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Description of the asymmetric to symmetric fission transition in the neutron-deficient
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In the present study, we have investigated the impact of the tensor force on fission paths, in particular the
symmetric and asymmetric barriers in 230Th, 226Th, 222Th, and 216Th isotopes which display an asymmetric to
symmetric fission transition. This analysis has been performed within the HFB approach with (Q20, Q30, Q40) as
collective variable constraints, using the D1ST2a Gogny+tensor term interaction and comparing to the standard
D1S Gogny interaction results. The effects from the tensor term on the potential energy surface landscape, and
especially on barrier heights and its topology by opening a new valley in agreement with experimental data,
are found to be crucial in the description of exotic actinide fission. We conclude that a tensor term should be
integrated to the long range part of the effective interaction for a better description of the fission.
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I. INTRODUCTION

The fission of the nucleus into two or more fragments is
one of the most complex phenomenon in nuclear physics.
Its complete modeling requires the knowledge of both static
and dynamic properties of the fissioning system, namely, the
static nuclear configurations out of equilibrium, the coupling
between collective and intrinsic degrees of freedom, and the
dynamics of large amplitude collective motion. Along the
years, different types of approaches and models have been
developed to tackle this difficult problem. Among them, fully
microscopic approaches allow a description of the entire
process from the initial configuration up to the scission point
and beyond [1–20]. Even though this very ambitious program
is far from being completed to date, it offers the possibility
to take into account, in a unified and coherent way, both
collective and internal degrees of freedom (and its interaction)
along the fission path within a fully quantum-mechanical
description of the time-dependent evolution of the fissioning
nucleus. These approaches are based on a mean field descrip-
tion and therefore have to rely on the properties of effective
nucleon-nucleon interactions, whose parameters are the only
inputs of the model. Those parameters are fixed a priori once
and for all using some fitting protocol which may or may not
include fission data for a relevant set of nuclei.

In the past, most of the progress made in the field of the mi-
croscopic description of fission was accomplished essentially
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through a better understanding of the nuclear effective force.
The first completely microscopic calculation was performed
by the Orsay group with an early parametrization of the
Skyrme interaction [21,22]. They calculated the symmetric
fission barrier in 240Pu within the HF+BCS approach under
a constraint on the mass quadrupole moment. Even though
the structure of the double-hump fission path was correctly
described, the heights of the barriers were too high as com-
pared to the experimental data extracted from measurements
of neutron induced cross-sections. This was a common feature
of many microscopic calculations carried out with different
Skyrme parametrizations and for various actinides [23,24].
The analysis made by Dutta et al. for several Skyrme forces
led to the conclusion that the second barrier height scaled like
the value of the surface coefficient as of the interactions [25].
Similar studies were done with the original D1 Gogny
force [3,4,26–29]. The results displayed similar features as
the ones obtained with the Skyrme interactions, at very large
deformations. To improve the agreement with experiment for
the fission barriers of the typical benchmark nucleus 240Pu,
the surface tension coefficient of the D1 force was decreased
leading to the well-known D1S parametrization [3,4,30]. Most
of the properties of the D1S parametrization are similar to
the ones of D1 but the barrier heights are in general in a
much better agreement with the experimental ones. Another
consequence of the fit was a desired weaker pairing strength
in D1S with the corresponding impact on the collective in-
ertias [31]. This is a direct consequence of the dependence
of the inertias with the inverse of the pairing gap [32–34].
Once the static deformation and pairing properties of the
force were fixed, it was conceivable to think on how to
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improve the treatment of the dynamics of the fission process.
A dynamical treatment using the time-dependent generator
coordinate method plus the gaussian overlap approximation
with the Gogny interaction was proposed in the ’80s [3,4,30],
with additional refinements thereafter [5,6,9,10,12,16,35,36].
The Gogny force in its various incarnations has been used not
only in fission, but also in the rather successful description
of many low energy nuclear properties at the mean field and
beyond (see Refs. [37,38] for recent reviews).

In the early versions of the Skyrme and Gogny effective
forces the tensor force, similar to the one in the one pion
exchange potential, was disregarded to simplify calculations.
Recently, this term has received renewed attention in connec-
tion with properties of both spherical and deformed nuclei
described with the Skyrme interaction [39,40]. In the case of
the Gogny interaction, a few attempts tackled this issue. One
cites the pioneer work of Ref. [41] where only the like-particle
component of the tensor force was included. The aim of the
introduction of the tensor term was to improve the evolution
of spherical single-particle states along isotopic chains. A full
refitting of the Gogny force was carried out. However, no
attention was paid to the pairing properties. The perturbative
addition of a complete, long range tensor term proposed
by Anguiano et al. [42–46] is a fully meaningful work in
the case of the Gogny force. Indeed, the Gogny force was
partly adjusted on the results obtained from a G-matrix plus
second-order corrections [47,48], leaving room for reasonable
extensions of the mean-field to treat explicitly the nuclear
long-range correlations [49,50]. The main result obtained by
Maire and Gogny, using the soft and local GPT effective
force, was that the second-order corrections coming from the
tensor force mostly affected the (S = 1, T = 0) channel. In
the construction of the effective Gogny force, most of the
effect of the tensor force was taken into account in the strength
of the density-dependent central term which also acts in the
(S = 1, T = 0) channel. Thus, the parameters of the standard
Gogny interaction already take into account in a phenomeno-
logical way most of the effect of the tensor and, as a conse-
quence, only a residual tensor with a long range is needed to
fully take into account the effect of this part of the nuclear
force. This results strongly softens the conclusions reached in
the context of Skyrme interactions concerning the necessity to
fully readjust the parameters of the interaction and the inade-
quacy of a perturbative addition of a tensor term. Of course,
a complete refitting of all the parameters of the Gogny force
would be highly desirable and this is an objective to be pur-
sued in the short term. However, the present perturbative ten-
sor allows one to look for new experimental data sensitive to
the physics of a residual tensor term to constrain the additional
parameters introduced. The study presented in this paper has
been done in the same spirit.

