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Scale breaking in the low-energy proton-induced nonelastic cross sections
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Proton-induced nonelastic cross sections for 12C, 27Al, 56Fe, and 208Pb are investigated in a low-energy region
below 100 MeV down to nearly 0 MeV based on a framework of an intranuclear cascade (INC) model. We point
out that there is a scaling among the calculations including the Coulomb repulsion; two cases are shown: One is
the scaling of the trajectories with different impact parameters, and the other is the incident-energy dependence
of the cross sections. We point out for the first time that the calculated cross sections by the usual INC model
follow a scaling and the discrepancy between the calculated cross sections and the experimental data indicates
the scale breaking and that, for the explanation of the scale breaking, it is essential to include the discrete level
constraints in addition to the Coulomb repulsion in the INC model.
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I. INTRODUCTION

The nonelastic cross section is one of the most important
physical quantities defined as the total cross section minus the
elastic-scattering cross section. It includes all the reactions,
such as particle emissions, inelastic scatterings, and absorp-
tions except the elastic scattering. Concerning the proton-
induced nonelastic cross sections, the experimental data are
shown in Fig. 1 for 12C, 27Al, 56Fe, and 208Pb where the
nonelastic cross sections are relatively well measured [1–23].
Although the data have experimental errors, the tendencies of
the cross sections can be recognized.

For the nucleon-induced reactions, there are several dy-
namic models, such as the intranuclear cascade model [24],
quantum molecular dynamics [25], and antisymmetrized
molecular dynamics [26]. Among them, the intranuclear cas-
cade (INC) model is a remarkable approach to the nuclear
reactions. As examples, the extensive studies based on the
Liege INC model have succeeded to explain various experi-
mental data not only for nucleon-induced reactions, but also
for antiproton, pion, and light cluster-induced reactions, and
they have shown the INC model can apply various phenomena
[27–30]. In addition, the Uozumi group have shown that their
INC model followed by the generalized evaporation model
[31] has explained various reactions, such as (p, p’x), (p, dx),
and (p,αx) in very wide energies and angles [32–35].

In this paper, we investigate the proton-induced nonelastic
cross sections in the low-energy region below 100 MeV.
Concerning on the proton-induced nonelastic cross sections,
the INC of the Liege group reproduce the experimental data in
medium- and high-energy regions, however, there are no cal-
culations which reproduce the experimental nonelastic cross
sections in the very low-energy region [27,28].

In our previous paper, we have discussed neutron-induced
nonelastic cross sections in the low-energy region below
100 MeV [36], and we have shown for the first time that the

introduction of “discrete level constraints” (DLC) is essential
to explain the neutron-induced nonelastic cross sections in the
very low energy. However, for the proton-induced nonelastic
cross sections, it is difficult to verify the existence of the
discrete level constraint since there is the effect of Coulomb
repulsion which brings a similar incident-energy dependence
in the cross sections. The incident proton is ruled by the
Coulomb potential, then, it has been generally believed that
the proton-induced nonelastic cross sections can be explained
only by the effect of the Coulomb repulsion. The important
problem is whether the Coulomb repulsion is enough to
reproduce the experimental data or not. In this paper, we
investigate this problem precisely using the scaling in the
usual INC calculations.

The purposes of this paper are, first, to show a scaling in
two different ways; one is a scaling in the trajectories of the
injected proton, and the other is a scaling among the cross
sections given by the usual INC calculations including the
Coulomb repulsion and the nuclear potential. Second, to show
the scale breaking which indicates a discrepancy between the
experimental data and the INC calculations. Finally, to show
that the scale breaking is explained by the INC calculation
including the effects of discrete level constraints in addition
to the Coulomb potential.

II. INTRANUCLEAR CASCADE MODEL

In the INC model, the position and momentum of the
particles in the ground state is prepared based on a random
sampling for every injection of the nucleon. We will not repeat
how to make the ground state since the method of making the
ground state is described in Ref. [36].

