical realization of this method for realistic heavy-ion
calculations is still not achievable with present computer
power since it takes about two orders of magnitude longer
time to simulate the reaction due to the inversion of high
dimensional matrices. Therefore, we are facing the problem of
how to extend the nonrelativistic QMD approach to the high
energy collisions considered in this study, within a framework
which can be numerically realized.

In order to extend our approach for relativistic energies, we
introduce the modified single-particle Wigner density f̃ of the
the nucleon i:

f̃ (ri, pi, ri0, pi0, t ) = 1

π3
e− 2

L [rT
i (t )−rT

i0(t )]2
e− 2γ 2

cm
L [rL

i (t )−rL
i0(t )]2

.

× e− L
2 [pT

i (t )−pT
i0(t )]2

e
− L

2γ 2
cm

[pL
i (t )−pL

i0(t )]2

,

(16)

which accounts for the Lorentz contraction of the nucleus in
the beam z direction, in coordinate and momentum space, by
inclusion of γcm = 1/

√
1 − v2

cm, where vcm is a velocity of the
bombarding nucleon in the initial NN center-of-mass system.
Accordingly, the interaction density (11) becomes

ρ̃int (ri0, t ) → C
∑

j

(
1

πL

)3/2

γcm e− 1
L [rT

i0(t )−rT
j0(t )]2

× e− γ 2
cm
L [rL

i0(t )−rL
j0(t )]2

. (17)

With these modifications we obtain

〈H̃〉 =
∑

i

(√
p2

i0 + m2 − m
) +

∑
i

〈ṼSkyrme(ri0, t )〉 (18)

with

〈ṼSkyrme(ri0, t )〉 = α

(
ρ̃int (ri0, t )

ρ0

)
+ β

(
ρ̃int (ri0, t )

ρ0

)γ

, (19)

with the time evolution equations (7).

0 5 10 15 20 25
0

1

2

3

4

0 5 10 15 20 25
0

1

2

(a)
Au+Au, b=0 fm, central cell

1.5 A GeV
4.0 A GeV
10.0 A GeV

(b)

time [fm/c]

1.5 A GeV
4.0 A GeV
10.0 A GeV

ρ i
nt
(t)
/ ρ

0

time [fm/c]
ε(

t)
[G

eV
/fm

3 ]
FIG. 3. Time evolution of the interaction density, scaled to the

normal nuclear density ρ0 = 0.168 fm−3 (upper plot), and the energy
density (lower plot) in the central cell of volume (27/γcm) fm3

of Au + Au collisions at Ebeam = 1.5A GeV (dashed green lines),
4.0A GeV (dash-dotted red lines), and 10.0A GeV (solid blue lines),
averaged over 200 events. The dotted red and blue lines in the lower
plot show the hadronic contribution to the energy density for the
corresponding beam energies of 4.0A and 10.0A GeV.

To verify the applicability of our ansatz for the relativis-
tic extension of the interaction density, Eq. (16), we have
analyzed the time evolution of the interaction density. In
the upper part of Fig. 3 we show the time evolution of the
interaction density, scaled to the normal nuclear density ρ0 =
0.168 fm−3, of all baryons in the central cell of a volume
(27/γcm) fm3 of Au + Au collisions at Ebeam = 1.5A GeV
(dashed green lines), 4.0A GeV (dash-dotted red lines), and
10.0A GeV (solid blue lines), averaged over 200 events. One
can see that at 4A and 10A GeV in the central cell a maximal
density ρint of 3–3.5 ρ0 can be reached during the overlap of
the nuclei. The lower part of Fig. 3 shows the time evolution of
the local energy density ε of all interacting particles (hadrons
and partons), in the central cell (with color coding as for the
upper plot). The dotted red and blue lines in the lower plot
show the hadronic contribution to the energy density for the
corresponding beam energies of 4.0A and 10.0A GeV. One
can see that at the low bombarding energy of 1.5A GeV the
energy density in the center of the fireball is rather small and
always below the critical one. In spite of the energy density
increasing with bombarding energy, the matter is still hadron
dominated at 4A and 10A GeV, and the QGP is formed only in
small droplets, i.e., the fraction of the QGP in the total energy
balance of the system is still very small at such energies and
increases slowly with growing bombarding energy (cf. Fig. 4
in Ref. [82]). This is related to the fact that in PHQMD (as in
PHSD) the leading hadrons—the fastest ends of the decaying
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strings, which are rather short (i.e., have little energy) at
low energies—are not dissolved (as explained in Sec. II A)
to partons and keep their hadronic identity. However, with
increasing bombarding energy the fraction of partonic degrees
of freedom grows and at RHIC energies it dominates the
hadronic one in the central cells. Shortly after hadronization,
the hadronic collisions are still frequent and the momentum
transfer due to collisions is large relative to the momentum
transfer due to the potential interactions between hadrons.
Only later during the expansion, when the mean-free path be-
comes large, does the momentum change due to the potential
interaction dominate again. However, the potential interaction
in the QMD propagation is relevant for the spectators and
baryons in the relatively cold “corona” during the whole time
evolution of the system.

Summarizing, at higher beam energies the potential inter-
actions are important in the following cases:

(i) For midrapidity baryons during the final hadronic
phase of the expanding system when the mean free
path of hadrons is long, which might lead to the
formation of light clusters. In this expanding region
the inverse slope parameters of the transverse energy
spectra of the baryons are of the order of 100 MeV and
therefore for all baryons we are in an approximately
nonrelativistic regime.

(ii) For spectator baryons (nucleons) at all energies and
during the whole time evolution. There the Pauli
principle does not allow for collisions of nucleons
because the phase space of the outgoing channel is
already occupied by other nucleons. Thus, the rapidity
distribution of spectators changes only little during
the reaction and they are finally the source of heavy
clusters. Here the relative momentum between two
nucleons is of the order of the Fermi momentum
and therefore we can as well apply nonrelativistic
kinematics.

D. Pauli blocking

The collisions in the overlapping zone of projectile and
target are rather energetic and therefore the phase space of
their final state is empty. This is not the case for collisions
in the spectator matter or for participants which enter the
spectator matter. There, the final phase space is occupied in
many cases, thus the collision is Pauli blocked. The evaluation
of the Pauli blocking is a nontrivial task in QMD calculations
due to the problem of defining a surface of the nucleus.
For nucleons in the center of the reaction zone, where the
phase space occupation is close to unity, one can calculate the
phase space occupation and apply a Monte Carlo approach to
define whether the collision is allowed or not. At the surface
it is more difficult because the initial nucleus has there a
low phase space density. For this case a special algorithm
has been developed which blocks also the collisions close to
the surface effectively. For a single Au nucleus, initialized
with our initialization routine, where all collisions should be
blocked, we obtain a blocking rate of 96%. More details of the

quantum molecular dynamics (QMD) approach can be found
in [27,30,46].

III. CLUSTER FORMATION: SACA AND MST

A. Algorithms for cluster formation

Since the transport models propagate nucleons, one needs
to define a consistent theoretical approach to build clusters out
of these nucleons. In our approach clusters are formed by the
same nucleon-nucleon interactions which rule the time evo-
lution of the system in the course of the heavy-ion collision.
We call this dynamical cluster formation in contradistinction
to models where fragments are created instantaneously at a
given time as in coalescence models. As discussed in the
Introduction, we employ here the following two procedures
for the dynamical cluster identification:

(1) MST (minimum spanning tree) [27]. In this approach
only the coordinate space information is used to define
clusters. Therefore, this method can identify clusters
only when free nucleons and groups of nucleons,
called clusters, are well separated in coordinate space
at the end of the reaction. Then two nucleons are
considered as part of a cluster if their distance is less
than r0 = 2.5 fm. Nucleons which are connected by
this condition form a cluster. Nucleons with a large
relative momentum are no longer close to each other at
late times. Consequently, additional cuts in momentum
space change the cluster distribution only little.