To our knowledge, the impact of the tensor term in the
potential energy surface and collective inertia required for
fission has never been investigated. However, the role played
by the tensor term has been investigated recently in several
fusion studies [51–55]. The tensor interaction rearranges the
position of the single particle orbitals changing the shell
effects responsible for many of the properties of the quantities
relevant to fission. In fact, it could be the missing ingredient

required to explain a symmetric bimodal fission mode recently
found in some neutron-deficient thorium isotopes [56–59].
Recent experimental data provided by the experiments of the
SOFIA collaboration have revealed the existence of such a
symmetric bimodal mode, composed of the standard super-
long mode and a new compact mode. This latter is charac-
terized by a nonambiguous decrease of the mean value of
the total prompt neutron multiplicity along the asymmetric to
symmetric fission transition in the neutron-deficient thorium
isotopes. In the present article, we discussed the role of
the tensor interaction in the context of the Gogny force for
the description of this new compact mode, using a Hartree-
Fock-Bogoliubov approach (HFB) with several constraints. In
particular, the role as collective variables of the Q20, Q30, and
Q40 axially symmetric multipole moments is investigated.

The article is organized as follows. In Sec. II, the ingre-
dients of the model used in the present study are discussed:
The HFB method with constraints is briefly summarized
and the D1ST2a parameterization of the Gogny interaction
is described. This parameterization is an extension of D1S
in which a perturbative tensor term is added. In Sec. III A,
symmetric and asymmetric fission paths are shown for the
216−232Th isotopes. In this first analysis, the Q20 and Q30

collective variables are considered. The impact of the tensor
term on the first and second barrier heights is discussed. In
Sec. III B, the role of the Q40 multipole moment is highlighted
and an explanation of the origin of the new compact sym-
metric fission mode is proposed. In Sec. III C, the various
contributions of the D1S and D1ST2a interactions to the HFB
binding energies are detailed. In Sec. III D, the distribution
of the available energy at scission is discussed and evaluated
to obtain general trends concerning the number of emitted
neutrons in the case of the super-long and the compact mode.
Finally, in Sec. IV, conclusions and perspectives are given.

II. STATIC MICROSCOPIC MODEL

A. Hartree-Fock-Bogoliubov method with constraints

As it is widely recognized, the mean-field and its exten-
sions are powerful approaches to describe the wave function
of the ground and excited states of the nucleus. However,
fission is a time dependent phenomenon and a couple of ex-
tensions to the traditional stationary mean field are of use in its
study: One is the time-dependent Hartree-Fock-Bogoliubov
(TDHFB) method, which is the standard time-dependent
generalization of the Hartree-Fock-Bogoliubov method, and
the other is the time-dependent generator coordinate method
(TDGCM), which is a fully quantum mechanics procedure. In
both cases, the determination of the potential energy surface
(PES), i.e., the HFB energy as a function of several relevant
constraints is essential in determining the dynamics of the
system and a lot of information can be gained by studying
its evolution with the relevant degrees of freedom. In this
paper, we have restricted ourselves to the study of the PES
as a function of axially symmetric multipole variables to
understand the impact of the tensor term. A full dynamical
study in the framework of the TDHFB [60] or TDGCM will
be the subject of future studies. Both approaches have their
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own advantages and drawbacks. The TDGCM, which has
been developed within the Gaussian Overlap Approximation
(GOA), contains two main steps [2]

(1) a static calculation which determines the PESs and
collective inertia, using the HFB method under con-
straints on relevant collective variables. The only in-
gredient is the nuclear effective interaction.

(2) a dynamic calculation in collective space and based on
the previously determined input which describes the
time evolution of the system up to the scission.

With this method one can obtain, for example, the fission
fragment yield distributions. However, there is still room for
improvement within the TDGCM+GOA framework, and one
can mention the following improvements

(1) Remove some of the approximations used to compute
the inertias, eventually using the exact ones [9],

(2) Include intrinsic excitation [2,10] to describe dissipa-
tion,

(3) Restoration of broken symmetries, like angular mo-
mentum or particle number [36],

(4) Removal of the GOA,
(5) Exploration of alternative effective interactions.

In the present work, we will pursue the issue of studying
additional terms in the interaction, and for simplicity, we will
restrict ourselves to the static part of the calculation. With this
in mind we have analyzed the influence of the tensor term on
the PES topology.