On the two-body interactions, there have been the two-
body cross sections introduced by Cugnon et al. [37], who
proposed the following Eqs. (1) and (2) to reproduce the free
nucleon-nucleon cross sections. The two-body cross sections
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Sfree (mb) are expressed for each energy interval:

for pp,

Sfree = 41 + 60(PG − 0.9) exp(−1.2PG) for 1.5 GeV/c < pG < 5 GeV/c,
Sfree = 23.5 + 24.6/{1 + exp[−(PG − 1.2)/0.1]} for 0.8 GeV/c < pG < 1.5 GeV/c,
Sfree = 23.5 + 1000(PG − 0.7)4 for 0.4 GeV/c < pG < 0.8 GeV/c,
Sfree = 34(PG/0.4)−2.104 for pG < 0.4 GeV/c

(1)

for np,

Sfree = 42 for pG > 2 GeV/c,
Sfree = 24.2 + 8.9PG for 1 GeV/c < pG < 2 GeV/c,

Sfree = 33 + 196[abs(PG − 0.95)]2.5 for 0.4 GeV/c < pG < 1 GeV/c,

Sfree = 6.3555PG
−3.2481exp[−0.377(ln PG)2] for pG < 0.4 GeV/c,

(2)

where pG is the relative momentum of the two nucleons in
the unit of GeV/c.

On the other hand, we introduced a new set of two-body
cross sections S (mb) so as to reproduce the nonelastic cross
sections. For the calculations of 12C, 27Al, 56Fe, and 208Pb,
we used the same two-body cross sections. The formula is
given for pG < 5 GeV/c in Eqs. (3) and (4). Note that the
expression is not unique since many formulas can represent a
similar shape

for pp,

S = Y 1 + Y 2,

Y 1a = 29/{1 + exp[−(pG − 1.26)/0.06]} + 19.5,

Y 1b = 41 + 60(pG − 0.9) exp(−1.2pG),

Y 1 = Y 1a/(1 + exp((pG − 1.5)/0.5))

+Y 1b/(1 + exp(−(pG − 1.5)/0.5)),
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FIG. 1. Experimental data of proton-induced nonelastic cross
sections of 12C (dots), 27Al (circles), 56Fe (boxes), and 208Pb
(squares) with error bars. The x axis represents the incident energy
(MeV) of the injected proton, and the y axis represents the nonelas-
tic cross section (mb). The experimental data were taken for 12C
from Refs. [1–9], for 27Al from Refs. [4,5,8,10–12], for 56Fe from
Refs. [12–20], and for 208Pb from Refs. [6,8,18,19,21–23]. The same
experimental data are used in Figs. 5, 9, and 11.

Y 2 = 825 exp
(−p0.8

G /0.07
) + 20 000 exp

(−p0.86
G /0.02

)
,

(3)

for np,

S = Y 1 + Y 2,

Y 1a = (10pG + 23){1 + 0.2 exp[−(pG − 0.5)/0.15]},
Y 1b = 42/{1 + exp[−(pG − 1.93)/0.05]},
Y 1 = Y 1a/{1 + exp[(pG − 1.93)/0.05]} + Y 1b

Y 2 = 3200 exp(−pG/0.064)

×{1 − 0.3 exp[−(pG − 0.3)2/0.2]}. (4)

Comparisons between the two sets of the two-body cross
sections are shown in Fig. 2. The x axis represents the inci-
dent particle energy Tlab (MeV) in the laborarory frame. The
relation between Tlab and pG in the relativistic calculation is
given using the nucleon massM as follows:

Tlab =
√

PG
2 + M2 − M. (5)
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FIG. 2. Comparison of two-body cross sections between the
Cugnon et al. (dotted curves) and the proposed one (solid curves)
used in this calculation. The x axis is the kinetic energy Tlab (MeV),
and the y axis is the two-body cross section (mb).
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FIG. 3. Potentials for 208Pb. The dotted curve indicates the
Coulomb potential of the finite-size charge distribution, the dashed
curve is the nuclear potential of the Woods-Saxon shape, and the
solid curve shows the total of the two potentials which is used in
this calculation. The x axis is the radius (fm), and the y axis is the
potential energy (MeV).

It is reasonable to use different parametrizations in this
calculation. The Cugnon et al. parametrization of two-body
cross sections has been determined to reproduce the free pp
and pn cross sections. On the other hand, our parametrization
is determined to obtain a better description of the experi-
mental data on a many-body system where the “in-medium”
interactions should be essential. When we use the parameters
of Cugnon et al., the calculations largely overestimate the
experimental data. As a result, our two-body cross sections
are smaller than those by Cugnon et al. below 400 MeV as
shown in Fig. 2.