(2) SACA (simulated annealing clusterization algorithm)
[54,55]. To overcome the limitation that clusters can
only be identified at the end of the reaction we have
developed the simulated annealing cluster Algorithm
(SACA) approach [54,55]. It is based on the idea of
Dorso and Randrup [57] that the most bound con-
figuration of nucleons and clusters, identified during
the reaction, has a large overlap with the final dis-
tribution of clusters and free nucleons. This allows
one to study the clusterization pattern early, shortly
after the passing time (the time the two nuclei need
to pass each other) when the different final clusters
still overlap in coordinate space. Dorso and Randrup
could demonstrate this for small systems and Puri
et al. [54,55] found out that it is also true for large
systems. To obtain the most bound configuration, one
calculates for each possible configuration of clusters
and free nucleons the total binding energy: the sum
of the binding energies of all clusters. The potential
interaction between clusters is neglected as well as
that between free nucleons and clusters. The binding
energy is calculated using the Skyrme interaction,
Eq. (19). This procedure allows one to identify the
clusters early during the reaction and allows therefore
for the study of the origin of physical processes which
involve clusters. To determine the most bound config-
uration, the simulated annealing technique has been
employed [54,55], a probabilistic numerical method
(realized via a Metropolis algorithm) for finding the
global minimum of a given function under constraints.

044905-9



J. AICHELIN et al. PHYSICAL REVIEW C 101, 044905 (2020)

For very late times the differences between a fully quantal
and our semiclassical approach may influence the cluster
distribution because the ground state of a cluster as a quantum
system of fermions has to respect a minimal average kinetic
energy of the nucleons (the Fermi energy if the nucleons
are confined in a sphere) whereas that of our semiclassical
approach does not have to obey this condition. Therefore,
nucleons may still be emitted even if in the corresponding
quantum system this is not possible anymore. It takes, how-
ever, quite long, considerably more than 100 fm/c, until one
of the cluster nucleons gains so much kinetic energy that it
can overcome the potential barrier.

None of these approaches to determine clusters influences
the time evolution of the heavy-ion reaction. The underly-
ing PHQMD approach propagates in the QMD mode only
baryons, but not clusters. If applied at different times during a
heavy-ion reaction, the SACA approach allows one to study
the time evolution of cluster formation. It has been shown
that for large times SACA and MST yield very similar results
[54,55] and that the results agree well with the experimental
findings for clusters with Z � 3 [83].

We note that the clusterization algorithms (SACA and
MST) find clusters in the rest frame of target/projectile spec-
tators while the heavy-ion dynamics is realized in the initial
NN center-of-mass system in which spectators are squeezed
due to the Lorentz contraction of initial nuclei at relativistic
energies; cf. Eq. (17). In order to obtain the right kinematical
“input” for finding the cluster in the spectator regions, we
apply the inverse Lorentz transformation with γcm containing
the velocity between the NN center of mass and the respective
rest system at target/projectile region. This approximation is
justified even at high beam energies since with increasing γcm

the passing time of the heavy nuclei decreases as compared
to R/vFermi (where R is the radius of the nucleus and vFermi is
the Fermi velocity). Thus, the spectators are practically frozen
until the end of the violent part of the reaction. Moreover,
this approximation is applied for clusterization routines only
and, thus, does not affect the general nucleon dynamics in the
PHQMD.

If one aims at a better quantitative description of lighter
clusters or isotope yields, additional efforts are necessary.
The binding energy of those clusters cannot be described by
the Weizsäcker mass formula. This formula corresponds well
to the cluster binding energies calculated by Skyrme type
interactions [27], as will be discussed later, but shows shell
effects and other quantum features. To study this, as well as
the isotopic yields, the SACA algorithm is presently under
improvement to include shell effects, symmetry energy, and
pairing energy as well as the interaction between hyperons
and nucleons [56]. Because the propagation of nucleons in
PHQMD contains presently neither symmetry nor pairing
energy terms we do not include these new features in this
paper, with the exception of the hyperon-nucleon interaction
which is taken as 2/3 of the nucleon-nucleon interaction,
assuming in this first study that the strange quark is inert. For
the identification of the light clusters, Z � 2, we use MST.

We note that the consistent description of cluster produc-
tion at high energies, where many resonances are excited, is
an open issue. Due to that we avoid in this study applying
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FIG. 4. Average binding energy of the clusters identified by the
SACA algorithm from Au + Au collisions at 600A GeV calculated
within the PHQMD with the hard EoS as a function of the cluster
charge calculated at late times (150 fm/c).

SACA/MST at very early times when the matter is still reso-
nance dominated; nevertheless even during the later expansion
the presence of resonances has to be accounted for. To test
their influence on the cluster yield we adopt the following
procedure in the present calculations: (1) at the selected time,
before the SACA/MST is applied, we let decay “virtually” the
baryon resonances to nucleons and mesons. These decay nu-
cleons are then taken into consideration for cluster formation
in the SACA/MST algorithm (while the baryon resonances
are propagated further in the PHQMD code until their natural
decay). Under such an assumption we obtain a rather stable
pattern of clusters in time with the SACA/MST algorithm.
(2) We compare this with the cluster yield obtained if we do
not include the nucleons from resonance “virtual” decays in
SACA/MST, where we find fewer clusters (by 5–10%) at the
early times of this study since fewer nucleons are available
for clusterization. At later times the results are similar in both
scenarios.

Further insight into cluster formation and the role of reso-
nances can be obtained by employing a persistent coefficient
which measures to which degree a cluster, measured at differ-
ent times, contains the same nucleons. This will be the subject
of an upcoming study.

B. QMD dynamics and cluster formation

One of the conditions for any reasonable approach to
cluster formation is the requirement that the binding energy
of clusters is reproduced. A too small binding energy means
that the clusters are excited and emit further nucleons or α’s.
Figure 4 shows the average binding energy of clusters at the
end of a heavy-ion reaction of Au + Au at 600A GeV as com-
pared to the Weizsäcker mass formula. The clusters have been
determined by the SACA algorithm. The binding energies
do not vary for different beam energies and are stable from
75 fm/c on. We see that for clusters with Z � 5 the binding
energy is close to that expected from the Weizsäcker mass
formula. This is all but self-evident. In PHQMD the density
inside the clusters is given by the superposition of Gaussians
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determined by the MST algorithm at t = 50 fm/c, t = 100 fm/c, and
t = 150 fm/c.

and there is no well defined surface. The binding energy is
given by the expectation value of the Skyrme and Coulomb
interaction for this spatial configuration supplemented by the
total kinetic energy in the cluster rest system.

The nucleon and cluster rapidity distribution is another
key observable which characterizes a heavy-ion collision. In
Fig. 5 we display the scaled rapidity distribution y0 = y/yproj

(where yproj is a projectile rapidity in the center-of-mass
system) of light clusters of mass numbers A = 2, 3, 4 for
central Au + Au reactions at Ebeam = 1.5A GeV. The clusters
are determined by the MST algorithm at t = 50 fm/c, t =
100 fm/c, and t = 150 fm/c. We see that the cluster yields are
rather stable versus time. We note that we find ≈10% fewer
clusters at 50 fm/c without accounting for nucleons from the
“virtual” decay of resonances for the cluster formation, as
discussed in Sec. III A.