The HFB equation has been solved by conserving the axial,
time-reversal and simplex symmetries. The parity has been
broken to study the asymmetric fission through nonzero odd
multipole moment paths. Moreover, two types of constraints
have been considered: the first one concerns the average
conservation of proton and neutron numbers, the second one
is dedicated to multipole moments. Thus, the minimization
principle on the total energy of the system reads

δ 〈�| Ĥ − λnQ̂n − λpQ̂p −
∑

i

λiQ̂i0 |�〉 = 0, (1)

where Ĥ is the nuclear Hamiltonian, Q̂n and Q̂p the particle
number operators, and Q̂i0 the multipole moment operators
defined as

Q̂i0 =
√

4π

2i + 1

A∑
l=1

ri
lYi0(θl , φl ). (2)

The set of {λi} are the Lagrange parameters associated with
the corresponding constraint operators. The ith order multi-
pole moment variable qi0 is defined as the average of the
ith order multipole operator Qi0 in the HFB state |�〉. The
monopole moment q10 is set to zero to avoid contamina-
tion with spurious solutions coming from the breaking of
the spatial translation symmetry. In the following, the one-
dimensional (1D) fission paths are calculated using only the
quadrupole moment variable as collective degree of freedom
in addition to q10. The symmetric path will refer to HFB
calculations where qi0 are set to 0 fmi for odd i, i > 1 whereas
these latter are let free for the asymmetric path. Besides,

the two-dimensional (2D) fission PES are obtained with two
constrained multipole moments, for example, {Q20, Q30} or
{Q20, Q40}. As for the 1D path, when the symmetric fission is
studied, the qi0 are set to 0 fmi for odd i.

We have implemented the tensor term in a computer code,
named HFBaxialT [61], which is built upon the HFBaxial
code [62], and uses an expansion of the quasiparticle operators
in a harmonic oscillator basis to solve the HFB equation. In
the HFBaxialT code the approximate second-order gradient
method is employed to minimize the HFB energy [63]. The
main advantage of this over other traditional iterative methods
is the easy handling of constraints and an almost perfect rate
of sucess in reaching a converged HFB solution.

The quasiparticle operators are expanded in an axially
symmetric harmonic oscillator basis with a maximum value
of quanta in the perpendicular direction N⊥ = 2n⊥ + |m| of
14 and a maximum value of quanta in the z direction nz of 21.
Although the basis size is rather limited for the calculation
of absolute values, it is enough for the calculation of relative
effects, like energy differences (see below). The two oscillator
lengths of the basis b⊥ and bz have been optimized as to min-
imize the HFB energy for each constrained calculation. The
HFB solutions are computed from sphericity up to scission
within a mesh defined by the step-size 2 b, 4 b3/2, and 5 b2

along the quadrupole, octupole, and hexadecapole moment
variables, respectively.

B. The D1ST2a Gogny+tensor interaction

The present study has been done in the context of the
Gogny interaction. As discussed in the introduction, the HFB
mean-field obtained from the D1S Gogny interaction, which
is historically known as the reference Gogny interaction to
performed fission studies, takes into account in a phenomeno-
logical way most of the effect of the tensor term through
its (S = 1, T = 0) zero-range, density-dependent central term
component. However, the effect of the long range part of a
residual tensor is still missing and expected to play a role in
specific situations, as, for example, an accurate description
of the spin-orbit splittings, the un-natural parity states, the
proton-neutron pairing or deformation properties.

The D1ST2a interaction is characterized by the adding of a
perturbative tensor with long range and a weak strength to the
Gogny D1S interaction [42–46]. Its analytical form reads as

V D1TS2a(�r) =
2∑

i=1

(
Wi + BiP

σ
12 + HiP

τ
12 + MiP

σ
12Pτ

12

)
e−�r2/μ2

i

+ t0
(
1 + x0Pσ

12

)
ρα (�r)δ(�r)

+ WLS
←−∇ δ(�r) ∧ −→∇ .( �σ1. �σ2)

+ (
VT1 + VT2 Pτ

12

)
Ŝ12(�r)e−�r2/μ2

TS , (3)

where the first three components correspond to the Gogny
interaction with the D1S parametrization. In the above ex-
pression, the Pσ

12 and Pτ
12 operators are the traditional spin and

isospin exchange operators, respectively. The set of parame-
ters {Wi, Bi, Hi, Mi, i = 1, 2 }, t0, and WLS are the coefficients
of central, density-dependent central and spin-orbit terms. The
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{μi, i = 1, 2} are the ranges of the Gaussian form factor and
the coefficient x0 is set to one to prevent the contribution of
the density-dependent term to the proton and neutron pairing
channels. Finally, �σ is the three-dimensional spin operator
and the operator Ŝ12(�r) is the usual tensor operator which is
defined as

Ŝ12(�r) = 3
�σ1 · �r �σ2 · �r

r2
− �σ1 · �σ2. (4)

The parameters of the nontensor terms of D1ST2a are
the same as the D1S parameters. However, the parameters
VT1 and VT2 of the tensor term are adjusted to reproduce
the neutron single particle energies 1 f5/2 and 1 f7/2 in 48Ca.
The range μTS = μ2 = 1.2 fm in the Gaussian form factor of
the tensor has been chosen equal to the longest range of the
two Gaussians in the central potential. We consider only
the contribution of the tensor term to the mean field part of the
HFB method whereas its contribution to the pairing channel
is not taken into account. Therefore, and as in the D1S case,
the only term contributing to the pairing channel in D1ST2a
is the central potential. The reason for this omission is that
the residual tensor term is not expected to play a relevant
role in the proton and neutron pairings, unlike the proton-
neutron one. Besides, the Coulomb exchange term of the HFB
Hamiltonian is computed with the Slater approximation in the
two cases.

