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Heavy quarks produced in relativistic heavy-ion collisions are known to be sensitive probes of the hot and
dense QCD matter they traverse. In this paper we study how their dynamics is affected by the nature of the bulk
evolution of the QCD matter, the initial condition of the system, and the treatment of elementary interactions
between heavy quarks and the surrounding medium. For the same initial condition and the same quark-gluon
plasma (QGP) expansion scenario we discuss the consequences of the assumption of a local equilibrium by
comparing the consequences for the nuclear modification factor RAA and the elliptic flows of charm quarks,
scrutinizing the different components of the final distribution of charm quarks. For this purpose we employ
the parton-hadron-string dynamics (PHSD) model, which is an off-shell microscopic transport approach, as
well as the linearized-Boltzmann (LB) scheme obtained by coarse graining the PHSD bulk and assuming local
equilibrium for the interactions of the charm quarks with the bulk. The RAA of charm quarks stemming from the
later LB approach is also compared to a genuine fluid dynamics evolution initiated by the coarse grained PHSD,
which allows us to further assess the consequences of reducing the full n-body dynamics. We then proceed to
a systematic comparison of PHSD (in its LB approximation) with MC@HQ, another transport model for heavy
flavors which also relies on the LB approach. In particular, we investigate the consequences for the nuclear
modification factor of charm quarks if we vary separately the initial heavy quark distribution function in matter,
the expansion dynamics of the QGP, and the elementary interactions of heavy quarks of these models. We find
that the results for both models vary significantly depending on the details of the calculation. However, both
models achieve very similar predictions for key heavy quark observables for certain combinations of initial
condition, bulk evolution, and interactions. We conclude that this ambiguity limits our ability to determine the
different properties of the system based on the current set of observables.

DOI: 10.1103/PhysRevC.101.044903

I. INTRODUCTION

Relativistic heavy-ion collisions create an extremely hot
and dense plasma of deconfined quarks and gluons (QGP).
Due to the early universe having been in a QGP state and its
occurrence in dense neutron stars, the properties of the QGP
are of significant interest.

One promising probe to exhibit sensitivity to QGP prop-
erties are heavy flavor hadrons. The production of heavy
flavor particles can reliably be described by perturbative quan-
tum chromodynamics (pQCD) [1–3]. Their production and
formation time is relatively short, enabling them to probe
strongly interacting matter from the early stage of heavy-ion
collisions. The production of heavy flavor particles is a rare
process and only those with a low transverse momentum pT
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equilibrate with the QGP. Hydrodynamics, which has been
successful in describing the dynamics of the bulk QGP, is
not applicable to heavy flavor particles, due to their large
mass and small interaction cross sections. Instead, Langevin
or Boltzmann equations are used [4–14] to describe their time
evolution.

The Langevin equation describes the time evolution of
heavy flavor particles in a locally thermalized medium by
using drag and diffusion coefficients, which are precalculated
as a function of the temperature and momentum [4,15]. The
Boltzmann equation is a more general approach which does
not require the assumption of a local thermal equilibrium
and treats interactions of heavy flavor particles with matter
in terms of particle-particle interactions. Under the condition
that the scattering partners of the heavy quarks are in local
equilibrium, the Boltzmann equation reduces to the linearized
Boltzmann (LB) equation, which is less costly to calculate
than the full Boltzmann equation.
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The time scale of QGP formation is on the order of 1 fm/c,
giving rise to of-equilibrium contributions to both bulk and
heavy flavor evolution. Since the initial thermalization time
is short compared to the lifetime of the QGP, early pre-
equilibrium interactions have previously been ignored in most
studies which employ hydrodynamics. In addition it should
also be noted that not all matter reaches a state of complete
thermalization, even at freeze-out, which can be seen from the
long tail of the momentum spectrum of the particles, which
originates mostly from initial hard scatterings.

Recently, the effects of the nonequilibrium evolution of
matter on heavy flavor transport coefficients were studied in
[16]. Employing the dynamical quasiparticle model (DQPM),
it was shown that equilibrium transport coefficients get mod-
ified by nonequilibrium features such as an anisotropic pres-
sure or a deviation of the average kinetic energy or mass of the
partons from their thermal value. In this study we continue
to investigate these effects by comparing the outcome of
calculations with and without the assumption of local thermal
equilibrium in the Boltzmann transport approach.

For this purpose we use the parton-hadron-string dynamics
(PHSD) which is based on the dynamical quasiparticle model
[17]. The PHSD has quite reasonably reproduced experimen-
tal data of relativistic heavy-ion collisions from the superpro-
ton synchrotron (SPS) to large hadron collider (LHC) energies
[17–20].

The PHSD has been extended to the production of heavy
flavor partons by using the PYTHIA event generator [21] and
the EPS09 package for (anti)shadowing effects in heavy nuclei
[22]. Scattering cross sections of heavy quarks with off-shell
parton are calculated up to leading order in the coupling
constant considering dressed propagators from the DQPM
[23,24]. It has been shown that the scattering cross sections
reproduce the spatial diffusion coefficient of heavy quarks
from lQCD calculations and the experimental data on D
mesons. Even more, also single electrons as well as dileptons
are in agreement with experiment from the beam energy scan
energies at RHIC to LHC energies [11,12,25–27].

PHSD is not the only approach for heavy flavor dynam-
ics in relativistic heavy-ion collisions. Here we compare
the PHSD approach with other models, which have as well
successfully described multiple heavy flavor observables. In
this comparison we keep the initial condition identical for
all approaches but modify separately (a) the dynamics of
the medium in which the heavy quarks collide (keeping the
elementary interaction between the heavy quarks and the par-
tons fixed), and (b) the elementary interaction between the
heavy quarks and the partons (keeping the dynamics of the
medium, in which the heavy quarks collide, fixed).

For the study of the influence of the bulk dynamics we
compare PHSD with causal viscous hydrodynamics which is
widely used as a description of the QGP dynamics in heavy-
ion collisions. Note that hydrodynamical simulations are ap-
plicable only after an initial thermalization time and require
an initial condition. PHSD can provide this initial condition
such as the local energy densities, the local flow velocities,
or the local energy-momentum tensor at the required times.
Then one can compare the dynamics of the QGP obtained
from hydrodynamics with that obtained from PHSD. It has

been found, taking ensemble averages, that in the light quark
sector both approaches give similar results, although in PHSD
fluctuations are much larger [28].

While in the previous study we have compared macro-
scopic properties of the QGP medium, such as spatial and
momentum eccentricities [28], in this study we extend the
comparison to heavy quark interactions with the expanding
QGP described by hydrodynamics or by PHSD, in order
to identify how specific descriptions of the QGP dynamics
affect the charm quark dynamics in heavy-ion collisions. This
comparison makes it also possible to study how the early
pre-equilibrium stage modifies the observables.