Figure 6 presents the same scaled rapidity distribution of
light clusters as in Fig. 5, but calculated within the mean-field
dynamics of PHSD. One can see that the shape of the MF
cluster distribution is rather different from that of QMD.
Moreover, the MF cluster yield is not stable in time. This
illustrates the limitation of the applicability of the mean-field
dynamics for the cluster identifications. We observe further-
more that in the mean-field approach the clusters at midrapid-
ity disappear early whereas those around projectile and target
rapidity are longer present. This is expected because clusters
at midrapdity are created by density fluctuations whereas
those at projectile/target rapidity are mainly made of spec-
tators which disintegrate slowly in mean-field approaches.
The disappearance of fragments and, even more, the different
times of disappearance raise questions about the applicability
of coalescence models to mean-field calculations.

Figure 7 displays the multiplicity of clusters with Z =
2–10 for Au + Au collisions as a function of centrality, rep-
resented by the impact parameter, for two different energies,
Ebeam = 600A MeV (upper plot) and 4A GeV (lower plot).
At very central collisions most of the nucleons are unbound,
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different mass numbers A = 2, 3, 4, for central Au + Au reactions at
1.5A GeV using the mean-field dynamics of the PHSD approach.
The clusters are determined with the MST algorithm at t = 50 fm/c,
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however, even if some light clusters are produced whose num-
ber decreases with increasing beam energy. For larger impact
parameters the intermediate mass clusters become important;
they are mostly produced from the spectator matter. The
general trend is similar for both energies but the multiplicities
differ in detail. The origin of this difference is that the number
of participant nucleons which enter the spectator matter and
cause its instability, as well as the momenta of those nucleons,
depend on the beam energy.

Another observable of interest is the in-plane flow, v1,
described by the first coefficient of the Fourier expansion of
the azimuthal distribution of nucleons or clusters,

dN

dφ
= N0(1 + v1 cos φ + 2v2 cos 2φ + · · · ). (20)

The in-plane flow is created, on the one side, by the geometry
of the reaction zone which allows hadrons with outward mo-
mentum to escape from the reaction zone (and therefore even
in cascade calculations a finite v1 is obtained) and, on the other
side, by the transverse force, FT . This force is proportional
to the density gradient in transverse direction and is large at
the interface between participant and spectator regions. The
relative importance of both sources of v1 (geometrical and
interaction) depends on the cluster size. Light clusters come
predominantly from the transition region between spectators
and participants and show a larger v1 around projectile ra-
pidity than single nucleons, which come also from the high
density participant region where the density gradient and
therefore v1 is smaller [9]. With increasing energy the passing
time tpass decreases but on the other side the density gradient,
and hence the force FT , becomes steeper. Both effects almost
compensate for each other such that only a mild increase of
�pT = FT tpass occurs.

In Fig. 8 we show v1 as a function of center-of-mass rapid-
ity y for nucleons (A = 1) and clusters of different sizes (A =
2, 3, 4), created in Au + Au collisions at two beam energies,
Ebeam = 600A MeV (upper plot) and 4A GeV (lower plot), for
an impact parameter range of 4 � b � 6 fm. One sees that
v1 increases with the mass number of the cluster. Even for
light clusters v1 differs significantly from that of protons and
neutrons (A = 1), in particular the slope at midrapidity (which
is often used to characterize the in-plane flow for the cases
where only a limited rapidity interval can been measured)
differs significantly for different A. The tendency that the large
clusters (which have a higher probability to come from the
spectator matter) show a large v1 is found to be the same for
both energies considered here; also the value of v1 is similar.
This mass dependence of the dynamical variables has also
been found experimentally [84].

IV. RESULTS FOR HADRONIC SPECTRA

In this section we present the results of the PHQMD
approach for the basic “bulk” observables like the rapidity y
distribution and the transverse mass mT spectra of hadrons—
protons, antiprotons, pions, (anti)kaons and (anti)lambdas at a
variety of energies—from SIS to top RHIC energies, and we
confront our results with the experimental data. All rapidities
are measured in the center of mass of the nucleus-nucleus
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FIG. 8. The in-plane flow, v1, as a function of the rapidity y for
nucleons (A = 1) and clusters with mass numbers A = 2, 3, 4 for
Au + Au collisions at beam energies of 600A MeV (yproj = 0.539),
upper plot, and of 4A GeV (yproj = 1.17), lower plot, for an impact
parameter range of 4 � b � 6 fm calculated within the PHQMD
(hard EoS) using the SACA algorithm for cluster recognition.

system. We recall that the “bulk” observables have been
extensively investigated in many PHSD studies, and a good
agreement for a variety of “bulk” observables as well as for
the collective flows vn, electromagnetic observables, heavy
flavor, etc.,have been reported; cf. [39,50–53]. However, it
is necessary to verify the “bulk” dynamics within the novel
PHQMD approach because the initialization of the nucleus as
well as the nucleon dynamics are realized differently. In this
respect the PHQMD provides a unique possibility to explore
the differences between the mean-field and the quantum-
molecular dynamics since both are realized in the framework
of the same PHQMD code, i.e., both propagations can be
tested while implying the collision integral of PHSD. This al-
lows to investigate how a different realization of the potential
interaction—MF versus QMD—may modify the trajectories
of the individual nucleons in phase space. Also the interacting
Gaussian wave functions in QMD with a given width have
a different time evolution as compared to pointlike nucleons
in a meanfield. In addition we explore the influence of the
EoS—hard vs soft—realized with a static density dependent
potential in the QMD mode as discussed in Sec. II C.
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FIG. 9. The rapidity distributions of protons for 5% central Au +
Au collisions at 4A, 6A, 8A, 10.7A GeV (plots from lower to upper).
The experimental data have been taken from Ref. [85]. The full
symbols correspond to the measured data, whereas the open symbols
are the data reflected at midrapidity. Solid red lines with open squares
refer to the PHQMD results with a hard EoS, the green lines with
open triangles are PHQMD results with a soft EoS, and the blue lines
with open circles are the PHSD results.

A. AGS energies

We start our comparison by showing in Figs. 9 and 10
the proton rapidity distributions and mT spectra for central
Au + Au collisions at beam energies of 4A, 6A, 8A, and
10.7A GeV, calculated in PHQMD with a hard and a soft
EoS. The PHQMD results are compared with those from
PHSD as well as with the Alternating Gradient Synchrotron
(AGS) experimental data [85–91]. In the rapidity spectra the
influence of the EOS becomes only slightly visible at the
lowest beam energy, but the transverse mass spectra show a
sensitivity to the EOS at all energies. A hard EOS increases
the slope of the spectra at large mT and lowers the yield at
low mT as compared to a soft EoS. We find that the PHQMD
with soft EoS agrees very well with the PHSD result. This
agreement with experiment allows us to conclude that the
stopping of the nuclei in PHQMD is reasonably described.
This is important for the interpretation of the results for the
newly produced hadrons, since their abundances are sensitive
to the energy loss of the initial colliding nucleons, i.e., to the
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FIG. 10. The transverse mass mT spectra of protons at midra-
pidity for 5% central Au + Au collisions at 4A, 6A, 8A, 10.7A GeV
(plots from lower to upper). The experimental data have been taken
from Ref. [85]. Solid red lines with open squares refer to the PHQMD
results with a hard EoS, the green lines with open triangles are the
PHQMD results with a soft EoS, and the blue lines with open circles
are the PHSD results.

fraction of their kinetic energy which will be converted into
mass production.