III. RESULTS AND DISCUSSIONS

A. Effect of the Coulomb repulsion

The potentials for 208Pb as an example are shown in Fig. 3.
The Coulomb potential for finite-size charge is different from
the point charge potential, and it is given by the dotted curve,
the nuclear potential of the Woods-Saxon shape is given by the
dashed curve, and the sum of the two potentials is the solid
curve. In this calculation, the charge distribution is taken as
the same Woods-Saxon shape as the density, thus, there are no
further parameters. The potentials for four targets which affect
the proton trajectory are shown in Fig. 4. The figures give the
maximum values of the potentials, so-called “the height of the
Coulomb barrier.” The height of Coulomb barrier Vmax and the
location rmax are summarized in Table I.

From Fig. 4, we can note the height of the Coulomb barrier
for 12C is very small, on the contrary, the height for 208Pb is
large. Since the Coulomb interaction has the long-range tail,
the calculation should be performed from a very far distance
for keeping the precision of the calculations. The start point in
our calculation is Z = −1000 fm
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FIG. 4. The total potentials for 12C, 27Al, 56Fe, and 208Pb which
sum the Coulomb potentials of the finite-size charge and the nuclear
potentials.

The result by the INC calculation with the Coulomb plus
nuclear potential is shown in Fig. 5. There is a large dis-
crepancy in 12C and a little difference in 27Al as shown in
Fig. 5. We can note two facts; one is the cross sections for
the light nuclei 12C and 27Al are large compared with the
experimental data. The second is that the shapes of the rising
in the low-energy region below 10 MeV are different in the
light nuclei, especially in the target 12C as shown in Fig. 5. In
the next section, we show that the reason for this discrepancy
relates with the scale breaking in the calculated cross sections
and the experimental data.

B. Scaling in the Coulomb repulsion

In the case of the point charge, the Rutherford scattering
for the proton by the Coulomb repulsion has a scaling law
since the cross section is proportional to the quantity Tlab/Z.
Similar to the point charge scattering, we can confirm that
there is a scaling in the finite-size charge when we take the
ratio Tlab /Vmax. The factor of Tlab //Vmax is the ratio of the
incident energy to the Coulomb height and a good measure of
the proton’s incident energy against the Coulomb repulsive
potential in the finite-size charge distribution. We call the
ratio the scaled incident energy. The ratio is a nondimensional
quantity. We show two cases where the scaled incident energy
controls the phenomena.

First, we show the scaling on the trajectories of the injected
proton, taking an example of the pair of 12C and 208Pb. The

TABLE I. Height Vmax of the Coulomb barrier and its radius rmax..
for 12C, 27Al, 56Fe, and 208Pb.

C Al Fe Pb

rmax. (fm) 5.39 5.62 6.48 8.78
Vmax (MeV) 1.44 2.99 5.28 12.59
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FIG. 5. Comparison of the usual INC calculations (solid curves) and the proton-induced nonelastic cross sections for 12C, 27Al, 56Fe, and
208Pb (dots). The INC calculations, here, include the Coulomb and nuclear potentials.

Coulomb repulsion bent outward the trajectries of the injected
proton, and the proton-induced cross sections are reduced as
a result. We directly checked the scaling by comparing the
trajectries of the impact parameters from 1 to 10 (fm) solving
the only potential scattering (not full INC calculation) under
the total potentials of the Coulomb and nuclear potentials. The
cases having the same scaled incident energies for 208Pb and
for 12C should be compared in Figs. 6 and 7. The calculated
trajectories clearly show the existence of the scaling with the
scaling factor of Tlab/Vmax. The trajectories running outside
the nucleus of 12C are similar to the trajectories in 208Pb in
the pairs of the incident energies with the same ratios of the
Coulomb barriers. Note that the trajectories running inside
the nucleus are different from each other since the nuclear
potentials have no clear scaling.

Next, we show the most impotrant case, i.e., the scaling
in the calculated cross sections in Fig. 5, which are given
by the usual INC model with the Coulomb repulsion and
nuclear potential shown. We point out that these calculated
cross sections have a scaling of the quantity Tlab /Vmax, i.e.,
scaled incident energy, for four targets. The scaling, in this