Second we use the description of the QGP provided by
the PHSD but employ different interactions of charm quarks
with the QGP. In this way we can separate the influence of
the elementary interactions from all other effects which may
influence the final heavy quark spectrum. For this comparison
we use the elementary interaction advanced by the Nantes
group in their MC@HQ model [29] to study heavy flavor
production in heavy-ion collisions. This transport code for
heavy flavors needs to be supplemented with temperature
and velocity fields describing the bulk dynamics. Lately, it
was then combined with another major computational model,
EPOS2 [30] which is, as PHSD, an event generator de-
scribing the soft physics of up, down, and strange quarks
produced in pp, pA, and AA collisions at RHIC and LHC
energies. After the initial violent phase of the collision, a
quark gluon plasma (QGP) and jetlike hadrons are created.
The expansion of the QGP is described by hydrodynamical
equations. At the transition temperature hadrons are produced
utilizing the Cooper-Frye formula, and subsequent hadronic
interactions are described by UrQMD [31,32]. The HQ part
of the program generates heavy quarks with a fixed-order
next-to-leading logarithm (FONLL) distribution at the in-
teraction points of the nucleons during the initial stage of
EPOS. The heavy quarks propagate through the plasma hav-
ing elastic [29] and radiative collisions [9,33] with the plasma
constituents.

When the QGP hadronizes, the low momentum heavy
quarks coalesce with a light (u, d) quark of the cell where the
heavy quark is localized. Heavy quarks with high momenta
hadronize by fragmentation. After fragmentation, UrQMD is
used to model final hadronic interactions of the D and B
mesons. Beyond the heavy flavor observables discussed here,
EPOS2 + MC@HQ has also been used in previous work to
study correlations between heavy quarks and antiquarks [34],
higher order flow components [35], and the influence of the
existence of hadronic bound states beyond Tc [36].

This paper is organized as follows: In Sec. II we first
discuss how to realize a coarse grained medium in PHSD.
Section III shows how the assumption of local thermal equi-
librium affects charm quark interactions in heavy-ion colli-
sions by using a linearized Boltzmann approach. Section IV
is devoted to the comparison of charm dynamics in the PHSD
with that in 3 + 1 dimensional viscous hydrodynamics ini-
tialized by the PHSD and also discusses the effects of pre-
equilibrium interactions on charm in heavy-ion collisions. We
then study the effects of different initial conditions and heavy
quark–light parton interactions on common observables in
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Sec. V, comparing results from PHSD and MC@HQ. Finally,
a summary is given in Sec. VI.

II. COARSE-GRAINING THE PHSD MEDIUM

In order to study the nonequilibrium effect on charm and
to compare with other models, the coarse-graining of the
PHSD medium is necessary. For example, one can introduce
local thermal equilibrium to the coarse graining of the PHSD
and compare with the charm from the original PHSD, and
the difference will be the nonequilibrium effect on charm in
heavy-ion collisions, which is described in Sec. III in detail. It
also enables us to compare between models, because many
models which study charm in heavy-ion collisions assume
local thermal equilibrium.

To calculate local thermal quantities in PHSD such as the
energy density or the energy-momentum tensor we introduce
a grid. During the expansion one projects all particles onto
the corresponding grid and calculates these quantities cell by
cell. In relativistic heavy-ion collisions this coarse graining
procedure needs special care, due to the relativistic expansion
of the QGP medium along the beam axis. In PHSD, the grid
size is fixed to 1 fm in the x and y directions respectively.
Since the matter expands almost with the speed of light in
the z direction, the grid size in the z direction is designed
to grow with time. Before the two nuclei pass through each
other, the grid size along the z direction and the time step are,
respectively, given by

dz = 1

γcm
, dt = dz

2
, (1)

where

γ cm = 1

2

(
Eprojectile

Mprojectile
+ E target

M target

)
. (2)

We note that dt is taken to be smaller than dz in order not to
violate causality. In each nucleus rest frame dz in Eq. (1) is
1 fm, as dx and dy. After the passage of the two nuclei, dz
grows linearly with time as

dz ≈ 1

Nz
(t − t∗) + 1

γcm
. (3)

t∗ is the approximate time which two nuclei need to pass
each other and Nz is the number of grid cells in the +(−) z
direction. Equation (3) implies that the grid size in the +(−)
z direction corresponds to the elapsed time after t∗:

zmax = Nz × dz ≈ t − t∗. (4)

One can also use grid cells in the (τ, x, y, η) frame where τ

is the longitudinal proper time and η is the spatial rapidity,

τ =
√

t2 − z2, (5)

η = 1

2
ln

(
t + z

t − z

)
. (6)

This coordinate system is very convenient to describe
matter which is boost-invariant as approximately realized
in relativistic heavy-ion collisions. Therefore hydrodynamic
simulations and many fireball models often use this coordinate

FIG. 1. (a) Longitudinal cell size in PHSD compared with those
from constant η as functions of time and (b) η corresponding to each
cell boundary in (t, z) coordinate system for Nz = 38 and 76.

system. It is, however, a bit tricky to use this coordinate
system in Boltzmann-type transport models, because particle
position and momentum should then be updated based on dτ ,
not on dt whereas the update in the PHSD transport equations
is done in dt . In Fig. 1(a) we see the difference between the
grid in the Cartesian coordinate system (t, z) and that in (τ, η).
The black line is the cell size in the z direction as a function of
time given by Eq. (3). It does not depend on the position of the
cell. On the other hand, the dashed, dotted, and dash-dotted
lines are calculated for constant dη = 0.4 bins as function of
time. dz at a fixed t is given as

dz ≈ 1

Nz
× t, for a (t, z) grid, (7)

dz = sech2(η)dη × t for a (τ, η) grid, (8)

where the first dz does not depend on z or η, while the
second one depends on η and dη and is smaller for a larger
η because of the factor, sech2(η). Since Nz is 38 in PHSD,
dz in PHSD is similar to dz for 1.8 < η < 2.2, as shown in
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Fig. 1. We can conclude that the coordinate system (t, z) has a
better resolution at midrapidity while that of (τ, η) is better at
forward and backward rapidities, if the same number of grid
cells is used.

Figure 1(b) shows η corresponding to each cell boundary in
the (t, z) coordinate system for Nz = 38 and 76. One can see
that central cells in the (t, z) coordinate system correspond
to very small dη, and corresponding dη increases with larger
cell index. In the case of Nz = 38 the second to last cell
covers 1.8 < η < 2.2 and the last cell covers 2.2 < η < ∞.
Increasing Nz by a factor of 2, Nz = 76, the last cell covers
still a large range 2.5 < η < ∞.

In the next section we use both coordinate systems to study
the charm dynamics in relativistic heavy-ion collisions with
PHSD. It is straightforward to calculate the local energy-
momentum tensor or the energy density in the coordinate
system (t, z) while the calculations in the coordinate system
(τ, η) needs a brief description.

In the PHSD approach particles are updated with a constant
time step �t . Hence we know positions and momenta of all
particles at times ti = t0 + i�t where i is a positive integer
number. We can calculate η at ti from Eq. (6) and also dz
corresponding to a constant �η:

dz(i, j) = z(i, j+1) − z(i, j) = ti{tanh(η j+1) − tanh(η j )}, (9)

where i is the time index and j is the index of the spatial
rapidity with �η = η j+1 − η j . As a next step, the energy-
momentum tensor of the cell, whose boundaries are z(i, j) and
z(i, j+1), is calculated, and the energy density and flow velocity
are obtained by diagonalization [28]. We assume that the
calculated energy density and the flow velocity is located at
the center of the cell,

(t, z) =
(

ti,
z(i, j+1) − z(i, j)

2

)
, (10)

and the information is transferred into a cell in (τ, η) coor-
dinate system by using Eqs. (5) and (6). In this case dz and
dη are in one-to-one correspondence while dt and dτ are not.
Since the size of dt in PHSD is small, several cells in the t
direction correspond to one cell in the (τ, η) grid. We solve
this problem by taking averages over the energy densities and
the flow velocities of several cells for the one cell in (τ, η)
grid.