In Figs. 11 we display the rapidity distribution and in
Fig. 12 the mT spectra of π+, K+, K−, and � + �0, produced
in central Au + Au collisions for different beam energies,
Elab = 4A, 6A, 8A, and 10.7A GeV. Again we compare here
the PHQMD calculations with a soft and a hard EoS with the
PHSD results (we note that for the mT spectra we show only
hard PHQMD and PHSD results for clearer presentation).
Contrary to the proton mT spectra, which show a visible
sensitivity to the EoS, the spectra of newly produced hadrons
indicate only a very mild dependence on the nucleon potential:
all cases are rather similar to each other.

B. SPS energies

Now we step up in energy and confront the PHQMD
approach with the NA49 experimental data at Super Proton
Synchrotron (SPS) energies. Again we start with checking
the stopping of protons. The proton rapidity spectra and mT

spectra of PHQMD at Ebeam = 20A, 30A, 40A, 80A, and
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158A GeV, in comparison with the experimental data [92–94],
are displayed in Figs. 13 and 14. Here the solid red lines with
open squares represent the PHQMD results with a hard EoS.
The PHQMD proton rapidity distribution and the mT spectra
show a reasonable agreement with experimental data, thus
the QMD dynamics provide also a correct stopping at SPS
energies similar to those at the AGS.

In Figs. 15 and 16 the y distributions and mT spectra of π+,
K+, K−, and � + �0 for 5% central Au + Au collisions at
20A, 40A, 80A, and 158A GeV are presented in comparison to
the experimental data from the NA49 Collaboration [92–94].
Here we find that the PHQMD agrees with the experimental
data—similarly to the PHSD—since the dynamics of newly
produced hadrons at high energies is dominated by the col-
lision integral and is not very sensitive to the realization of
nucleon dynamics, via MF or QMD.

C. RHIC BES energies

Recent experimental measurements by the STAR Collabo-
ration within the RHIC BES program provide high precision
experimental data at midrapidity. Here we present selected
results for the comparison of PHQMD with RHIC BES data.
A more systematic study on this issue is in preparation.
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FIG. 12. The transverse mass mT spectra of π+, K+, K−, and
� + �0 at midrapidity for 5% central Au + Au collisions at 4A, 6A,
8A, and 10.7A GeV (plots from lower to upper) in comparison to the
experimental data from Refs. [86–91]. Solid lines with open symbols
refer to PHQMD results with a hard EoS and the dashed lines are the
PHSD results.

Figure 17 shows the transverse momentum spectra of pro-
duced mesons π±, K±, protons, and antiprotons at midrapid-
ity for different centrality classes, measured by the STAR Col-
laboration for Au + Au at

√
s = 11.5 GeV [95]. The PHQMD

calculations correspond to the hard EoS. We find that also
the centrality dependence of the spectra of newly produced
particles is well described in the PHQMD approach while the
proton slope is slightly underestimated at large pT . A similar
tendency has been observed for protons at SPS energies; cf.
Fig. 13.

D. Top RHIC energy

This good agreement between the PHQMD results for
the single-particle rapidity and transverse momentum spec-
tra and the experimental data continues for higher beam
energies. In Figs. 18 and 19 we show the calculated ra-
pidity distributions and transverse momentum pT spectra
of hadrons (π±, K±, p, p̄,� + �0, �̄ + �̄0) for 5% central
Au + Au collisions at

√
s = 200 GeV in comparison to the
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experimental data from the BRAHMS [96,97], PHENIX [98],
and STAR [99] Collaborations.

We note again that at RHIC energies we show only the
PHQMD calculations since the PHSD and PHQMD give very
similar results. At such ultrarelativistic energies the influence
of the nucleon potential is negligible and the shape of the
spectra (even for protons) is mainly defined by the partonic
interactions. We note that at the highest energy, PHQMD (as
well as the PHSD) underpredicts the spectra at high pT . That
can be attributed to the fact that some parts of the initial
“hard” processes are partially smeared out in the present
realization of the PHSD by the melting of “prehadrons” from
the strings to massive dressed quasipartons in line with the
DQPM model. By that procedure some minijets, present in
the LUND strings, can be melted to the QGP, too. This
issue requires further investigation which we leave for future
studies.
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FIG. 14. The transverse mass mT - spectra of protons for 5%
central Pb + Pb collisions at 20A, 30A, 40A, 80A, and 158A GeV
(plots from upper to lower), in comparison to the experimental data
from NA49 Collaboration from Refs. [92–94]. Solid red lines with
open squares refer to PHQMD results with a hard EoS.

E. SIS energies

We close this section by going down in energy to SIS
energies, which allows us to show the sensitivity of newly
produced particle spectra to the QMD and MF dynamics as
well as to the different EoS. We start with the pion spectra
since—as discussed in the introduction—the proton spectra
can be compared to the data only after the subtraction of the
protons bound in the clusters. We will see in the next section
that the fraction of such bound protons is rather high at low
energies since the cluster production grows with decreasing
bombarding energy.

At Ebeam = 1.5A GeV the pion rapidity spectra as a func-
tion of y0 = y/yproj in central Au + Au reactions have been
measured by the FOPI Collaboration [100]. In Fig. 20 we
compare the FOPI data with PHQMD calculations employing
a hard (solid lines with squares) and a soft EoS (dashed lines

044905-15
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80A, and 158A GeV (plots from left to right) in comparison to the
experimental data from the NA49 Collaboration [92–94].

with triangles) as well as with the PHSD results (dotted lines
with stars). As seen from Fig. 20, the pion rapidity distribution
is sensitive to the EoS: the experimental data are in best
agreement with the PHQMD results for a hard EoS. The
softening of the EoS leads to a small enhancement of the pion
yield as seen for the PHQMD results with a soft EoS as well
as for the PHSD results, where the EoS is also soft.

Finally, we can conclude from this comparison that the ra-
pidity as well as the mT spectra of produced particles, as well
as of protons, are well reproduced in the PHQMD approach.
This means also that the basic features like energy loss and
elementary cross sections are under control. These findings
allow us to proceed to investigate the cluster production based
on the SACA and MST algorithms, which we present in the
next section.

V. RESULTS FOR CLUSTERS

A. Light clusters

At lower beam energies cluster production becomes impor-
tant. According to the measurements by the FOPI Collabora-
tion [100] in central Au + Au collisions at 1.5A GeV about
111 free protons are found and 60 protons are bound mostly in
Z = 1, 2 clusters. In Fig. 21 we compare the PHQMD results
for the scaled rapidity distributions (y0 = y/yproj) with yproj

being the beam rapidity in the center-of-mass frame) of the
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FIG. 16. The transverse mass mT spectra of π+, K+, K−, and
� + �0 at midrapidity from PHQMD for 5% central Au + Au
collisions at 20A, 30A, 40A, 80A, and 158A GeV (plots from upper
to lower) in comparison to the experimental data from the NA49
Collaboration [92–94].

Z = 1 “clusters” (which includes unbound protons as well
as light clusters as deuterons and tritons) and the (unbound)
protons with FOPI experimental data for central Au + Au
collisions at 1.5A GeV [100]. Here we present the results
for clusters identified by MST (red dotted line) or by SACA
(red dashed line). Since the integrated yield of the Z = 1
clusters gives almost the total number of charges (there are on
the average only 6.8 clusters with Z = 2), it is expected the
integrated PHQMD Z = 1 yield agrees with data. In addition,
also the scaled rapidity distribution of Z = 1 “clusters,” which
reflects the stopping, is well reproduced. This is one of the
reasons that also the rapidity distributions of the produced
particles, like that of π+ and π−, agree with experiments (cf.
Fig. 20). In Fig. 21 we show also the rapidity distribution of
free protons (blue lines). The difference between the rapidity
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distribution of Z = 1 (red lines) and protons (blue lines) in
Fig. 21 is due to those protons which are bound in Z = 1
clusters.