case, means that the incident energy dependence of the cross
sections is same for the same scaled incident energy. Note
that the absolute values of the cross sections are not the same
since the target sizes are different from each other. The scaled
incident energy dependence of the calculated cross sections
in Fig. 5 is illustrated in Fig. 8. The result shown in Fig. 8
indicates that the INC calculations follow approximately a
scale when the Coulomb and nuclear potentials are included.
However, when we look at the experimental data in the scaled
incident energy, we note that there is not such a scaling as is
shown in Fig. 9. If the experimental data follow the scaling,
the shape of the scaled incident energy dependence should be
similar to the sharp rising shape as in Fig. 8. However, the
shape of the scaled incident energy dependence of the cross
sections of 12C is slow rising and completely different from
those of 208Pb. This discrepancy indicates that the scaling
in experimental data breaks down contrary to the usual INC
calculations. It is evident that the scaled calculations with the
Coulomb force cannot explain this nonscaled experimental
data. In the next section, we point out that this discrepancy
can be resolved by the DLC.
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FIG. 6. Trajectories of the impact parameter from 1 to 10 (fm) on a two-dimensional plane under the only potential scattering (not full
INC calculation). The above three figures show the trajectories of the 208Pb target for energies Tlab = 10, 20, and 30 MeV. The lower three
figures show the cases for the 12C target for energies Tlab = 1.14, 2.3, and 3.4 MeV. The pair of figures of up and down have the same scaled
incident energies Tlab /Vmax which are shown in the parentheses. The dotted circles show the radius r0 of the Woods-Saxon potential, and the
solid circles show the radius of the maximum height of the total potential (rmax in Table I).

C. Effects of the discrete level constraints

The naive INC model assumes that the levels are contin-
uum over the Fermi energy. This assumption is not proper. In
principle, the particles having a very low energy should lead
to the target excitations of discrete levels. The allowed phase
space of the excitations is going to zero when the particle
energy goes to zero. In order to include this effect, we have
introduced the discrete level constraints in the previous paper
[36], which is essential for the neutron-induced nonelastic
cross sections. Similar to the neutron case, the discrete level
constraints should be included for the proton-induced reac-
tions. We follow the same formulation as the neutron-induced
reactions [36].

The transition in energy of the scattered two particles is

E1 + E2 → E1′ + E2′. (6)

The transition probability of the scattered nucleon is given
by the probability P(E). In this paper, we simplify the proba-
bility by introducing the following shape, which is considered
an average over the probabilities to several discrete levels with
widths:

P(E ) = 1/{1 + exp[−(E0 − E )/w]}. (7)

The function of P(E) is called a sigmoid curve, which is a
smooth curve from 0 to 1. As shown in Fig. 10, the probability
P(E) approaches 0 as E goes to Ed (Fermi energy) and to 1 as
E goes to Eu (free energy). For the parameters in Eq. (7), we
set E0 as a slightly larger value than the half point of Ed and
Eu, and w = 1.2 MeV. The parameters E0 listed in Table II
have little target dependence. It is noted that the essential
feature of the shape does not largely depend on the detail
of the parameters. We require that both nucleons having the
energies E1′ and E2′ follow the probability distribution P(E1′)
and P(E2′) as a whole. The process is forbidden when the two
nucleon transitions do not follow the transition probability.
It should be stressed that this condition is different from the
Pauli blocking which is generally used. The Pauli blocking
condition works for nucleons in the energy range of E <

EFermi, on the other hand, the discrete level constraints do in
the energy range of E > EFermi.

The resultant cross sections of the full INC calculations
including the discrete level constraints in addition to the
Coulomb repulsion are compared with the experimental data
in Fig. 11. The result indicates the simple treatment of
discrete level constraints works well. Using the results of
these calculations, we can make the scaled cross sections
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FIG. 7. Trajectories of different impact parameters on a two-dimensional plane of the unit (fm). The above three figures show the
trajectories for the 208Pb target. The lower three figures show the cases for the 12C target with the same scaled incident energies. The meaning
of the lines and numbers is the same as Fig. 6.

just as in Fig. 8. As is shown in Fig. 12, the result clearly
indicates the full INC calculations break down the scaling
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FIG. 8. Scaled cross sections of calculations in Fig. 5. The x axis
is Tlab /Vmax, which is the scaled incident energies with no dimension.
The factor Vmax is listed in Table I for 12C, 27Al, 56Fe, and 208Pb. For
comparison, the values of the cross sections are normalized so that
the maximum value is 100%.

largely in 12C and slightly in 27Al. This fact indicates the
discrete level constraints resolve the discrepancy between the
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FIG. 9. Scaled experimental proton-induced nonelastic cross
sections of 12C (dots) and 208Pb (squares) where the x axis represents
the scaled incident energy Tlab /Vmax (dimensionless). The experi-
mental data are the same as in Fig. 1, however, the x and y axes are
scaled the same way as in Fig. 8.