III. ASSUMPTION ON LOCAL THERMAL EQUILIBRIUM

In the grid defined above, the energy-momentum tensor
is calculated for each cell. Then energy density, pressure,
and flow velocity are obtained by diagonalizing the energy-
momentum tensor [28]. In this study we will restrict ourselves
to Au + Au collisions at

√
sNN = 200 GeV and phrase it

simply as Au + Au collisions. Since the matter produced in
heavy-ion collisions is not necessarily in thermal equilibrium,
the pressure is, especially in the early stage, not isotropic.
Compared to the isotropic pressure of a thermalized QGP at
the same energy density, the transverse pressure in PHSD is
initially small and increases with time, until it converges to
the isotropic pressure before τ = 1 fm/c [28]. Extracting the
longitudinal pressure is technically difficult, since it depends

on the longitudinal size of cell. If the longitudinal size of cell
is chosen too large, the longitudinal flow will contribute to the
longitudinal pressure. On the other hand, a too small longi-
tudinal size will provoke large fluctuations due to the small
average number of particles in the cell, and the calculation of
the longitudinal pressure becomes very difficult.

The parton mass and the strong coupling in PHSD depend
on the temperature. If the system is not in complete equilib-
rium we calculate the temperature and a chemical potential
with help of the equation of state (which is the lattice equation
of state) by using the local energy density and baryon density
as input.

Heavy quarks produced in heavy-ion collisions interact
with the QGP composed of quarks and gluons. Quarks with
high transverse momentum lose a considerable amount of
energy while quarks with low transverse momentum gain
energy due to the collective flow. Interactions are described
in PHSD by the scattering of heavy quarks with individual
partons. This microscopic approach is time-consuming, since
the energy momentum and the position of each parton is
updated at each time step during their propagation through the
medium and possible collision partners need to be identified
during each time step as well.

A simpler, alternative, method is the linearized Boltzmann
(LB) approach, where the light partons from the QGP are
assumed to be so close to thermal equilibrium that small
contributions from nonequilibrium effects can be ignored in
the Boltzmann collision integral:

f (k) = feq.(k, T ) + δ(k) ≈ feq.(k, T ). (11)

f (k) is the real momentum distribution of the partons,
feq.(k, T ) is the thermal distribution at a given temperature T ,
and δ(k) is a small deviation from the equilibrium distribution.
We note that the above approximation applies for the distribu-
tion of the QGP partons but not to that of heavy quarks which
may be far away from equilibrium with the QGP particles.
Assuming Eq. (11), one can calculate the interaction rate of
heavy quarks:

� = 1

2Ep

∑
i=q,q̄,g

∫
d3k

(2π )32E
fi(k, T )

∫
d3k′

(2π )32E ′

×
∫

d3 p′

(2π )32E ′
p

(2π )4δ(4)(p + k − p′ − k′)
|Mic|2

γc
, (12)

with (Ep, p), (E , k) being the energy momenta of the heavy
quark c and of the scattering partner i before scattering and
(E ′

p, p′), (E ′, k′) being those after scattering, respectively.
Mic, γc, and fi(k, T ) are the scattering amplitude, the degen-
eracy factor of heavy quarks, and the distribution function of
the scattering partner i at the temperature T , respectively.

In DQPM, which is employed in PHSD, partons are de-
scribed by a spectral function [37]:

ρ(k0, k) = γ

Ẽ

(
1

(k0 − Ẽ )2 + γ 2
− 1

(k0 + Ẽ )2 + γ 2

)

≡ 4k0γ(
k2

0 − k2 − M2
)2 + 4γ 2k2

0

, (13)

044903-4



TRACES OF NONEQUILIBRIUM EFFECTS, INITIAL … PHYSICAL REVIEW C 101, 044903 (2020)

where Ẽ2(k) = k2 + M2 − γ 2 with γ and M being the spec-
tral width and the pole mass, respectively. Both are functions
of the temperature and the baryon chemical potential. Consid-
ering the normalization of the spectral function,∫ ∞

−∞

dk0

2π
k0ρ(k0, k) =

∫ ∞

0

dk0

2π
2k0ρ(k0, k) = 1, (14)

the interaction rate in Eq. (12) is covariantly expressed by

� = 1

2Ep

∑
i=q,q̄,g

∫
d4k

(2π )4
fi(k, T )ρi(k, T )

∫
d4k′

(2π )4
ρi(k

′, T )

×
∫

d3 p′

(2π )32E ′
p

(2π )4δ(4)(p + k − p′ − k′)
|Mic|2

γc
,

(15)

where the charm spectral function is substituted by a delta
function,

ρ(E ′
p, p′) → 2πδ+(

p′2 − m2
c

)
. (16)

mc is the heavy quark mass. In this study a nonrelativistic
approximation is taken to Eq. (13), and the Breit-Wigner
spectral function ρ(m),

k0

π
ρ(k0, k) → ρBW(m) = 2

π

2m2γ

(m2 − M2)2 + (2mγ )2
, (17)

is employed. The normalization is satisfied as∫ ∞
0 dm ρBW(m) = 1.

The LB approach is realized in PHSD as follows: Each
heavy quark is located in a cell which has a temperature and a
flow velocity. The heavy quark is then boosted to the cell-rest-
frame (i.e., the heat-bath frame) and one obtains the heavy
quark velocity in the heat-bath frame. The interaction rate as a
function of the temperature and the heavy quark velocity in the
heat-bath frame is calculated with help of Eq. (15). Since one
needs the interaction rate in the simulation frame, it is boosted
back with the opposite sign of flow velocity. This is simply
realized by substituting Ep in the denominator of Eq. (15) by
the heavy quark energy in the simulation frame. The other part
of the equation is Lorentz-invariant.

From the interaction rate in the simulation frame, one can
decide, by using a Monte Carlo approach, whether a heavy
quark scattering takes place in the following time step or not.
One draws a random number. If it is smaller than �simulation�t ,
with �t being the size of the time step in the simulation, the
heavy quark will scatter. Since �simulation�t is supposed to be
less than 1, one needs to ensure that �t is sufficiently small.

When a collision takes place, the details of the scattering
are again determined using Monte Carlo methods in the cell
rest system. This approach allows us to use the same collision
term as is used in PHSD for nonequilibrium matter.

Using the above formalism we can now compare three
distinct scenarios, as follows:

(1) The charm quarks interact with gluons and light
(anti)quarks whose time evolution is given by the
PHSD equations. In this approach one calculates the
trajectories of all particles and therefore one does not

assume that the expanding system is in local equilib-
rium.

(2) The charm quarks interact with gluons and light
(anti)quarks which are propagated as in (1) but it
is assumed that they are in local equilibrium. The
thermodynamical quantities are determined from the
energy density and the flow velocity of the PHSD par-
ticles in the cell in which the heavy quark is localized,
using the equation of state. The scattering partners of
the heavy quarks are taken from the thermal parton
distribution.

(3) The charm quarks interact with gluons and light
(anti)quarks which are assumed to be in a local equi-
librium. As in (2) the thermodynamical quantities are
determined from the properties of the cell in which
the heavy quark is localized. However, these quantities
are now provided by a hydrodynamical calculation
of the expanding medium utilizing initial conditions
generated by PHSD.