Since in this study we are mainly interested in the impact
of the tensor term in the fission process, special attention
is paid to the total binding energy difference between the
results obtained with the D1S and the D1ST2a interactions.
To justify our choice of harmonic oscillator basis size, we have
checked �(Nsh) = ENsh

HFB(D1S) − ENsh
HFB(D1ST2a) is the same

for Nsh = 14 and Nsh = 15. Here Nsh is the maximum number
of quanta in the perpendicular direction and it is consider as
the equivalent of the number of shells in an spherical basis.
The maximum values of nz in the two cases are 21 and 23,
respectively. The energy difference

�E = |�(15) − �(14)| (5)

has been calculated along the symmetric path of 226Th. It aver-
ages 23 keV along the whole fission path and reaches 104 keV
at large deformation which is still negligible compared to
energy differences between the D1S and D1ST2a fission paths
presented below.

The interplay between the D1ST2a tensor term and the
quadrupole deformation properties was recently studied on
various isotopic chains especially in the sd-shell [46]. How-
ever, typical quadrupole deformation values are much lower
than the extreme ones encountered during the fission process.
The results of this first study lead to the conclusion that,
depending on the filling of the shells, the tensor term may
strongly influence the HFB total energy, modify the potential
energy landscape, and change the ground-state deformation.
Pairing properties are also affected, especially a weakening of
the particle number fluctuations is observed. An interpretation
of such an influence in terms of spin-isospin contributions
to the HFB energy has been given: Most of the time, the
tensor term gives rise to a repulsive dominant proton-neutron
contribution to the HFB energy. Attractive like-particle

contribution become dominant when the filling of the valence
shells are in a spin-saturated/spin-unsaturated configuration,
which happens around sphericity. As a logical continuation of
this latter study, the present investigation is of prime interest
as fission properties are strongly sensitive to PES landscapes
in terms of collective variables and pairing degree of freedom.

III. RESULTS AND DISCUSSION

There are many observables that are required to fully char-
acterize and understand fission. One can cite, for example, the
mass and charge distribution of the fragments, the total kinetic
energy (TKE), and the average neutron multiplicities 〈ν〉.

The pioneer experiments of Schmidt at GSI Darmstadt
based on the production of an exotic secondary beam by frag-
mentation of a primary beam of 238U at relativistic energies,
followed by Coulomb excitation of the secondary beam [64]
opened up the door to the measurement of the charge distri-
bution of the fragments in neutron-deficient actinides and pre-
actinides. The isotopes 205,206At, 204−209Rn, 206−212,217,218Fr,
209−219Ra, 212−226Ac, 217−229Th, 224−232Pa, and 230−234U were
considered in a series of experiments. The results pointed
out to a transition from asymmetric to symmetric fission in
this region of the nuclear chart. However, the TKE measured
in the 210−215,217−219Ra, 215−223Ac, 221−229Th, 226−232Pa, and
232−234U isotopes were known with low accuracy. Both the
masses of the fragments and the average neutron multiplicity
were not accessible in this kind of experiments. Starting
from the same reaction mechanism but using a much more
advanced experimental setup, the SOFIA experiments at GSI
Darmstadt now allow one to obtain both charge and mass
fission yields with an accuracy smaller than a mass unit as
well as the average neutron multiplicity 〈ν〉 [56,57]. Other
techniques have been developed in parallel to study the fission
of exotic nuclei. An example is the β-delayed fission process
used at ISOLDE to study the fission of the very exotic nucleus
180Hg which surprisingly shows asymmetric fission [65]. An-
other example are the transfer and fusion reactions using a
beam of 238U at 6 MeV per nucleon on a 12C target used in the
GANIL laboratory along with the VAMOS spectrometer [66].

The study of the fission of the neutron-deficient thorium
isotopes, which are analyzed in this paper, has been motivated
by the experimental data obtained during the 2012 SOFIA
campaign at GSI Darmstadt [58,59]. The measurements con-
cern the thorium isotopes 230Th, 229Th, 226Th, 225Th, 223Th,
222Th, and 221Th. The experimental results confirm the asym-
metric to symmetric transition in the mass distribution of the
fragments already observed in Ref. [64]. In addition, they sug-
gest the existence of a new bimodal symmetric fission mode in
this region, composed of the standard super-long mode plus a
new compact one. The compact component is experimentally
characterized by the strong decrease of the average neutron
multiplicity along the isotopic chain for decreasing neutron
number.

A. Symmetric and asymmetric fission paths using Q20 and Q30

as collective variables

In this section, we analyze two fission paths, the sym-
metric and the asymmetric one, the latter being obtained by
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FIG. 1. Barrier heights of 216Th up to 232Th even-even isotopes
for the symmetric (full lines) and asymmetric (dashed lines) paths,
calculated at the HFB level with the D1S (top) and D1ST2a (bottom)
Gogny interactions. Energies are expressed in MeV.

minimizing the total HFB energy for a nonzero average value
of Q30. In a first step, the global 1D axial deformation prop-
erties of the even-even 216−232Th isotopes are discussed. In a
second step, the {Q20, Q30} PESs are analyzed for the 216Th,
222Th, 226Th, and 230Th isotopes.

1. Global axial deformation properties of the even-even 216−232Th

The evolution of the HFB total energy calculated with the
D1S (D1ST2a) Gogny force is shown up to the second barrier
in Fig. 1(a) [Fig. 1(b)] for even-even thorium isotopes with
the mass A ranging from 216 to 232. The symmetric paths are
represented by the full lines and the asymmetric ones by the
dashed lines. To facilitate the comparison the HFB ground-
state binding energy has been subtracted for each isotopes.