044616-6



SCALE BREAKING IN THE LOW-ENERGY … PHYSICAL REVIEW C 101, 044616 (2020)

0 0.5 1
930

935

940

945

Probability

E
n

er
g

y 
o

f 
p

ar
ti

cl
e 

[M
eV

]

27Al

FIG. 10. An example of the transition probability P(E) used in
our calculations. The x axis indicates the probability from 0 to 1 for
the energy of the scattered particle in the y axis.
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FIG. 12. Scaled cross sections of Fig. 11 given by full INC
calculations including both effects of discrete level constraints and
Coulomb repulsion. The x and y axes are scaled as the same way as
in Fig. 8.
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FIG. 11. Comparison of the new INC calculations (solid curves) with the proton-induced nonelastic cross sections for 12C, 27Al, 56Fe, and
208Pb (dots). The new INC calculations, here, further include the DLC effects in addition to the Coulomb and the nuclear potentials, which are
included in the calculations in Fig. 5. The experimental data are the same as in Fig. 1, and the meaning of the x and y axes are also the same as
in Fig. 1
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TABLE II. List of E0 (MeV) for four targets and for the proton
or neutron of the scattered particle.

C Al Fe Pb

Neutron 940 938 936 936
Proton 941 940 938 938

calculations and the experimental data and explain the scale
breaking.

IV. CONCLUSIONS

We have investigated the proton-induced nonelastic cross
sections in the low-energy region below 100 MeV. The most
important conclusion is that, for an explanation of scale break-
ing in the experimental cross sections, we should introduce
the discrete level constraints as the neutron-induced nonelastic
cross sections.

We have shown that the calculations with only Coulomb
repulsion have the scaling. On the other hand, the experi-
mental data break the scaling since there is the discrepancy
with the scaled calculations. These facts indicate that only the
Coulomb repulsion cannot reproduce the experimental data
especially for light nuclei 12C and 27Al.

In order to resolve the discrepancy, we introduced the
DLC for the calculations of proton-induced cross sections.
The introduction of the DLC has been proved to be essential
for neutron-induced nonelastic cross sections [36]. In the
proton injections, we also showed the INC model including

the discrete level constraints in addition to the Coulomb
repulsion can reproduce the experimental data in the four
nuclei 12C, 27Al, 56Fe, and 208Pb. It should be noted that,
since the effects of discrete level constraints are confined to
the very low energy and the light targets, it has been difficult
to find out the effects of the discrete level constraints from
the experiment data especially in the heavy nuclei, such as
208Pb.

We add a comment on the transition probability function.
The usage of the continuous sigmoid function for the transi-
tion probability is not universal. It should be considered as a
simple procedure. The sigmoid function is used to correspond
to the general feature that the discrete levels are few in the low
excitation energy region and are many in the high excitation
energy region.

As a summary, we pointed out for the first time the fol-
lowing three facts. First, there exists an approximate scaling
among the cross sections given by the usual INC including
only Coulomb repulsion. Second, the experimental data break
the scaling. Third, in order to explain the scale breaking, it
is crucial to introduce the effect of discrete level constraints
besides the Coulomb potential, then the INC can reproduce
the proton-induced nonelastic cross sections in the wide range
of targets and in the energy range from 100 MeV down to
nearly 0 MeV.

ACKNOWLEDGMENTS

We acknowledge Dr. G. Watanabe and the members of
the Uozumi group of Kyushu University for constructive
comments and encouragement during the course of this work.

[1] J. F. Dicello and G. Igo, Phys. Rev. C 2, 488 (1970).
[2] M. Q. Makino, C. N. Waddell, and R. M. Eisberg, Nucl. Phys.

68, 378 (1965).
[3] R. A. Ciles and E. J. Burge, Nucl. Phys. 50, 327 (1964).
[4] W. F. McGill, R. F. Carlson, T. H. Short, J. M. Cameron,

J. R. Richardson, I. Šlaus, W. T. H. van Oers, J. W. Verba, D. J.
Margaziotis, and P. Doherty, Phys. Rev. C 10, 2237 (1974).

[5] J. J. H. Menet, E. E. Gross, J. J. Malanify, and A. Zucker, Phys.
Rev. Lett. 22, 1128 (1969).

[6] A. Ingemarsson, J. Nyberg, and P. U. Renberg et al., Nucl. Phys.
A 653, 341 (1999).