The elementary interaction between the heavy quarks and
the gluons or light (anti)quarks are identical in all three cases
and, as discussed above, are treated numerically in an identical
way. Therefore, the influence of local nonequilibrium effects
can directly be observed by comparing scenarios (1) and
(2). The difference between the global expansion scenario of
PHSD and a hydrodynamical expansion can be obtained by
comparing (2) and (3).

Figure 2 shows the rapidity distribution and the rapidity
change (rapidity at Tc subtracted by the initial rapidity) of
(anti)charm quarks as a function of the initial rapidity in Au +
Au collisions at an impact parameter b = 2 fm from PHSD
and from the LB approach with grids defined in different
reference frames and of different sizes. As explained in the
previous section, we can define grids in both (t, x, y, z) and
(τ, x, y, η) reference frames. Here we use cell sizes of Nz = 38
and Nz = 76 in Eq. (3) for the former case, which are denoted
respectively by (t, z) and (t, z/2), and of (dτ = 0.2, dη =
0.4) and (dτ = 0.1, dη = 0.2) for the latter case, which are
denoted respectively by (τ, η) and (τ/2, η/2) in the figure.

We can see in the upper panel of Fig. 2 that for all
four grids the charm rapidity distribution is almost the same
near midrapidity but it has humps at 2 < |y| < 3 in the LB
approach using a grid in the (t, z) coordinate system. The
reason can be seen from the lower panel of the figure, which
shows the average rapidity change of charm and anticharm
quarks during the QGP phase. Both the PHSD and the LB
approaches show that charm quarks, which have initially a
forward rapidity, are accelerated forward and those which
have initially a negative rapidity are accelerated backwards.
In other words, RAA(y), the ratio of the rapidity distribution
of charm quarks in heavy-ion collisions versus proton-proton
collisions properly scaled by the number of binary collisions,
becomes larger than one at forward and backward rapidities
after the time evolution of the QGP matter. This difference in
the rapidity change for the different grids is most pronounced
around |y| ≈ 2.

The rapidity change is largest for the LB approach with
grids in the (t, z) coordinate system, while when using a grid
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FIG. 2. (a) Final rapidity distribution and (b) rapidity change
(rapidity at Tc subtracted by the initial rapidity) of (anti)charm
quark as a function of the initial rapidity in Au + Au collisions at√

sNN = 200 GeV and b = 2 fm from PHSD and from the linearized
Boltzmann approach with grids in different coordinate systems and
of different sizes.

in (τ, η) the results are similar to those in PHSD which does
not assume equilibrium. Even if the cell size is reduced to
(t, z/2), rapidity changes at around |y| = 2 are still about
twice as large as those observed in PHSD. We attribute this
behavior of the grid in the (t, z) reference frame to its poor
resolution at forward and backward rapidities, as shown in
Fig. 1(b). Therefore it is highly recommended to use grid
in the (τ, η) reference frame to study forward and backward
rapidities.

A. Midrapidity

We now discuss the effects of nonequilibrium vs equilib-
rium medium evolution on charm quarks at midrapidity. Fig-
ure 3 shows RAA of (anti)charm quarks at Tc before hadroniza-
tion as well as RAA and the elliptic flow v2 of D(D̄) mesons
at freeze-out at midrapidity (|y| < 1) in Au + Au collisions.

FIG. 3. (a) RAA of (anti)charm quarks at Tc before hadronization,
(b) RAA, and (c) the elliptic flow v2 of D(D̄) mesons at freeze-out
at midrapidity (|y| < 1) in Au + Au collisions at

√
sNN = 200 GeV.

The impact parameter is b = 2 fm for (a) and (b) and b = 6 fm
for (c). We display results from PHSD and from the linearized
Boltzmann approach with a couple of different grids. We note that
the impact parameters do not exactly correspond to the centralities
of the experimental data from the STAR collaboration [38,39].
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FIG. 4. Top: transverse momentum change (left) and variance of the transverse momentum (right) of (anti)charm quarks with |y| < 1 for
different grids in the LB approach and in PHSD. Bottom: Final pT distribution of charm quarks separated for different initial heavy quark pT

momenta (0–2, 2–5, 5–8) GeV. On the left we display the results of PHSD and on the right those for the LB approach. We investigate central
Au + Au collisions at

√
sNN = 200 GeV.

We compare these results with the experimental data from the
STAR collaboration [38,39], although our impact parameter
does not exactly correspond to the centrality of the experimen-
tal data. As expected from Fig. 2, local nonequilibrium effects
of the matter do not have significant consequences for heavy
flavor observables, at least for Au + Au collisions at the top
RHIC energy. In the LB approach, for all coordinate systems
and all grid sizes, RAA of the charm quarks is larger at low
transverse momentum (pT < 1 GeV) and a bit smaller around
pT = 2 GeV, as compared to RAA from the PHSD.

After the charm quark is hadronized into a D meson, it
interacts with the hadron gas until freeze-out. We do not
use the LB approach for D meson scattering in the hadron
gas phase but use the geometric method of PHSD in which
the hadrons interact by cross sections without assuming that
they are in equilibrium. In other words, hadronization and
hadronic interactions are the same in both cases. Usually
hadronization and hadronic interactions shift the maximum
of the RAA curve to a higher transverse momentum, due to

coalescence with light (anti)quarks, which is the dominant
hadronization mechanism at low pT , and which enhances the
transverse momentum of the D mesons and also the radial flow
becomes stronger with time. This we observe comparing RAA

in the upper panel of Fig. 3 with the RAA in the middle panel.
Differences between RAA from the PHSD and that from the
linearized Boltzmann approach are, however, much smaller
than the experimental errors. The same is true for v2. The
differences for the elliptic flow of D mesons are small in
comparison with the large experimental errors, as shown in
the lower panel of Fig. 3. As we shall see, however, the above
results do not indicate that the charm interactions are similar
on a microscopic level.

The two upper panels of Fig. 4 show the transverse mo-
mentum change (left) and the variance (right) of midrapidity
(anti)charm quarks in a QGP produced in central Au + Au
collisions. We note that the former corresponds to the mo-
mentum drag coefficient and the latter to the diffusion coef-
ficient of longitudinal momentum of charm quark, which are
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respectively defined as �pL/�t and (�pL )2/�t , and that pT

in the Fig. 4 is the longitudinal momentum of charm quark at
midrapidity. Even though the RAA and the v2 of charm quarks
are similar in PHSD and in the LB approach, the change of
the transverse momentum and the variance are different. Irre-
spective of the reference frame used for the grid and the grid
size, in PHSD charm quarks with initially small transverse
momentum gain more pT and those which have initially a
large transverse momentum lose more pT , compared to the
LB approach, which assumes local thermal equilibrium. The
variance of the transverse momentum change is always larger
in PHSD than for the LB approach. In other words, the drag of
charm quarks in the pT direction and its variance is larger in
PHSD than in the LB approach. Naively one would think that
a larger drag coefficient causes a larger suppression of charm
quarks at high momentum. Figure 3 shows, however, that RAA

of charm quarks is almost the same in PHSD and in the LB
approach. The reason for this can be found in the lower panels
of Fig. 4.