Concerning the symmetric path, one observes large vari-
ations in the position of the minima and the maxima of the
potential energy curves (PEC) and the barrier heights. By
looking at the results obtained with the D1S Gogny force for
the symmetric path [see Fig. 1(a)], one sees that the heaviest
isotope, namely, 232Th, is a well-deformed nucleus in its HFB

ground state is characterized by Q20 
 12 b an energy gain
of ∼12 MeV with respect to the spherical configuration. The
maximum of the first hump is obtained at Q20 
 24 b and its
height is ∼9 MeV. The second well (fission isomer) is located
around Q20 
 40 b and is 3.5 MeV higher in energy than the
HFB ground state. At Q20 
 74 b, one encounters the second
hump whose height is ∼18 MeV.

By exploring the isotopic chain from 232Th to 216Th, one
observes that the first well is continuously less and less de-
formed, the deformation energy decrease, in such a way that in
218Th and 216Th the HFB ground state is spherical. This effect
is driven by the N = 126 neutron shell which corresponds
to the 216Th isotope. New experimental data have shown this
shell closure effect at N = 126 in Po, Rn, Ra, and Th isotopes,
with a relaxation in the U ones [67,68]. Calculations of the
excitation energy of the 2+

1 states (the first excited state in this
nuclei) using the five-dimensional collective lead to the same
conclusion, even though the relaxation effect is not so visible
for U isotopes [69,70]. The clear increase of the energy of the
2+

1 states signs this shell effect, the increase of the rigidity of
the nuclei at N = 126, which is accompanied by an absence of
neutron pairing energy at the minima of the potential energy
surfaces. The heights of the first hump slightly decrease from
232Th to 224Th and increase again from 222Th to 216Th in such
a way that it reaches ∼17 MeV in the 216Th isotope. The light-
est isotopes are predicted to be more rigid than the other ones.

Concerning the second wells, one obtains the same trend
as the one observed for the ground-state wells. The decrease
of the associated Q20 value results in two deformation regions
typical of the 216Th isotope around 25 b and the 232Th isotope
around 40 b. The associated excitation energies are roughly
the same from 230Th to 222Th and start to increase in a
significant way in 220Th, 218Th, and 216Th isotopes.

Finally, for the second hump, one notes that its quadrupole
deformation is essentially distributed around two deformation
regimes, namely, Q20 
 70 b for 232Th up to 226Th isotopes,
and Q20 
 50 b for the lighter ones. The effect of the N =
126 neutron magic number seems to manifest again at these
deformations. The heights of the second hump decrease from
232Th to 224Th isotopes, then start to increase up to the
216Th one for which it is equal to 22 MeV. Most of the
isotopes seems to display a third symmetric hump, as it was
observed experimentally in the heavier isotopes 232Th, 231Th,
and 230Th [71–75].

From Fig. 1(b), one observes that the general trends ob-
tained with the D1S Gogny interaction are still valid with the
D1ST2a interaction. However, the ground-state deformation
energies are found to be in general much smaller when the
tensor term is taken into account. The main consequence is
that a spherical HFB ground state is already obtained for
220Th. Also, the tensor term is able to modify in a non-
negligible way the height of the first and second humps, by
increasing or decreasing them by several MeV depending on
the isotopes. This last point, already visible by comparing
Figs. 1(a) and 1(b), will be discussed further down.

Concerning the asymmetric path, one notes the following
features with the D1S Gogny interaction. In the 232Th isotope,
the asymmetric path starts to be favorable in energy around
Q20 
 50 b, after the bottom of the second well. The height of
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TABLE I. Energy differences �E = ED1ST2a − ED1S in MeV for
HFB, mean field, and pairing energies. The tensor contribution to the
D1ST2a HFB energy is also given.

Spher. 216Th 222Th 226Th 230Th 236U 240Pu

�EHFB 4.310 3.713 3.279 2.881 1.557 1.922
�EMF −6.286 −6.213 −6.311 −6.433 −11.230 −6.517
�Epair 8.056 7.564 7.393 7.310 12.780 7.396
ETS 2.541 2.362 2.198 2.003 0.007 1.043

the second hump which corresponds to the asymmetric path is
equal to 
9.3 MeV. This value has to be compared to the sym-
metric one which is 
18.8 MeV. As a general rule, the height
of the asymmetric second hump is always lower in energy than
the one of the symmetric second hump. Along the isotopic
chain, one observes that the opening of the asymmetric valley
occurs earlier and earlier in deformation and stabilizes in
the 218Th and 216Th isotopes around Q20 
 42 b. Moreover,
the difference between the heights of the symmetric and
the asymmetric second humps decreases continuously and
regularly, when going towards the lightest isotopes. In the
216Th isotope, it is equal to 
1.5 MeV. For comparison, in
the transitional nucleus 222Th, it reaches 
4 MeV.

With the D1ST2a Gogny interaction, the same observations
can be done concerning the opening of the asymmetric valley.
One notes the increase of the first and second humps in the
lightest isotopes. The main difference comes from the effect
of the tensor on the relative position of the maxima of the
symmetric and asymmetric second humps, which is reduced
considerably. For comparison with the D1S interaction, it is
equal to 
7.5 MeV in the 232Th isotope and 
1.5 MeV in the
222Th isotope. In the 216Th isotope, this difference tends to
zero. Then, one concludes that the tensor term of the D1ST2a
interaction tend to equate the heights of the symmetric and
asymmetric second humps, rendering the symmetric path
energetically competitive in the lightest thorium isotopes.