As discussed already in Sec. III, SACA with Skyrme
type interactions only—as presently implemented in the
PHQMD—(blue long dashed line) is not very efficient for
describing the light clusters at midrapidity and, correspond-
ingly, underestimates the number of nucleons which are bound
in clusters. The MST algorithm—which does not account
for the binding energy of clusters as SACA and, thus, is
less sensitive to the potential interaction of nucleons—(blue
short-dashed line in Fig. 21) comes much closer to the data,
in spite of disregarding the quantum nature of light clus-
ters. Moreover, as demonstrated in Fig. 5 and discussed in
Sec. III B, the MST algorithm provides rather a stable yield of
light clusters over time. Therefore, for further analysis of light
clusters at midrapidity in this section we employ the MST
algorithm.

We step to high energies and confront expectations from
PHQMD for light clusters with the available experimental
data at AGS energies. In Fig. 22 the PHQMD results with
hard EoS of the invariant multiplicities for p, d, t,3 He,4 He
at pT � 0.1 GeV as function of rapidity y at 10% cen-

tral (upper plot) and minimum bias (lower plot) Au + Au
collisions at Ebeam = 11A GeV are compared to the experi-
mental data from the E878 [102] and E886 [101] Collabo-
rations, labeled by different symbols for the various species.
For 4He we represent separately the measurements from E886
(empty triangles) and E878 (filled triangles). The clusters are
identified by the MST method and later selected through the
physical isospin and charge combinations. The colored lines
in Fig. 22 are the PHQMD results, which we provide also
with uncertainties which resemble the statistical fluctuations
of the binned distributions. As one can see they are in line
with the measured experimental data. We point out that in the
final stage of heavy-ion reactions the MST algorithm finds
approximately the same number of light clusters which are
recognized in a rather stable and time-independent way by the
SACA method.

Finalizing this section, we stress that the PHQMD is a
consistent microscopic transport approach applicable to rel-
ativistic energies in which clusters are produced dynamically
by the same potential interaction which governs the time evo-
lution of the nucleons up to the end of the reaction. Further-
more, the cluster finding algorithm (MST) applied at different
time finds a similar cluster pattern. No assumptions about a
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√
s = 200 GeV in comparison to the

experimental data from the BRAHMS [96,97], PHENIX [98], and
STAR [99] Collaborations.

coalescence time or coalescence radii are necessary in order
to obtain these clusters. They are naturally produced by the
interactions among the nucleons during the entire heavy-ion
reaction.

Generally, the existence of light clusters at midrapidity
of heavy-ion collisions is an amazing phenomenon. There
the participating nucleons form a fireball which can well
be described in thermal approaches assuming a temperature
of the order of 100 MeV [103]. Also the transverse energy
spectra show an inverse slope parameter of this order which
is, however, composed of a radial flow and a thermal con-
tribution. This observation has triggered the suggestion that
in high energy heavy-ion reactions a hot thermal system is
formed. On the other hand, the light clusters which are formed
have binding energies of a couple of MeV and they cannot
survive in such a hot environment. In addition, any collision
of a cluster with hadrons from the fireball would destroy these
clusters. It is, therefore, an open question how these midra-
pidity clusters, which can be observed up to the highest LHC
beam energies, are formed and how they can survive in this
hot fireball. Static models like the coalescence model or the
statistical model cannot answer this question. The PHQMD
results obtained with the MST cluster identification method
show that clusters can be formed in such an environment, but
the MST method does not allow for a detailed investigation
of why and when clusters are formed since this method can
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√
s = 200 GeV in comparison

to the experimental data from the PHENIX [98] and STAR [99]
Collaborations.

identify clusters only at the end of the reaction. In order to
overcome this limitation, further development of the SACA
algorithm for finding light clusters is required which will help
to shed light on the dynamical formation of the light clusters.
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FIG. 20. Scaled experimental rapidity distribution, y0 = y/yproj,
of π+ and π− observed in central Au + Au reactions at 1.5A GeV
[100] in comparison with PHQMD calculations with a hard (solid
lines with squares) and a soft EoS (dashed lines with triangles) as
well as with the PHSD result (dotted lines with stars).
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B. Heavy clusters

In the past, QMD approaches have been very successfully
applied to describe many details of the cluster formation at
energies below Ekin = 200A MeV [8,58,60,83]. They could
reproduce charge yields, cluster multiplicities, cluster spectra,
and complex phenomena like bimodality. At these energies
the fragmentation of spectator matter is the dominant mecha-
nism for cluster production, and cluster identification methods
like the minimum spanning procedure or the SACA method
could identify the produced cluster [54,55].

Within the PHQMD we extend our research to slightly
higher energies and confront first the PHQMD results to the
experimental data of the ALADIN Collaboration, which has
measured the cluster formation at beam energies between
600A and 1000A MeV [6,7]. This is presently the highest
beam energy for which experimental data on heavy clusters
are completely analyzed. For this investigation we use a
hard EoS and employ the SACA algorithm. One of the key
results of the ALADIN Collaboration is the “rise and fall”
of the multiplicity of intermediate mass clusters, 3 � Z � 30,
emitted in the forward direction. This multiplicity is presented
as a function of the sum of all forward emitted bound charges,
Zbound 2 which can be expressed with help of the � function:

Zbound 2 =
∑

i

Zi�(Zi − (1 + ε)),

with (ε < 1). One obtains a distribution which is for Au
projectiles almost independent of the beam energy in the
interval 600A � Ebeam � 1000A MeV and also independent
of the target size. We note that in the original publication [6]
the intermediate mass cluster multiplicity was overestimated
due to misidentified, mostly Z = 3, clusters which were in
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FIG. 22. The invariant multiplicities for p, d, t,3 He,4 He at
pT � 0.1 GeV versus rapidity for 10% central (upper plot) and
minimum-bias (lower plot) Au + Au collisions at Ebeam = 11A GeV.
Experimental data from E886 and E878 Collaborations are taken
from Refs. [101,102]. The solid (dash-dotted) lines with different
thicknesses correspond to the PHQMD calculations with hard EoS
for charge value Z = 1 (Z = 2). Clusters are identified by the MST
algorithm.

reality two α particles. Later, with an improved apparatus, this
was realized for smaller systems. A remeasurement for the
Au + Au system has shown that the multiplicity of intermedi-
ate mass clusters is about 15% lower than that published in [6].
The corrected rise and fall curve for Au + Au reactions has
been published in [104] and will be used for the comparison
in our study.

In Fig. 23 we display our results for Au + Au at 600A MeV
calculated with a hard EoS in comparison with minimum bias
ALADIN data [104]. The clusters identified by SACA are
stable for time larger than 50 fm/c as shown in Fig. 23. One
can see clearly that PHQMD with a hard EoS reproduces quite
nicely the experimentally observed “rise and fall.”

The rise and fall of the intermediate mass cluster mul-
tiplicity depends strongly on the nuclear equation of state.
In Fig. 24 we show the rise and fall for a soft EoS. There
in semiperipheral and peripheral collisions, where Zbound 2 is
large, the spectator matter is much less stable and fragments
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into a much larger number of intermediate mass clusters as
compared to a hard EoS (Fig. 23). The fragment pattern in
semiperipheral reactions can therefore serve as an additional
observable to determine the hadronic EoS experimentally.