The two lower panels display the final transverse mo-
mentum distributions of charm quarks at Tc in central Au +
Au collisions from the PHSD and from the LB approach
with a grid in the (τ, η) reference frame (�τ = 0.2 fm/c,
�η = 0.4). The black solid line includes all contributions
regardless of the initial transverse momentum. The red dashed
line, the blue dot-dashed line, and the green short dashed
lines are transverse momentum distributions of heavy quarks
whose initial transverse momenta are between 0–2, 2–5, and
5–8 GeV, respectively. Comparing the red dashed and blue
dashed dotted lines, the PHSD results have a long tail to
large transverse momenta which is not present in the results
of the LB equation. For low final pT the final distributions
for low initial transverse momenta, where most of the charm
quarks are located, are rather similar. This explains the larger
momentum gain and the larger variance of the transverse
momentum change in PHSD as compared to LB at low initial
transverse momentum, as shown in the two upper panels.

It is interesting to see that the two black lines, the sum
of all contributions, are similar for both calculations, except
at very low transverse momentum. Therefore we observe a
similar RAA as shown in Fig. 3. We can understand this as
follows: A larger drag coefficient of charm quarks in PHSD
suppresses the number of charm quarks at large transverse
momentum, but a larger diffusion coefficient compensates
this suppression by spreading charm quarks from low to
large momenta. Though the momentum diffusion coefficient
is of higher order than the momentum drag coefficient, it has
a considerable effect for the distribution at high momenta,
because most charm quarks have initially a low pT . Although
only a few charm quarks are shifted to large pT by momentum
diffusion, their contribution could therefore be significant.

The reason for this large pT change of the charm quark
in PHSD calculations is elucidated in Fig. 5. It shows for
both PHSD and LB the pT distribution of partons which have
scattered with a (anti)charm quark, which is finally seen at
midrapidity (|y| < 1). One sees that the parton spectrum in
PHSD is harder than that in the LB approach, which assumes
that the cell in which the heavy quark is located is equilibrated
and therefore the partons have an equilibrium distribution.

FIG. 5. Transverse momentum distribution of partons which
scatter off (anti)charm quarks in midrapidity (|y| < 1) from the
PHSD and from the linearized Boltzmann approaches.

This distribution is characterized by a temperature which is
obtained from the energy density by the equation of state.
Obviously in PHSD the light partons do not have an equi-
librium distribution in pT but show a strong high momentum
component. This high pT partons are responsible for the high
momentum transfer observed in PHSD calculations and seen
in Fig. 4, top left. This difference is large compared to the
differences due to different reference frames or different grid
sizes in the LB approach. Comparing (t, z) and (t, z/2), for
example, energy densities are slightly lower while transverse
flow velocities are larger in (t, z/2).

We note from Fig. 5 that the integral over the pT spectrum
is largest in the PHSD. This means that in PHSD more
collisions take place. This is related to the increase of the cross
section between heavy and light partons as a function of

√
s

but also to the medium modifications of the parton mass and
the parton kinetic energy in PHSD, which have been studied
by some of us [16] and which we explain now.

In PHSD energetic hadron scattering produces strings. If
the local temperature or energy density is above the critical
value for the phase transition to the QGP, strings do not
fragment into hadrons but melt into partons. This melting is
not carried out directly but through an intermediate step: in a
first step hadrons, which are supposed to be produced through
string fragmentation, are produced and then in a second step
the hadrons are converted to partons conserving all quantum
numbers as well as energy and momentum. The problem of
this procedure is that in relativistic heavy-ion collisions at
RHIC or LHC energies strings normally melt at very high
temperatures where, according to the DQPM, on which the
PHSD is based, the partons are very massive. Therefore it may
happen that the mass of the hadron which should be converted
to partons is not large enough to create these massive partons.
For this reason pions do not directly convert to a quark-
antiquark pair but form first a rho meson and then the rho
meson melts into a quark-antiquark pair. Considering that a
nucleon, which is composed of three constituent quarks, has a
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mass of around 1 GeV and a rho meson has a mass of around
0.8 GeV while the pole mass of the quark spectral function
is around 0.48 GeV at 2Tc, the quarks produced through the
string melting have normally a mass below the pole mass in
order to conserve energy and momentum. In other words, the
QGP in the PHSD approach is composed of lighter quarks
and antiquarks than that in the LB approach where partons
are distributed according to the complete spectral distribution
based on the DQPM. According to our recent study on trans-
port coefficients of heavy quarks in nonequilibrium matter
[16], heavy quarks have a larger drag and diffusion coefficient
if the QGP is composed of lighter partons or whose partons
have less kinetic energy than in equilibrium, assuming that
the local energy density is kept constant. These results add to
the explanation of the larger drag seen in PHSD calculations
of Fig. 4.

B. Forward/backward rapidity

The comparison between PHSD and the LB approach can
be extended to forward and backward rapidities. Presently
most studies on heavy flavor production in heavy-ion colli-
sions are focused on midrapidity, but in the future we expect
also results for forward and backward rapidities. Assuming
boost invariance, the results will not depend on rapidity, but
boost invariance is only a very crude approximation. In reality
it begins to break down at few rapidity units away from
midrapidity.

The upper panel of Fig. 6 shows RAA(pT ) of (anti)charm
quarks in forward/backward rapidities (2 < |y| < 3) at Tc be-
fore hadronization in Au + Au collisions at b = 2 fm. Since
the resolution of a grid in (t, z) coordinates is not good for
forward/backward rapidities, we choose for the LB approach
a grid in the (τ, η) coordinate system with a cell size of
(�τ = 0.1 fm/c and �η = 0.2). In contrast to the results at
midrapidity, at forward rapidity the results for RAA(pT ) differ
considerably between PHSD and the LB approach. RAA(pT )
of charm quarks is larger at large transverse momentum in
PHSD compared to that for the LB approach.

The middle and lower panels of Fig. 6 show for a couple
of rapidity bins the transverse momentum change of charm
quarks as a function of their initial transverse momentum in
a QGP produced in Au + Au collisions in PHSD and in the
LB approach, respectively. One finds that in both approaches
boost invariance in terms of the rapidity independence of the
change of pT of charm quarks is well satisfied up to 1 < |y| <

2. For larger rapidities the invariance begins to break down in
PHSD, while it is still valid for the LB approach. Comparing
the middle and lower panels, we see that up to 1 < |y| < 2 the
drag coefficient of charm quarks is larger in PHSD than in the
LB approach. In the rapidity interval 2 < |y| < 3, it becomes
similar in both approaches. The larger RAA(pT ) of charm
quarks in PHSD, shown in the upper panel of Fig. 6, is due to
the larger variance of the transverse momentum change. This
means that the momentum diffusion is larger which allows
more charm quarks to contribute to RAA at large transverse
momentum, although in both approaches the momentum drag,
as seen in middle and bottom panels, becomes similar in
2 < |y| < 3.

FIG. 6. (a) RAA(pT ) of (anti)charm quarks at forward/backward
rapidities (2 < |y| < 3) at Tc before hadronization. (b) Transverse
momentum change of (anti)charm quarks in a QGP produced in
central Au + Au collisions at

√
sNN = 200 GeV. We display the

PHSD results as a function of the initial transverse momentum of
the charm quarks and for three different rapidity ranges. (c) Same as
the middle panel but for the linearized Boltzmann approach.
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IV. COMPARISON WITH HYDRODYNAMICS

Viscous hydrodynamics, often coupled with a hadronic
Boltzmann evolution for the late reaction stages, has been
remarkably successful in describing the bulk evolution of ul-
trarelativistic heavy-ion collisions [40–42]. Key components
of hydrodynamic calculations include initial conditions that
need to be calculated with a separate initial condition model
[30,43], the QCD equation of state, commonly taken from lat-
tice calculations [44–46], and the QGP transport coefficients,
most often extracted from a comprehensive model-to-data
comparison [47,48]. Generally, hydrodynamics is valid under
the assumption of local thermal equilibrium, even though
recent kinetic theory derivations have shown the validity
of hydrodynamic calculations to extend beyond that limit
[49,50].