[7] A. Auce, A. Ingemarsson, R. Johansson, M. Lantz, G. Tibell,
R. F. Carlson, M. J. Shachno, A. A. Cowley, G. C. Hillhouse,
N. M. Jacobs, J. A. Stander, J. J. van Zyl, S. V. Förtsch, J. J.
Lawrie, F. D. Smit, and G. F. Steyn, Phys. Rev. C 71, 064606
(2005).

[8] R. Goloskie and K. Strauch, Nucl. Phys. 29, 474 (1962).
[9] J. B. Edward, Nucl. Phys. 13, 511 (1959).

[10] N. Okumura, Y. Aoki, and T. Joh et al., Nucl. Instrum. Methods
Phys. Res., Sect. A 487, 565 (2002).

[11] K. Bearpark, W. R. Graiiam, and G. Jones, Nucl. Phys. 73, 206
(1965).

[12] P. J. Bulman, G. W. Greenlees, and M. J. Sametband, Nucl.
Phys. 69, 536 (1965).

[13] J. F. Dicello, G. J. Igo, and M. L. Roush, Phys. Rev. 157, 1001
(1967).

[14] C. Hojvat and G. Jones, Nucl. Instrum. Methods 66, 13 (1968).
[15] R. H. Mccamis, N. E. Davison, and Van W. T. H et al., Can. J.

Phys. 64, 685 (1986).
[16] M. Q. Makino, C. N. Waddell, and R. M. Eisberg et al., Phys.

Lett. 9, 178 (1964).
[17] T. J. Gooding, Nucl. Phys. 12, 241 (1959).
[18] V. Mever, R. M. Eisberg, and R. F. Carlson, Phys. Rev. 117,

1334 (1960).
[19] P. Kirkby and W. T. Link, Can. J. Phys. 44, 1847 (1966).
[20] B. D. Wilkins and G. Igo, Phys. Rev. 129, 2198 (1963).
[21] R. E. Pollock and G. Schrank, Phys. Rev. 140, B575 (1965).
[22] R. F. Carlson, A. J. Cox, J. R. Nimmo, N. E. Davison, S. A.

Elbakr, J. L. Horton, A. Houdayer, A. M. Sourkes, W. T. H. van
Oers, and D. J. Margaziotis, Phys. Rev. C 12, 1167 (1975).

[23] J. J. H. Menet, E. E. Gross, J. J. Malanify, and A. Zucker, Phys.
Rev. C 4, 1114 (1971).

[24] R. Serber, Phys. Rev. 72, 1114, (1947).
[25] J. Aichelin and H. Stocker, Phys. Lett. B 176, 14 (1986).
[26] A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Prog.

Theor. Phys. 87, 1185 (1992).
[27] A. Boudard, J. Cugnon, J. C. David, S. Leray, and D. Mancusi,

Phys. Rev. C 87, 014606(2013).
[28] J. L. Rodríguez-Sánchez, J.-C. David, D. Mancusi, A. Boudard,

J. Cugnon, and S. Leray, Phys. Rev. C 96, 054602 (2017).
[29] J. Cugnon, A. Boudard, J. C. David, S. Leray, and D. Mancusi,

EPJ Web Conf. 66, 03021 (2014).