The ALADIN Collaboration has also measured the mul-
tiplicity of clusters of a given charge Z (Z = 3, 4, 5, 7, 10)
as a function of Zbound 2. The PHQMD result are compared
with the experimental finding in Fig. 25. Due to the argu-
ments presented above we have multiplied the multiplicity
of Z = 3 clusters, published in [6], by 0.85, assuming that
the misidentified clusters were exclusively Z = 3 clusters. We
observe a quite good agreement of the PHQMD results with
experimental data.

Figure 26 shows the charge of the largest cluster as a
function of Zbound for forward emitted clusters in Au + Au
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emitted clusters. The results of PHQMD with cluster identification
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collisions at 600A MeV. In central collisions, where Zbound is
small, we see also no large clusters, whereas in very peripheral
reactions Zbound 2 approaches the charge of the projectile. The
PHQMD calculations with the SACA algorithm for cluster
identification reproduce the experimental data. Even more
importantly, the result does not depend on the time when we
apply the SACA algorithm because the cluster pattern changes
only little with time.

From Figs. 25 and 26 we can conclude that PHQMD
describes the size and the multiplicity of clusters Z � 2 from
very central to peripheral Au + Au reactions at 600A MeV if
the SACA algorithm is employed. Beyond Ebeam = 1A GeV
(where the cluster distribution is very similar to the more
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extensively analyzed 600A MeV data), there are no measure-
ments of heavy clusters, only of light midrapidity clusters.

Another observable, measured by the ALADIN Collabora-
tion [6], is the rms of the transverse momentum distribution,√

〈p2
T (Z )〉, as a function of the cluster charge. In Fig. 27

we show these data in terms of an interpolation line pro-
vided by the ALADIN Collaboration [6]. Additionally to the
PHQMD results for the 600A MeV and 4A GeV, we also
show the expectations from three different theoretical models:
a thermal model for temperatures of 8 and 70 MeV and
the “cleavage” model of Goldhaber [105]. All three models
predict that

√
p2

T (Z ) ∝ √
Z . The dotted lines are the expected

rms momenta if the clusters are in thermal equilibrium with
heat baths of temperature T = 8 MeV and T = 70 MeV,
respectively. Since the binding energy per nucleon of a cluster
is around 8 MeV, a temperature considerably higher than
8 MeV would not allow for the existence of clusters. We see
that the experimental rms momenta are higher than expected
for a heat bath of T = 8 MeV, indicated as the red short dotted
line in Fig. 27. This questions the assumption that clusters are
emitted by a thermal source, as assumed in statistical models.

On the other hand, the apparent inverse slope of the trans-
verse energy spectra of protons at midrapidity for Au + Au
at 600A MeV is about 100 MeV. It is a superposition of
a thermal contribution and the contribution from the radial
flow. 70 MeV is a reasonable value for the thermal part.
If clusters are formed from the nucleons of the expanding
fireball at the end of the expansion by momentum space
coalescence, one would expect that the rms of the transverse
momenta distribution of the clusters is of the same order
as the black dotted line. Since this scenario is substantially
overestimating the experimental data, one would conclude
that the late clusterization by coalescence is also not supported
by the ALADIN data, not even for light clusters.

The dashed line shows the result expected from the “cleav-
age” model of Goldhaber, which assumes that the spectator
matter is cleaved instantaneously into clusters by penetrat-
ing participant nucleons, and that the rms momenta of the
clusters are reminiscent of the Fermi motion of the nucleons
[105–107]. The difference compared to the prediction of the
Goldhaber model comes mainly from the Coulomb repulsion
among the clusters and protons, which is not taken into
account in the Goldhaber model. The PHQMD calculations
agree with data and show the same

√
p2

T (Z ) ∝ √
Z depen-

dence as the data.

C. Hyperclusters

The production of hypernuclei in heavy-ion collisions is
one of the challenging experimental and theoretical topics
nowadays. Hyperons (�’s and �’s) are produced in heavy-ion
collisions already at SIS energies above 1.6A GeV (which cor-
responds to the NN threshold). For details of the strangeness
production at low energy we refer the reader to the review
[46]. In heavy-ion collisions at lower energies the hyperons
are almost exclusively produced in the overlapping fireball;
however, they may penetrate into the spectator matter and
form hyperclusters with spectator nucleons or, during the
expansion of the fireball, may find other nucleons with which
they form light hyperclusters at midrapidity. Thus, hyperclus-
ters in the projectile/target rapidity regime give information
on how these hyperons penetrate the fast moving spectator
matter and get accelerated in order to form clusters with spec-
tator nucleons. Hypernuclei around midrapidity are sensitive
to the time evolution of the high density zone in the center of
the reaction where the hyperons are produced. The study of
hyperclusters is one of the research priorities of the upcom-
ing NICA facility and for the Compressed Baryonic Matter
(CBM) experiment at FAIR. Statistical model calculations
[24] predict that hyperclusters are produced copiously in the
energy regime accessible with these facilities.

In this section we extended our study on cluster formation
within the PHQMD to hyperclusters, using the MST and
SACA cluster finding algorithms. When calculating the hyper-
nuclei with the SACA algorithm, we assume that the strength
of the hyperon-nucleon potential is 2/3 of that of nucleon-
nucleon potential. We note that the PHQMD describes the
hyperon production rather well, as demonstrated in Sec. IV
for AGS, SPS, and RHIC energies. This gives us a solid basis
to study the hypercluster production within PHQMD.

Figure 28 shows the distribution of Z = 1, Z = 2 particles,
heavier clusters (Z > 2), all �’s (bound or unbound), as well
as of light (A � 4) and heavy (A > 4) hypernuclei identified
by the MST algorithm as a function of the rapidity for
Au + Au collisions at 4A GeV (upper plot) and at 10A GeV
(lower plot). We see an enhancement of the yields of Z = 1
particles, �’s, and heavier clusters close to projectile and
target rapidity and an almost constant distribution for Z = 1
particles in between. The production of hyperons increases
towards midrapidity. We note that in these calculations we
did not make a selection of clusters according to the realistic
isospin contents. At midrapidity only a small fraction of the
hyperons end up in light hypernuclei, in contradistinction to
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FIG. 28. The PHQMD results (with a hard EoS and the MST
algorithm) for the rapidity distributions of all charges (black solid
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line with dots) as a function of the rapidity for central Au + Au
collisions at 4A GeV [upper plot (a)] and at 10A GeV [lower
plot (b)].

the projectile/target rapidities where many of the produced
hyperons end up as part of a larger hypercluster.

In Fig. 29 we show the multiplicity of light and heavy
hyperclusters as a function of the impact parameter for Au +
Au collisions at 4A GeV. As seen from this figure, the yield
of light hyperclusters decreases with the impact parameter,
mainly because the overlap region between projectile and
target gets smaller and hence fewer hyperons are produced.
In central collisions mainly light hypernuclei (A � 4) are
formed, while mid-central collisions are better suited for
a study of heavier hypernuclei (A � 5). Hypernuclei with
A � 5 are dominantly produced by hyperons which enter the
spectator matter and get caught there. Therefore, for heavy
hypernuclei production there is a competition between the
hyperon production which decreases with impact parameter
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FIG. 29. The multiplicity of light hyperclusters as a function of
the impact parameter for Au + Au collisions at 4A GeV calculated
with the PHQMD using the SACA cluster recognition algorithm. The
blue dots show the multiplicity of all hypernuclei, while the green
squares and black rhombi stand for A � 4 and A � 5, respectively.

and the spectator matter whose size increases with impact
parameter.