In contrast, PHSD provides a microscopic description of
the QGP dynamics without any equilibrium assumptions.
However, it does reproduce the equation of state and several
other thermal quantities from lattice QCD in the equilibrium
limit [24,51]. The shear and bulk viscosities inherent in the
PHSD dynamics can be extracted and parametrized for use
in hydrodynamic calculations, making it very interesting to
compare these two different dynamical approaches for the
same heavy-ion collision scenario.

In a recent paper [28] such a comparison has been started.
It was discovered that the physics during the initial ther-
malization time, before hydrodynamic can be applied, is
the critical difference between viscous hydrodynamics and
PHSD. If PHSD and hydrodynamic simulations start with the
same macroscopic initial conditions, i.e., with the temperature
and the flow velocity profiles after the initial thermalization
time extracted from PHSD, the results become quite similar
although PHSD displays larger fluctuations. The ensemble
averaged spatial and momentum eccentricities in PHSD are
similar to those in hydrodynamics for semicentral heavy-ion
collisions. It has also been found that the initial transverse
flow at the initial thermalization time has considerable effects
on the dynamics of the QGP while the initial shear tensor, the
off-diagonal part of energy momentum tensor, has little effect.

Many heavy flavor studies use hydrodynamics to describe
the time evolution of the QGP as the underlying medium for
LB calculations. Hydrodynamics provides the energy density
and the flow of the grid cell in which the heavy quark is
located. The local energy density and flow velocity of the
cell are here not obtained by projecting the PHSD partons
on cells, and hence by a coarse-graining of the PHSD time
evolution, but by the hydrodynamical time evolution for a
given initial condition. Consequently, comparing PHSD with
hydrodynamics we can study the difference between a hy-
drodynamical expansion of the QGP in comparison with the
PHSD dynamics. To make this possible we determine the mo-
mentum of the scattering partner of the heavy quark assuming
that this momentum follows a thermal distribution in the rest
frame of the cell determined from the energy density. Once
the momentum of the QGP partons is determined we boost it
from the moving cell into the center of mass of the scattering
partners. The elementary collision between the heavy quark

and the light parton are described by the Boltzmann collision
integral.

While it is relatively easy to describe how heavy quarks
interact with partons from a thermalized QGP, the heavy quark
interactions with pre-equilibrium partons are not well under-
stood. In PHSD, partons that are produced through string
melting, need a formation time, which is given by E/m2

T with
E and mT being energy and transverse mass, respectively. The
formation time for heavy quarks is much shorter than that for
light partons. During the formation time, light partons exist in
form of color fields. Since it is not clear how these color fields
turn into particles and how heavy quarks interact with the
fields before the actual parton is formed, in PHSD it is simply
assumed that the heavy quarks, after their formation time,
interact with the color fields in the same way as with partons
which will appear after their formation time. On the other
hand, typical hydrodynamic simulations do not extend to the
pre-equilibrium stage. Because of this reason many hydrody-
namical studies ignore heavy quark interactions with partons
prior to the initial thermalization time, assuming that they are
negligible. We shall therefore study first the consequences of
the interaction of heavy quarks with the initial nonequilibrium
matter before comparing PHSD and hydrodynamics.

The upper panel of Fig. 7 shows the temperature of the
central cell (x = 0, y = 0) as a function of τ and η in Au +
Au collisions at b = 2 fm employing PHSD. The cell size
is given by �τ = 0.1 and �η = 0.2 in the (τ, η) coordinate
system. One can see that boost invariance is only slightly
broken at midrapidity.

The lower panel displays RAA(pT ) of charm quarks at
midrapidity (|y| < 1) with and without charm quark interac-
tions between their formation time and τ = 0.6 fm/c at vari-
ous times during their evolution employing the LB approach.
Using the EPS09 package in PHSD [22] RAA is already initially
suppressed at low pT by shadowing effects and enhanced at
large pT by antishadowing effects. Therefore RAA deviates
from 1 even before the system starts to evolve (t = 0 fm/c).
Comparing solid and dotted lines, where charm quarks in-
teract in the pre-equilibrium phase and from τ = 0.6 fm/c
on, respectively, we see that the early interactions have a
big influence on the final value of RAA(pT ) in the rapidly
expanding system. The origin for this is the high temperature
(see upper panel) and the high density of the environment
probed by the heavy quarks at early times. This leads to a high
collision rate and to a large energy transfer.

We are interested in the consequences of different dynam-
ical evolutions of the QGP for charm quarks. Therefore we
utilize the same initial condition for the time evolution of the
plasma for both PHSD and hydrodynamics. To realize this,
we disable the charm quark interactions in PHSD prior to
τ = 0.6 fm/c. This yields the dotted lines in Fig. 7 which
we compare to RAA(pT ) from hydrodynamical calculations.
Since the elementary cross sections are identical in both
approaches the differences are then exclusively related to the
different time evolution of the QGP in PHSD and in the
hydrodynamical approach.

Figure 8 shows the results from 3 + 1 dimensional viscous
hydrodynamical calculations using the initial condition from
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FIG. 7. (a) Temperature of central cells (x = 0, y = 0) as a func-
tion of τ and η in central Au + Au collisions at

√
sNN = 200 GeV

from the PHSD and (b) RAA of charm quark in midrapidity (|y| < 1)
with and without charm quark interaction before τ = 0.6 fm/c are
compared with each other at several time steps in linearized Boltz-
mann approach.

the PHSD at τ = 0.6 fm/c in Au + Au collisions at b = 2 fm.
Since hydrodynamics cannot be applied prior to the initial
thermalization time, as discussed above, the temperature pro-
files in the upper panels are empty prior to τ = 0.6 fm/c. In
the left panels the initial longitudinal flow is given by boost
invariance and there is no initial transverse flow:

vz(τ = 0.6 fm/c, η) = z

t
= tanh(η),

vT (τ = 0.6 fm/c, η) = 0. (18)

In the right panels, the initial longitudinal and transverse
flow velocities, as provided by PHSD, are used in the evolu-
tion. The calculation of the energy-momentum tensor T μν in
the (τ, η) coordinate system from the energy density and the
flow velocity is given by [52]

Tμν = (e + p)uμuν − pgμν, (19)

where

uτ = ut cosh η − uz sinh η,

uη = −ut sinh η + uz cosh η,

gττ = 1, gxx = gyy = gηη = −1. (20)

The initial shear tensor is ignored, because its contribution to
dynamics is not significant [28].

Since there is no initial transverse flow in the left panels,
the QGP cools down more slowly, which can be seen from the
comparison of the upper left and right panels. As a result, RAA

of charm quarks is slightly lower in the left panel than in the
right panel, since the lifetime of the QGP is a bit longer in
the left panel. It is interesting to note that the RAA values in
the right panel are very similar to that from the PHSD without
interactions before τ = 0.6 fm/c, while the RAA values in the
left panel are slightly lower than those from PHSD.