044616-8

https://doi.org/10.1103/PhysRevC.2.488
https://doi.org/10.1103/PhysRevC.2.488
https://doi.org/10.1103/PhysRevC.2.488
https://doi.org/10.1103/PhysRevC.2.488
https://doi.org/10.1016/0029-5582(65)90654-1
https://doi.org/10.1016/0029-5582(65)90654-1
https://doi.org/10.1016/0029-5582(65)90654-1
https://doi.org/10.1016/0029-5582(65)90654-1
https://doi.org/10.1016/0029-5582(64)90213-5
https://doi.org/10.1016/0029-5582(64)90213-5
https://doi.org/10.1016/0029-5582(64)90213-5
https://doi.org/10.1016/0029-5582(64)90213-5
https://doi.org/10.1103/PhysRevC.10.2237
https://doi.org/10.1103/PhysRevC.10.2237
https://doi.org/10.1103/PhysRevC.10.2237
https://doi.org/10.1103/PhysRevC.10.2237
https://doi.org/10.1103/PhysRevLett.22.1128
https://doi.org/10.1103/PhysRevLett.22.1128
https://doi.org/10.1103/PhysRevLett.22.1128
https://doi.org/10.1103/PhysRevLett.22.1128
https://doi.org/10.1016/S0375-9474(99)00236-5
https://doi.org/10.1016/S0375-9474(99)00236-5
https://doi.org/10.1016/S0375-9474(99)00236-5
https://doi.org/10.1016/S0375-9474(99)00236-5
https://doi.org/10.1103/PhysRevC.71.064606
https://doi.org/10.1103/PhysRevC.71.064606
https://doi.org/10.1103/PhysRevC.71.064606
https://doi.org/10.1103/PhysRevC.71.064606
https://doi.org/10.1016/0029-5582(62)90197-9
https://doi.org/10.1016/0029-5582(62)90197-9
https://doi.org/10.1016/0029-5582(62)90197-9
https://doi.org/10.1016/0029-5582(62)90197-9
https://doi.org/10.1016/0029-5582(59)90332-3
https://doi.org/10.1016/0029-5582(59)90332-3
https://doi.org/10.1016/0029-5582(59)90332-3
https://doi.org/10.1016/0029-5582(59)90332-3
https://doi.org/10.1016/S0168-9002(01)02201-X
https://doi.org/10.1016/S0168-9002(01)02201-X
https://doi.org/10.1016/S0168-9002(01)02201-X
https://doi.org/10.1016/S0168-9002(01)02201-X
https://doi.org/10.1016/0029-5582(65)90166-5
https://doi.org/10.1016/0029-5582(65)90166-5
https://doi.org/10.1016/0029-5582(65)90166-5
https://doi.org/10.1016/0029-5582(65)90166-5
https://doi.org/10.1016/0029-5582(65)90309-3
https://doi.org/10.1016/0029-5582(65)90309-3
https://doi.org/10.1016/0029-5582(65)90309-3
https://doi.org/10.1016/0029-5582(65)90309-3
https://doi.org/10.1103/PhysRev.157.1001
https://doi.org/10.1103/PhysRev.157.1001
https://doi.org/10.1103/PhysRev.157.1001
https://doi.org/10.1103/PhysRev.157.1001
https://doi.org/10.1016/0029-554X(68)90052-9
https://doi.org/10.1016/0029-554X(68)90052-9
https://doi.org/10.1016/0029-554X(68)90052-9
https://doi.org/10.1016/0029-554X(68)90052-9
https://doi.org/10.1139/p86-126
https://doi.org/10.1139/p86-126
https://doi.org/10.1139/p86-126
https://doi.org/10.1139/p86-126
https://doi.org/10.1016/0031-9163(64)90134-9
https://doi.org/10.1016/0031-9163(64)90134-9
https://doi.org/10.1016/0031-9163(64)90134-9
https://doi.org/10.1016/0031-9163(64)90134-9
https://doi.org/10.1016/0029-5582(59)90170-1
https://doi.org/10.1016/0029-5582(59)90170-1
https://doi.org/10.1016/0029-5582(59)90170-1
https://doi.org/10.1016/0029-5582(59)90170-1
https://doi.org/10.1103/PhysRev.117.1334
https://doi.org/10.1103/PhysRev.117.1334
https://doi.org/10.1103/PhysRev.117.1334
https://doi.org/10.1103/PhysRev.117.1334
https://doi.org/10.1139/p66-155
https://doi.org/10.1139/p66-155
https://doi.org/10.1139/p66-155
https://doi.org/10.1139/p66-155
https://doi.org/10.1103/PhysRev.129.2198
https://doi.org/10.1103/PhysRev.129.2198
https://doi.org/10.1103/PhysRev.129.2198
https://doi.org/10.1103/PhysRev.129.2198
https://doi.org/10.1103/PhysRev.140.B575
https://doi.org/10.1103/PhysRev.140.B575
https://doi.org/10.1103/PhysRev.140.B575
https://doi.org/10.1103/PhysRev.140.B575
https://doi.org/10.1103/PhysRevC.12.1167
https://doi.org/10.1103/PhysRevC.12.1167
https://doi.org/10.1103/PhysRevC.12.1167
https://doi.org/10.1103/PhysRevC.12.1167
https://doi.org/10.1103/PhysRevC.4.1114
https://doi.org/10.1103/PhysRevC.4.1114
https://doi.org/10.1103/PhysRevC.4.1114
https://doi.org/10.1103/PhysRevC.4.1114
https://doi.org/10.1103/PhysRev.72.1114
https://doi.org/10.1103/PhysRev.72.1114
https://doi.org/10.1103/PhysRev.72.1114
https://doi.org/10.1103/PhysRev.72.1114
https://doi.org/10.1016/0370-2693(86)90916-0
https://doi.org/10.1016/0370-2693(86)90916-0
https://doi.org/10.1016/0370-2693(86)90916-0
https://doi.org/10.1016/0370-2693(86)90916-0
https://doi.org/10.1143/ptp/87.5.1185
https://doi.org/10.1143/ptp/87.5.1185
https://doi.org/10.1143/ptp/87.5.1185
https://doi.org/10.1143/ptp/87.5.1185
https://doi.org/10.1103/PhysRevC.87.014606
https://doi.org/10.1103/PhysRevC.87.014606
https://doi.org/10.1103/PhysRevC.87.014606
https://doi.org/10.1103/PhysRevC.87.014606
https://doi.org/10.1103/PhysRevC.96.054602
https://doi.org/10.1103/PhysRevC.96.054602
https://doi.org/10.1103/PhysRevC.96.054602
https://doi.org/10.1103/PhysRevC.96.054602
https://doi.org/10.1051/epjconf/20146603021
https://doi.org/10.1051/epjconf/20146603021
https://doi.org/10.1051/epjconf/20146603021
https://doi.org/10.1051/epjconf/20146603021