We turn now our attention to the various contributions
to the total HFB energy, namely, the mean-field without the
tensor (EMF), the pairing (Epair) and the tensor (ETS) ones.
In view of that, we have defined the three quantities �EHFB,
�EMF, and �Epair which represent the difference between the
total HFB energies, the mean-field energies, pairing energies,
respectively, calculated with the D1ST2a and the D1S inter-
actions.

�EHFB = ED1ST2a
HFB − ED1S

HFB,

�EMF = ED1ST2a
MF − ED1S

MF , (6)

�Epair = ED1ST2a
pair − ED1S

pair .

TABLE II. Same as Table I but for the ground-state configuration.

g.s. 216Th 222Th 226Th 230Th 236U 240Pu

�EHFB 4.310 5.843 7.336 7.968 8.667 8.782
�EMF −6.286 4.336 8.337 6.359 5.576 4.755
�Epair 8.056 −1.941 −5.847 −3.947 −3.629 −3.016
ETS 2.541 3.448 4.846 5.555 6.720 7.043

TABLE III. Same as Table I but for the first-barrier configuration.

First barrier 216Th 222Th 226Th 230Th 236U 240Pu

�EHFB 7.272 7.474 7.568 7.888 7.425 7.141
�EMF 1.456 2.221 −1.422 5.365 4.596 3.440
�Epair 0.293 −0.577 2.341 −3.574 −2.903 −1.824
ETS 5.522 5.830 6.649 6.098 5.732 5.525

In addition, we have also considered ETS which is the tensor
contribution obtained with the D1ST2a interaction. Results
are shown in Tables I–IV for the spherical and the ground
state, the first hump, and the second well of 216Th, 222Th,
226Th, and 230Th, respectively. Values are also given for
standard actinides, namely, 236U and 240Pu. All the thorium
isotopes and 240Pu shells are unsaturated at the Fermi levels.
The case of 236U is different as the proton 1h valence shell is
spin saturated.

For the spherical configuration, one observes that �EHFB is
systematically positive. The same conclusion emerges when
inspecting the ground-state configurations as well as the first
hump and the second well configurations. These nuclei are
predicted less bound with the D1ST2a interaction by several
MeV, which indicates that the proton-neutron part of the
tensor term is the source of the global effect. The analysis
of the variation of �EMF at the spherical point shows that
it is systematically negative, which points out to a Hartree-
Fock type mean-field which is more bound with the D1ST2a
interaction by several MeV. This can be explained by the
shifting of a few single-particle orbitals in presence of the
tensor term around the Fermi level. This shifting produces
a variation of the pairing energies �Epair which is, in turn,
systematically positive and larger in absolute value. As the
pairing strength is identical for both interactions, one deduces
that the rearrangement of the single-particle spectrum in pres-
ence of the tensor term tends to reduce the pairing contribution
for spherical configurations in these nuclei. Finally, ETS is
found positive. One notes the almost zero value obtained for
236U which is spin saturated in protons.

At the ground-state deformation, which are prolate for five
nuclei (216Th is excluded as its ground state is spherical),
the detailed analysis of �EHFB leads to opposite observations
for �EMF and �Epair. The mean-field is less bound with the
D1ST2a interaction but the pairing energy is stronger. The
contribution of the tensor term ETS is always positive and
larger than the one obtained at the spherical point.

At the deformations of the first hump, the variation �EHFB

is essentially dominated by the contribution ETS. Both the

TABLE IV. Same as Table I but for the second-well configuration.

Second well 216Th 222Th 226Th 230Th 236U 240Pu

�EHFB 7.537 7.638 7.982 7.572 7.977 7.852
�EMF 1.976 4.455 5.448 1.884 1.645 −2.561
�Epair −0.335 −2.290 −3.387 −0.120 0.480 4.700
ETS 5.895 5.472 5.920 5.807 5.852 5.713
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quantities �EMF and �Epair have strongly decreased, in ab-
solute value, in comparison with the two previous cases. No
general trend is obtained for their signs as they depend on the
nucleus.

At the deformations of the second well, the contribution
ETS takes rather similar value for the six nuclei and it is
still large. For the thorium isotopes, �EMF and �Epair keep
the same sign, associated with a less bound mean-field and
stronger pairing correlations with the D1ST2a interaction.
For 236U, �EMF, �Epair, and ETS are found positive for the
D1ST2a interaction, which can be interpreted as a global
repulsion. For 240Pu, the tensor term induces a more bound
mean-field and a decrease of the pairing correlations.

One concludes that, even though �EHFB and ETS are found
systematically positive for the six nuclei in the four states
considered (spherical, ground state, first hump, and second
well), no general law emerges concerning the mean-field and
the pairing contributions except for the fact that they have
in general opposite sign. The results are subtle and depend
strongly on the shell structure around the Fermi levels.