VI. CONCLUSION

We have presented a novel microscopic transport approach,
PHQMD, to study the dynamics of heavy-ion collisions and
cluster and hypernuclei formation at beam energies from a
couple of hundred A MeV to ultrarelativistic energies. The
PHQMD approach extends, on the one side, the study of
cluster formation within the QMD model at lower beam en-
ergies and, on the other side, the particle production from SIS
to LHC energies within the PHSD approach. The PHQMD
adopts the hadronic and partonic collisional interactions from
the PHSD approach via the same collision integral. However,
it extends the PHSD approach by replacing the mean-field
dynamics for the baryon propagation by an n-body quantum
molecular dynamics based on density dependent two-body
interactions between all baryons in the system. This allows
propagation of all baryonic correlations and fluctuations,
which is necessary to study the dynamical cluster formation
in heavy-ion reactions. This implies that clusters are produced
dynamically during the whole heavy-ion collision by the same
potential interaction among nucleons which drives their inter-
action during the heavy-ion collision. Consequently, there is
no need to switch to other assumptions for modeling the clus-
ter formation, as done in some other transport approaches by
introducing, for example, a coalescence model or a statistical
fragmentation model.

For the cluster finding we use the MST and SACA algo-
rithms. The MST finds clusters based on spacial correlations
at the end of the reaction while the SACA algorithm, which
is based on finding of the most bound configuration, allows
us to identify clusters during the early heavy-ion dynamics
when clusters still overlap in coordinate space. Moreover, the
availability of the mean-field and QMD propagation in one
numerical code PHQMD allows us to explore the differences

044905-22



PARTON-HADRON-QUANTUM-MOLECULAR DYNAMICS: A … PHYSICAL REVIEW C 101, 044905 (2020)

in the dynamical description of HICs and their influences on
cluster formation.

First of all, we have validated the PHQMD approach by
comparing the “bulk” hadronic observables as rapidity dis-
tributions and mT or pT spectra of baryons (p, p̄,�, �̄) and
mesons (π±, K±) from low SIS to top RHIC energies. We find
a reasonably good agreement between the PHQMD results
and experimental data. For the QMD dynamics we explore
two EoS: “hard” and “soft,” realized by static potentials. We
find that

(i) For the protons the PHQMD results with a soft EoS
agree very well with PHSD results. The QMD with
a hard EoS shows slightly harder spectra of protons
at AGS energies which is favored by experimental
data. However, we give a note of caution that in
order to draw robust conclusions about the softening
or hardening of the EoS one needs to include the
momentum dependence of the nuclear potential. This
work is under way.

(ii) For the newly produced hadrons the sensitivity to the
EoS is minor in the QMD dynamics. At relativistic
energies and at midrapidity the dynamics is driven
by hadronic/partonic collisions. The results are thus
less sensitive to the baryonic potentials during prop-
agation, and, consequently, the PHSD and PHQMD
results are similar. Secondly, within the PHQMD
approach we have studied the cluster (including hy-
pernuclei) productions which are identified with the
MST and SACA models.

(iii) We have demonstrated that the QMD dynamics al-
lows formation of clusters at midrapity as well as at
target/projectile rapidity and keeps them stable over
time. When using the mean-field propagation, the
clusters are not stable and disintegrate with time. This
demonstrates the importance of nucleon correlations
for the cluster dynamics, which are smeared out in
the mean-field propagation.

(iv) We have validated the PHQMD approach by repro-
ducing the complex cluster pattern observed by the
ALADIN Collaboration at the highest energies where
experimental data for heavy clusters are available
(i.e., beam energies of 600A−1000A MeV). We ob-
served that these heavy clusters are produced close
to target and projectile rapidity, and with increasing
energies also hyper-clusters can be formed in this
kinematic region. We find a good description of the
ALADIN data for the “rise and fall” of the mul-
tiplicity of intermediate mass clusters, 3 � Z � 30,
emitted in the forward direction as a function of the
sum of all forward emitted bound charges, Zbound 2.
Moreover, the PHQMD calculations with the SACA
algorithm show a stability of the clusters versus time.
We compared also Zmax versus Zbound 2 as well as√

〈p2
T (Z )〉 as a function of the cluster charge. The

latter agrees well with the prediction of an instanta-
neous breakup of the nucleus and disagrees with the

assumptions that clusters are created in a thermal heat
bath with a temperature around the binding energy.

(v) We have studied also the light cluster production
at midrapidity within the PHQMD approach. The
identification of light clusters is important for the
understanding of the proton spectra at low energies.
As has been found by the FOPI Collaboration, in
central Au + Au reactions at 1.5A GeV around 40%
of all nucleons are bound in clusters. The PHQMD
calculations show a good agreement with the FOPI
proton data only when subtracting the protons which
are bound in clusters. With increasing beam energy
up to relativistic energies, the fraction of nucleons
bound in clusters decreases however, at beam ener-
gies below 5A GeV the identification of clusters is
an important issue also for proton observables [9].
We also reproduce the rapidity distribution of light
clusters observed at AGS energies, for central as well
as for minimum bias data.

(vi) We made predictions for the production of clus-
ters and hypernuclei at higher beam energies
(4A−10A GeV) relevant for the FAIR and NICA
experiments. In particular, we presented the rapidity
distribution and centrality dependence of hypernuclei
production. We investigated also the collective flow of
clusters in terms of the v1 coefficient.

We note that the microscopic origin of the cluster and
hypernucleus formation at midrapidity at relativistic energies
is one of the intriguing problems of present heavy-ion physics.
The measured hadronic transverse energy spectra at midra-
pidity show an inverse slope parameter in between 100 and
150 MeV, to a large part due to thermal movement of the par-
ticles, even if the radial flow contributes as well. Additionally
a thermal model fit of the particle ratios at RHIC and LHC
energies yields a temperature of the same order. On the other
hand clusters are weakly bound objects (with a binding energy
of a couple of A MeV) and have a large distance between
the cluster nucleons. Consequently, they are not stable in an
environment of a temperature of around 100 MeV and colli-
sions with other hadrons can easily destroy them. One may
talk about pieces of “ice in a fire.” Therefore it is not evident
how these clusters are created and survive the expansion of
the system. In this respect the PHQMD approach provides the
basis of a more detailed study of their origin since it is based
on a microscopic description of the interaction and can be
applied early during the collision. The MST method applied in
this study for the identification of midrapidity clusters at high
energies can identify clusters only at the end of the expansion
and is presently “charge blind.” To study the cluster formation
process in more detail we have to develop further the SACA
approach into a method which can deal with strange baryons
and with the quantum features which determine the binding
energy of light clusters. Such a development is also necessary
to study quantitatively the production of hypernuclei which
PHQMD produces copiously. First steps in this direction are
under way [56,61].
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APPENDIX A: DYNAMICAL QUASIPARTICLE
MODEL (DQPM)

The dynamical quasiparticle model (DQPM) was
introduced in Refs. [70,71,108] for the effective description
of the properties of the QGP in terms of strongly interacting
quarks and gluons, with properties and interactions which are
adjusted to reproduce lQCD results on the thermodynamics of
the equilibrated QGP at finite temperature T and baryon (or
quark) chemical potential μq. In the DQPM the quasiparticles
are characterized by single-particle Green’s functions (in
propagator representation) with complex self-energies. The
real part of the self-energies is related to the mean-field
properties, whereas the imaginary part provides information
about the lifetime and/or reaction rates of the particles.
This described by a Lorentzian spectral function [53] of
quasiparticles,

ρ j (ω, p) = γ j

Ẽ j

(
1

(ω − Ẽ j )2 + γ 2
j

− 1

(ω + Ẽ j )2 + γ 2
j

)

≡ 4ωγ j(
ω2 − p2 − M2

j

)2 + 4γ 2
j ω

2
(A1)

separately for quarks, antiquarks, and gluons ( j = q, q̄, g).
Here, Ẽ2

j (p) = p2 + M2
j − γ 2

j ; the widths γ j and the masses
Mj from the DQPM are functions of the temperature T and
the chemical potential μq.