From these comparisons in Fig. 8 one can draw two con-
clusions: first, the consequences of an initial transverse flow
velocity on the final spectra are not negligible, as already
shown in [28], and second, the time evolution of the QGP,
as tested by heavy quarks, is very similar in PHSD and in
viscous hydrodynamical calculations provided that the initial
conditions are identical.

V. COMPARISON OF PHSD AND MC@HQ

So far we have focused our study on the effects of
nonequilibrium QGP on charm dynamics. In this section we
extend the discussion to the consequences of different initial
charm quark and different elementary interactions between
heavy quarks and partons from the QGP. For this we use an
additional approach to study open heavy flavor observables,
MC@HQ, which has been developed by the Nantes group
and combined with different hydrodynamical scenarios that
describe the expansion of the plasma, namely the one from
Kolb and Heinz for RHIC energies [41,53]. Both approaches
use FONLL calculations for the initial charm quark spectrum.
This description is not unique as the calculation for p + p
collisions shows: The spectrum of the Nantes model is close to
the upper bounds of the FONLL calculations at low transverse
momentum while PHSD always takes the mean values of
FONLL. The elementary interaction differs in three essential
points from that of the PHSD approach: The QGP partons are
massless, the coupling constant depends on the momentum
transfer (and not on the temperature), and the interactions
between the heavy quarks and the QGP partons can also be
inelastic. The inelastic collisions are those in which a gluon
is emitted in addition to the particles in the entrance channel.
For details we refer to [33]. These newly created gluons are
affected by the Landau-Pomeranchuck-Migdal effect which
states that they need time to be considered as independent
(created) particles. This effect is taken into account in the
Nantes approach [54]. To perform each collision one picks,
as in the LB of PHSD, randomly the momentum of the
colliding parton (q, g) from the local thermal distribution
in the hydrocell. This parton collides with the heavy quark
according to cross sections which are calculated with the
lowest order Feynman diagrams. The elastic cross section
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FIG. 8. Temperature of the central cell (x = 0, y = 0) as a function of τ and η in central Au + Au collisions at
√

sNN = 200 GeV
employing 3 + 1 dimensional viscous hydrodynamics. In (a) we use the initial temperatures from PHSD and the longitudinal flow from
boost invariance without initial transverse flow, and in (b) both initial temperatures and initial flow velocities from PHSD. The lower panels
(c) and (d) display RAA of midrapidity charm quarks for hydrodynamical background initialized by PHSD (dotted lines) and PHSD background
(full lines) in LB approach. For the calculations displayed in the left panel we assume vT = 0 like in the left top panel, and for those displayed
in the right panel vT is given by the PHSD calculations. We assume that no charm quark–QGP interactions take place before τ = 0.6 fm/c.

differs from the pQCD cross section by having a running
coupling constant [α(t )] and a modified propagator. Instead of
a propagation ∝ (t − m2

D)−1, the form ∝ (t − κm2
D)−1 is used

where κ is determined by the requirement that the energy loss
is independent from the intermediate scale which separates the
hard-thermal-loop (HTL) dominated low momentum transfer
from the Born diagram which describes the cross section
for high momentum transfer, following the procedure which
Braaten and Thoma have introduced for QED [55]. Since the
pQCD calculations cannot be carried out up to infinite order,
higher order corrections are included simply by multiplying
the cross sections by a so-called K factor. The K factor is taken
to be 1, which means that high-order corrections are ignored
in the pQCD calculations.

Figure 9 compares RAA of (anti)charm quarks observed at
midrapidiy at Tc (before hadronization) in central Au + Au
collisions. We display the influence of different initial charm
spectra and of different descriptions of the expansion of the

QGP. The interaction between the charm quarks and the QGP
follows the Nantes model.

In the upper panel we study the influence of different initial
charm quark spectra on RAA of charm quarks at Tc (before
hadronization). The expansion of the QGP is described by
the PHSD. Both the Nantes approach and PHSD include
cold nuclear matter effects, the Cronin effect in the former
and shadowing effects in the latter. The Cronin effect is the
enhancement of the heavy quark transverse momentum due to
the scattering of a nucleon in one nucleus and a parton of the
other nucleus such that the parton gains additional transverse
momentum before the hard scattering which produces heavy
flavor [56]. As expected, the Cronin effect suppresses RAA at
low transverse momentum and enhances it at large transverse
momentum. In a nucleus the number of partons at small x,
with x being the longitudinal momentum fraction, decreases
and that at large x increases. The former is called shadowing
and the latter antishadowing. The (anti)shadowing effects
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FIG. 9. RAA of midrapidity (anti)charm quarks at Tc (before
hadronization) in central Au + Au collisions at

√
sNN = 200 GeV.

We compare the influence of different initial charm spectrum and
of different QGP evolutions on this observable. Top: Influence of
different initial charm spectrum. We compare the results for the
initial charm spectrum of the Nantes approach (with and without
Cronin effect) with that for the PHSD initial charm spectrum (with
and without shadowing). The QGP evolution is from PHSD. Middle:
Influence of different time evolutions of the QGP for the same
(PHSD) initial charm spectrum. Bottom: Result of the standard
MC@HQ approach (initial charm spectrum and QGP evolution
from Kolb Heinz + MC@HQ) compared with that of standard PHSD
(initial charm spectrum and QGP evolution from PHSD).

suppress RAA at low transverse momentum and enhance it
at large transverse momentum, as the Cronin effect. Whether
the (anti)shadowing effect includes the Cronin effect or not is
controversial. We display the results for two different PHSD
initial charm spectrum (with and without shadowing) and two
different Nantes initial charm spectrum (with and without
Cronin effect). We observe that the different initial conditions
have a strong influence on RAA at Tc, especially at low pT .
Since the Cronin effect shifts the whole pT distribution it
is still visible at intermediate pT whereas the antishadowing
is only a little visible. At low momentum PHSD shows an
enhanced yield as compared to the Nantes model whereas
at large charm quark momenta the approaches become more
similar.

The middle panel shows how different descriptions of the
expansion of the QGP, those from MC@HQ (namely, Kolb
and Heinz for RHIC energies) and from PHSD, influence RAA

at Tc. Here we use the grid of PHSD as it is used in the
LB approach as described in Secs. III and IV. Initial charm
spectrum (PHSD) and elementary interactions (from Nantes)
are the same for both models. It is clearly visible that the
hydrodynamical expansion in the Nantes model yields a larger
enhancement at small pT than the PHSD expansion. RAA

for the Kolb-Heinz expansion are below those for the PHSD
expansion for 1.5 < pT < 4 GeV.

The lower panel compares the consequences from choos-
ing standard ingredients from the PHSD approach as com-
pared to the ones from MC@HQ. We see that the effects
observed in (a) and (b) compensate each other to a large
extent. The higher RAA in PHSD due to the PHSD initial
charm spectrum is compensated by the lower RAA due to
PHSD expansion of the QGP and vice versa.