SCALE BREAKING IN THE LOW-ENERGY … PHYSICAL REVIEW C 101, 044616 (2020)

[30] J. Cugnon, T. Aoust, A. Boudard, J. C. David, S. Pedoux, S.
Leray, and Y. Yariv, Adv. Space Res. 40, 1332 (2007).

[31] S. Furihata and T. Nakamura, J. Nucl. Sci. Technol. 39, 758
(2002).

[32] Y. Uozumi, Y. Sawada, A. Mzhavia, S. Nogamine, H. Iwamoto,
T. Kin, S. Hohara, G. Wakabayashi, and M. Nakano, Phys. Rev.
C 84, 064617 (2011).

[33] Y. Uozumi, T. Yamada, S. Nogamine, and M. Nakano, Phys.
Rev. C 86, 034610 (2012).

[34] Y. Uozumi, T. Yamada, and M. Nakano, J. Nuc. Sci. Technol.
52, 264 (2015).

[35] Y. Uozumi, Y. Yamaguchi, G. Watanabe, Y. Fukuda, R.
Imamura, M. J. Kobra, and M. Nakano, Phys. Rev. C 97, 034630
(2018).

[36] M. Nakano and Y. Uozumi, Phys. Rev. C 100, 034619
(2019).

[37] J. Cugnon, D. L. Hote, and J. Vandermeulen, Nucl. Instrum.
Methods Phys. Res, Sect. B 111, 215 (1996).

044616-9

https://doi.org/10.1016/j.asr.2007.01.032
https://doi.org/10.1016/j.asr.2007.01.032
https://doi.org/10.1016/j.asr.2007.01.032
https://doi.org/10.1016/j.asr.2007.01.032
https://doi.org/10.1080/00223131.2002.10875208
https://doi.org/10.1080/00223131.2002.10875208
https://doi.org/10.1080/00223131.2002.10875208
https://doi.org/10.1080/00223131.2002.10875208
https://doi.org/10.1103/PhysRevC.84.064617
https://doi.org/10.1103/PhysRevC.84.064617
https://doi.org/10.1103/PhysRevC.84.064617
https://doi.org/10.1103/PhysRevC.84.064617
https://doi.org/10.1103/PhysRevC.86.034610
https://doi.org/10.1103/PhysRevC.86.034610
https://doi.org/10.1103/PhysRevC.86.034610
https://doi.org/10.1103/PhysRevC.86.034610
https://doi.org/10.1080/00223131.2014.945505
https://doi.org/10.1080/00223131.2014.945505
https://doi.org/10.1080/00223131.2014.945505
https://doi.org/10.1080/00223131.2014.945505
https://doi.org/10.1103/PhysRevC.97.034630
https://doi.org/10.1103/PhysRevC.97.034630
https://doi.org/10.1103/PhysRevC.97.034630
https://doi.org/10.1103/PhysRevC.97.034630
https://doi.org/10.1103/PhysRevC.100.034619
https://doi.org/10.1103/PhysRevC.100.034619
https://doi.org/10.1103/PhysRevC.100.034619
https://doi.org/10.1103/PhysRevC.100.034619
https://doi.org/10.1016/0168-583X(95)01384-9
https://doi.org/10.1016/0168-583X(95)01384-9
https://doi.org/10.1016/0168-583X(95)01384-9
https://doi.org/10.1016/0168-583X(95)01384-9