2. Symmetric and asymmetric fission paths
in 230Th, 226Th, 222Th, and 216Th isotopes

After these global comments on the axial deformation
properties with and without parity breaking in even-even
216−232Th isotopes, one details now the symmetric and the
asymmetric paths up to scission with both full 2D {Q20, Q30}
potential energy surfaces (PES) and the associated 1D poten-
tial energy curves (PEC). Calculations have been done for the
230Th, 226Th, and 222Th isotopes which sign experimentally
the asymmetric to symmetric fission transition, as explained
previously. We have kept also the 216Th isotope because of its
N = 126 magic neutron number even though not experimen-
tally measured. Moreover, all along the paper, we have kept
the pre-scission configurations in the considered collective
variable space as far as possible in deformation and left aside
the post-scission configurations which are characterized by
the absence of matter between the two fragments, as it is usu-
ally done in fission studies (see, for example, Refs. [12,16]). In
the following, the post-scission configurations will be grouped
under the term “fusion valley.”

On Fig. 2, the PES, obtained using the D1S Gogny interac-
tion, for the four isotopes considered are plotted. The x-axis
corresponds to the elongation Q20 which ranges between 30 b
(around the deformation of the second well) and 200 b. The
y axis represents the asymmetry Q30 which varies between
0 b3/2 and 40 b3/2. The color code ranges over 10 MeV for all
the panels (a)–(d). It represents the energy difference between
the HFB total binding energy for given values of Q20 and
Q30, and the lowest HFB value obtained in the existing PES.
For convenience a Delaunay triangulation has been performed
as in Ref. [76] for all the 2D PES. The results with the
D1ST2a interaction are displayed in Fig. 3. The corresponding
1D asymmetric and symmetric paths are drawn in Figs. 4
and 5, respectively, according to the collective variable Q20

between 0 b and 250 b. The total HFB energy EHFB has been
renormalized to the ground-state total energy Eg.s.. Results are
indicated for both the D1S (black full circles) and the D1ST2a

(red full squares) interactions. The evolution of the associated
collective variables Q30 (for the parity breaking paths) and Q40

are shown on Figs. 6 and 7.
For the 230Th isotope, Fig. 2(a), one observes the existence

of an asymmetric path which starts around Q20 
 50 b [see
Fig. 6(a)] and leads to static HFB configurations with a
large asymmetry. This path is clearly the lowest in energy. It
seems to be rather flat (with a slight decrease of the energy
for increasing Q20) and displays scissionned configurations
around Q20 
 137b for Q30 
 40 b3/2 and Q40 
 110 b2, as
seen from Fig. 4(a). From Figs. 3(a), 4(a), and 6(a), one
concludes that these observations hold also for the D1ST2a in-
teraction, except that the energy of this large asymmetry path
increases slowly from the second hump up to the scissionned
configuration.

For comparison, as seen from Figs. 2(a), 5(a), and 7(a), one
obtains that the symmetric path is less favorable energetically
because of the height of the second hump which is predicted to
be 
18 MeV (
17 MeV) for the D1S (D1ST2a) Gogny inter-
action. Moreover, one sees that the scissionned configuration,
which defines in our case the exit point, is encountered at a
much larger value of Q20, around 
211 b for D1S and 
229 b
for D1ST2a, with a larger hexadecapole moment equal to
Q40 
 250 b2 and 300 b2, respectively.

For the 226Th isotope, the path which leads to large asym-
metry scission still exists with the D1S interaction, as seen in
Fig. 2(b). It starts around Q20 = 45 b as indicated in Fig. 6(b).
It presents a more pronounced third hump than in the 230Th
isotope, around Q20 
 105 b and Q30 
 30 b3/2, which is eas-
ily identifiable in Fig. 4(b). The tensor term tends to increase
by 
1 MeV the height of the second hump and the rest of the
large asymmetry path displays a continuous increase of the
total energy up to the scissionned point, as already discussed
for the 230Th isotope. The first scissionned configurations are
obtained at Q20 
 140 b with the D1S interaction and at a
little smaller value for the D1ST2a interaction, namely, 132 b.
Moreover, from Fig. 6(b), one sees that the values of Q30 and
Q40 are very similar to the ones obtained at the exit point in
the 230Th isotope.

In any case, comparing Fig. 4(b) with Fig. 5(b), one
observes that for both interactions, the asymmetric path is
again lower in energy. Indeed, even though the height of the
second hump for the symmetric path is ∼15 MeV for both
interactions, which is lower than the one in 230Th isotope, it is
still higher than the asymmetric one which is equal to ∼9 MeV
(10 MeV) for the D1S (D1ST2a) interaction. One adds that the
symmetric exit points are characterized by very similar values
than the ones obtained for the 230Th isotope but with a little
decrease of Q20.

For the 222Th isotope, the situation starts to be different.
From Fig. 2(c), one observes that this big asymmetry path
gets clogged, which was already the case in the 230Th and
226Th isotopes with the D1ST2a interaction. At some point,
around Q20 
 90 b, it is no longer energetically favorable.
This corresponds to the energy discontinuity observed in the
red full squares and black full circles curves, Fig. 4(c). Here,
the blue full line and the green dashed line correspond to the
continuation of paths which lead to large asymmetry scission
and which are clearly higher in energy by several MeV. At
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FIG. 2. PES’s for (a) 230Th (b) 226Th (c) 222Th, and (d) 216Th as
a function of the elongation Q20 in b and the mass asymmetry Q30 in
b3/2. The color code indicates the HFB total energy normalized to the
lowest value of the PES and spans a range of 10 MeV. Calculations
have been done with the D1S Gogny interaction.