Since the DQPM is an effective model, one has to assume
the actual form of the (T, μq ) dependences of the dynamical
masses and widths of quasiparticles as well as the coupling.
By fixing the quasiparticle properties, one can evaluate the
entropy density s(T, μB) and number density in the prop-
agator representation from Baym [109,110] and then, by
comparison to the corresponding lQCD data, one can fix the
few parameters of the DQPM. After that the DQPM provides
a consistent description of the QGP thermodynamics [70,71]
and has a predictive power, additionally.

The effective masses are assumed to be given in line with
the hard thermal loop (HTL) thermal mass in the asymptotic
high-momentum regime, i.e., for gluons by [53]

M2
g (T, μq) = g2(T, μq )

6

((
Nc + 1

2
Nf

)
T 2 + Nc

2

∑
q

μ2
q

π2

)
,

(A2)

and for quarks (antiquarks) by

M2
q(q̄)(T, μq ) = N2

c − 1

8Nc
g2(T, μq )

(
T 2 + μ2

q

π2

)
, (A3)

where Nc = 3 stands for the number of colors while Nf (=3)
denotes the number of flavors. Furthermore, the effective
quarks, antiquarks, and gluons in the DQPM have finite
widths γ , which are adopted in the form [53]

γg(T, μq ) = 1

3
Nc

g2(T, μq )T

8π
ln

(
2c

g2(T, μq)
+ 1

)
, (A4)

γq(q̄)(T, μq ) = 1

3

N2
c − 1

2Nc

g2(T, μq)T

8π
ln

(
2c

g2(T, μq )
+ 1

)
,

(A5)

where c = 14.4 is related to a magnetic cutoff, which is a
parameter of the DQPM. Furthermore, we assume that the
width of the strange quarks is the same as that for the light
(u, d) quarks. With the choice of Eq. (A1), the complex
self-energies for gluons � = M2

g − 2iωγg and for (anti)quarks
�q = M2

q − 2iωγq are fully defined via Eqs. (A2), (A3), (A4),
and (A5).

The coupling g2, which defines the strength of the interac-
tion in the DQPM, is extracted from lQCD thermodynamics.
There are a few realizations of the DQPM for the evaluation
of the g2: (i) its temperature dependence at vanishing chemical
potential can either be obtained by using an ansatz with a
few parameters adjusted to results of lQCD thermodynamics
[111,112], or (ii) g2 can directly be obtained by a parametriza-
tion of the entropy density from lQCD as in Ref. [113].
We indicate that for the present version of the PHQMD we
adopted the DQPM model in the first realization, as used in
the PHSD version 4.0 [39,50–53].

The extension of the DQPM to finite baryon chemical
potential, μB, is performed by using a scaling ansatz which
works up to μB ≈ 450 MeV [114], and which assumes that
g2 is a function of the ratio of the effective temperature
T ∗ =

√
T 2 + μ2

q/π
2 and the μB-dependent critical tempera-

ture Tc(μB) as [71]

g2(T/Tc, μB) = g2

(
T ∗

Tc(μB)
, μB = 0

)
(A6)

with μB = 3μq and Tc(μB) = Tc

√
1 − αμ2

B, where Tc is
the critical temperature at vanishing chemical potential
(≈0.158 GeV) and α = 0.974 GeV−2. By employing the
quasiparticle properties and dressed propagators as given by
the DQPM, one can deduce the differential partonic scattering
cross sections as well as the interaction rates of light and
charm quarks in the QGP as a function of the temperature and
the chemical potential [111,113] by calculating the scattering
diagrams of the corresponding processes in leading order. This
extended version of the DQPM has been employed recently in
the PHSD 5.0 [113] and will be adopted by the PHQMD also
in future.
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APPENDIX B: HADRONIZATION

The hadronization, i.e., the transition from partonic to
hadronic degrees of freedom, is described in PHQMD (as well
as in PHSD) by local covariant transition rates as introduced
in Ref. [39]. For q + q̄ fusion to an off-shell meson m of
four-momentum p = (ω, p) at space-time point x = (t, x) it
is

dNm(x, p)

d4x d4 p
= TrqTrq̄ δ4(p − pq − pq̄) δ4

(
xq + xq̄

2
− x

)

×ωq ρq(pq) ωq̄ ρq̄(pq̄) |vqq̄|2
×Wm(xq − xq̄, (pq − pq̄ )/2)

× Nq(xq, pq ) Nq̄(xq̄, pq̄ ) δ(flavor, color). (B1)

In Eq. (B1) we introduced the shorthand notation

Tr j =
∑

j

∫
d4x j

∫
d4 p j

(2π )4
, (B2)

where
∑

j denotes a summation over discrete quantum num-
bers (spin, flavor, color); Nj (x, p) is the phase-space density
of parton j at space-time position x and four-momentum p. In
Eq. (B1) δ(flavor, color) stands symbolically for the conser-
vation of flavor quantum numbers as well as color neutrality
of the formed meson m. Furthermore, vqq̄(ρp) is the effective
quark-antiquark interaction from the DQPM (displayed in
Fig. 10 of Ref. [71]) as a function of the local parton (q +

q̄ + g) density ρp (or energy density). Furthermore, Wm(x, p)
is the dimensionless phase-space distribution of the formed
off-shell meson, i.e.,

Wm(ξ, pξ ) = exp

(
ξ 2

2b2

)
exp

[
2b2

(
p2

ξ − (Mq − Mq̄)2/4
)]
(B3)

with ξ = x1 − x2 = xq − xq̄ and pξ = (p1 − p2)/2 = (pq −
pq̄)/2. The width parameter b is fixed by

√
〈r2〉 = b =

0.66 fm (in the rest frame) which corresponds to an average
rms radius of mesons. We note that the expression (B3) corre-
sponds to the limit of independent harmonic oscillator states
and that the final hadron-formation rates are approximately
independent of the parameter b within reasonable variations.
By construction the quantity (B3) is Lorentz invariant; in
the limit of instantaneous “hadron formation,” i.e. ξ 0 = 0, it
provides a Gaussian dropping in the relative distance squared,
(r1 − r2)2. The four-momentum dependence reads explicitly

(E1 − E2)2 − (p1 − p2)2 − (M1 − M2)2 � 0 (B4)

and leads to a negative argument of the second exponential in
(B3) favoring the fusion of partons with low relative momenta
pq − pq̄ = p1 − p2.

Related transition rates [to Eq. (B1)] have been defined in
Ref. [51] also for the fusion of three off-shell quarks (q1 +
q2 + q3 ↔ B) to color neutral baryonic (B or B̄) resonances
of finite width (or strings) fulfilling energy and momentum
conservation as well as flavor current conservation using
Jacobi coordinates.
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