Besides the initial charm spectrum and the QGP expansion
there is a third component which has influence on RAA at Tc,
the elementary interaction between heavy quarks and QGP
partons. This influence is addressed in Fig. 10. It shows RAA of
midrapidity (anti)charm quarks at Tc for different elementary
interactions between heavy quarks and QGP partons. The
expansion of the QGP and initial charm quarks distribution are
given by the PHSD. Charm quarks start to interact after τ =
0.6 fm/c. For the red curve the elementary interaction is taken
from the PHSD approach whereas for the blue curve (which is
identical to the full red curves in Fig. 9) the interaction of the
Nantes approach is applied. We see also here a considerable
difference in RAA. Though it is beyond the scope of the
present study, we note that the RAA shown here is that of
the heavy quark at hadronization and cannot be compared
to experimental results for heavy mesons. D mesons can be
created by coalescence of a QGP quark or by fragmentation.
The relative fraction of both depends on pT . The coalescence
probability of charm quarks is larger in MC@HQ than in
PHSD. This decreases the differences of RAA, because the
coalescence increases pT and, as a result, suppresses RAA at
small pT and enhances it at large pT .

Figures 9 and 10 show the challenges regarding the use
of charm quarks to study properties of the QGP produced
in heavy-ion collisions. The lifetime of the plasma is rather
short due to the fast expansion. Therefore differences in
the initial state of the system show up in the final charm
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FIG. 10. RAA of midrapidity (anti)charm quarks at Tc (before
hadronization) for the elementary interaction between heavy quarks
and partons in the QGP from EPOS + MC@HQ (blue) and from
PHSD in the LB version (red line). Charm quarks start to interact
after τ = 0.6 fm/c. The initial charm spectrum and the expansion of
the QGP are taken from the PHSD model.

quark spectra prior to hadronization. Different initial charm
spectra, different expansion scenarios, as well as a different
elementary interactions between heavy quarks and partons of
the QGP lead to pT dependent modifications of RAA which
may easily reach individually 50% but which may compen-
sate each other. Therefore models with different expansions,
different elementary interactions, and different initial charm
spectra may yield a similar final state RAA(pT ). Consequently,
with the available experimental data, essentially RAA and v2

at midrapidity, all measured with a considerable error, one
cannot yet identify precisely the contributions of the different
sources to the deviation of RAA(pT ) from unity.

VI. SUMMARY

In this study we have investigated how different descrip-
tions of the evolution of the bulk medium affects the heavy
quark observables by using three different models for the QGP
expansion, as follows:

(A) a hydrodynamical approach which is based on the
assumption that the system is in local equilibrium during its
expansion and requires as only input the equation of state of
strongly interacting matter;

(B) the PHSD approach which assumes that the QGP is
composed of quasiparticles whose time evolution is given by
the Kadanoff-Baym equations;

(C) the coarse grained PHSD approach in which a grid is
introduced on which the partons, propagated by the PHSD
equations, are projected. At each time step and for each cell
the energy density and the cell flow velocity are calculated.

Since the linearized Boltzmann approach assumes local
thermal equilibrium, the comparison of the results of PHSD
with that using a linearized Boltzmann approach reveals to
what extent a local equilibrium is established in PHSD. We
found that at midrapidity charm quarks lose more energy

at large transverse momentum without the assumption of a
local thermal equilibrium. This translates into a larger drag
coefficient of charm quarks in PHSD. It shows that coarse
graining of transport theories (in order to use for example
microscopically calculated thermal production rates of heavy
quarks or linearized Boltzmann equations) may bias results
and has to be tested against fully microscopic calculations.

Although the results from PHSD and from LB differ in
details for the central observable in heavy-ion collisions,
RAA(pT ), the influence of this larger drag coefficient is com-
pensated by a larger diffusion coefficient. Therefore RAA(pT )
of charm quarks is similar at large transverse momentum in-
dependent of whether a local thermal equilibrium is assumed
or not. Also v2 of heavy quarks and D mesons are rather
insensitive to the assumption of a local thermal equilibrium.

Extending the comparison to forward and backward ra-
pidities we see that the boost invariance begins to break
down earlier in the PHSD without the assumption of thermal
equilibrium and that the drag coefficient of charm quark mo-
mentum starts to decrease for rapidities of 2 < |y| < 3. While,
assuming thermal equilibrium, the drag coefficient is nearly
rapidity independent, it gets smaller in PHSD. As a result,
RAA of charm quarks in PHSD without thermal equilibrium
is larger than that in the LB approach.

To test whether the space-time evolution of the energy
density and of the collective velocity is different we compared
charm quark interactions in the QGP described by PHSD
and by 3 + 1 dimensional viscous hydrodynamics with the
initial conditions provided by PHSD (both calculated in the
LB approach). This comparison shows that after τ = 0.6 fm/c
both approaches give very similar results. Consequently the
elementary interaction among the partons in PHSD are suf-
ficiently strong for macroscopic thermal quantities to follow
hydrodynamics, though the matter still remains in nonequi-
librium microscopically. This justifies a posteriori also the
parametrization of the masses and coupling constant in PHSD
as a function of the local temperature.

When we compare the heavy quark observables calculated
in PHSD and in viscous hydrodynamics, the difference comes
from the interactions between heavy quarks and their envi-
ronment before τ = 0.6 fm/c when the system has obtained a
local equilibrium and therefore hydrodynamical calculations
can start. In PHSD partons are produced through string melt-
ing and are ready for interactions after their formation time
which depends on the transverse mass of the particle. Since
the interactions of charm quarks with the not yet formed QGP
partons is not well known, we assume that it is the same as
the interaction with formed partons. As a consequence, RAA

of charm quark is more suppressed by about 0.1 at large
transverse momentum (4 < pT < 6 GeV) if charm quarks
are allowed to interact before the initial thermalization time.
Considering that RAA of charm quarks is around 0.4 at 4 <

pT < 6 GeV, the effect is not negligible.
We have also found that the initial transverse flow, which

is sometimes neglected in hydrodynamic simulations, has an
effect on charm quark observables, though this influence is
not as strong as that from the interactions before the initial
thermalization. If the initial transverse flow is ignored, the
cooling of the QGP becomes a bit slower and charm quarks
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interact in QGP for a longer time. As a result, RAA of charm
quarks is slightly lower than in the PHSD calculations.

In the second part of this paper we studied the influence
of the elementary cross sections between heavy quarks and
QGP partons on RAA(pT ). We compared for two approaches,
the Nantes and the PHSD approaches, those quantities which
influence RAA of heavy quarks at Tc, before they hadronize
(to eliminate the uncertainties due to different hadronization
models and due to hadronic final state interactions). For
this purpose we modified the three ingredients of kinetic
approaches, the heavy quark initial distribution, the QGP ex-
pansion, and the elementary interaction between heavy quarks
and QGP partons, independently, keeping the other two ingre-
dients fixed. We see that in all three cases the modification of
RAA is not negligible and pT dependent. Models, in which all
three ingredients are rather different, may nevertheless give
very similar RAA values, as has been observed in the past
[57–61]. Therefore, the observables at hand will not allow us
to unambiguously determine these ingredients separately. One
may hope that new experimental data models like EPOS +
MC@HQ and PHSD, which describe not only heavy quarks
but also the light quark observables, can be used to limit
the uncertainties of the QGP expansion and that heavy-ion
reactions with different size nuclei as well as correlations
between heavy mesons may constrain the elementary inter-
action between heavy and light quarks further. At this stage,
it will for sure be mandatory for each model to take the off-

equilibrium effects into account, as they are one component of
possible discrepancies, however not dominant over the other
ones we have investigated in this work.
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