this deformation, it is higher by ∼1.5 MeV (3 MeV) with D1S
(D1ST2a) interaction. The minimum energy principle implies
a path with a smaller asymmetry around 13 b3/2, which is
located in a new local minimum as observed in Fig. 2(c).
Elongating more and more the nucleus, one finds that the
symmetric configuration is energetically favorable around
Q20 
 120 b, which is signaled by the energy discontinuity
observed in Fig. 4(c) at this quadrupole deformation. The
system continues along the symmetric path up to scission. The
exit point appears at Q20 
 205 b for both interactions, which
is characteristic of the well-known super long symmetric

FIG. 3. Same as described in the caption of Fig. 2 but for the
D1ST2a Gogny interaction.

fission mode, with Q40 
 260 b. At this level, no sign of pos-
sible compact fission can be highlighted. The most important
phenomenon obtained in 222Th isotope is the rebalancing of
the heights of the symmetric and asymmetric second humps
due to the tensor term, as seen from Figs. 4(c) and 5(c). This
rebalancing is characterized by an increase of the height of
the asymmetric second hump in presence of the tensor term,
whereas the symmetric one is essentially unchanged. From a
1D energetic viewpoint, this renders the full symmetric path
more probable (or less improbable!) when the tensor term is
added, and therefore the symmetric fission mode.

For the 216Th isotope, the same type of mixed asymmetric-
symmetric path manifests as the one found in the 222Th
isotope [see Figs. 2(d), 3(d), 4(d), 5(d), 6(d), and 7(d)]. One
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FIG. 4. Asymmetric fission paths in (a) 230Th, (b) 226Th,
(c) 222Th, and (d) 216Th isotopes calculated with the HFB approxima-
tion. Results correspond to D1S (full black circles) and D1ST2a (full
red squares) Gogny interactions. The blue and the green curves are
the large asymmetry path for the D1S and the D1ST2a interactions.
See text for explanations. Energies are expressed in MeV.

FIG. 5. Symmetric fission paths in (a) 230Th, (b) 226Th, (c) 222Th,
and (d) 216Th isotopes calculated with the HFB approximation.
Results correspond to the D1S (circles) and D1ST2a (squares) Gogny
interactions. Energies are expressed in MeV.
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FIG. 6. Evolution of Q30 and Q40 collective variables along the
asymmetric path in (a) 230Th, (b) 226Th, (c) 222Th, and (d) 216Th iso-
topes calculated with the HFB approximation. Results are provided
for both the D1ST2a and the D1S Gogny interactions. When they
exist, the results for the small and the large asymmetry paths are
shown.

FIG. 7. Evolution of Q40 collective variable symmetric path in
(a) 230Th, (b) 226Th, (c) 222Th, and (d) 216Th isotopes calculated with
the HFB approximation. Results are provided for both the D1ST2a
and the D1S Gogny interactions.
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obtains first a path which leads to large asymmetry scission
from Q20 
 40 b up to Q20 
 75 b, then a path with small
asymmetry characterized by Q30 
 10 b3/2 up to Q20 
 160 b
(178b) with the D1S (D1ST2a) interaction, followed by a
symmetric path. In that case, the first symmetric scissionned
point is obtained at Q20 
 198 b for the D1S interaction,
and a smaller value of 191 b for the D1ST2a one. Now,
looking at the pure symmetric path [Fig. 5(d)], one observes
that, in the case of the D1ST2a interaction, the exit point is
obtained at Q20 
 162 b which is different and much smaller
than the value deduced from the mixed asymmetry path. This
is an unusual short value for a symmetric scission, more
characteristic of an asymmetric scission. As we will see later,
this is a first theoretical hint of the existence of the compact
fission mode that could be correlated with the observations of
the SOFIA experiment [58,59]. From Fig. 7(d), one sees that
this mode is characterized also by a much smaller value of the
hexadecapole moment Q40 at the exit point, which is equal to
∼150 b2.

Finally, one observes a global and significant increase of
the height of the barriers in the 216Th isotope which has a
neutron magic number equal to 126, for both the symmet-
ric and the asymmetric paths, whatever the interaction. One
notes that the symmetric second hump height is lower than
the asymmetric one in the case of D1ST2a. In conclusion,
one sees that the tensor term plays a nonnegligible role on
the barrier height. Its behavior is a detailed one which acts
differently on the symmetric and the asymmetric path. At
this stage, within these 1D and 2D analysis made in terms of
Q20, Q30 collective variables, no clear explanation is available
concerning its role in the existence of the symmetric compact
fission mode along the isotopic chain. It appears only in the
216Th isotope.

B. Tensor term effect and symmetric compact scission—Role
of the Q40 collective variable

In this part, the potential role of the Q40 collective variable
to explain the existence of the symmetric compact fission
mode in light thorium isotopes is investigated. This possibility
has been suggested by the results obtained for the symmetric
path in the 216Th isotope with the D1ST2a interaction, for
which the first scissionned configuration is characterized by
both a much smaller value of Q20 and Q40 in comparison with
the other isotopes. To perform this analysis, the 2D PESs using
the {Q20 and Q40} collective variables, have been calculated
with both interactions. The quadrupole moment Q20 ranges
from 130 b up to 300 b and the hexadecapole one Q40 from
90 b3/2 up to 300 b3/2. The results are shown on Fig. 8 (Fig. 9)
for the D1ST2a interaction (D1S) for the four selected thorium
isotopes.

Concerning the 230Th isotope, the calculation with D1ST2a
shows a unique valley as can be seen in Fig. 8(a). On the
right-hand side of this main valley, called V1 in the following,
one notes the existence of a kind of small plateau colored in
yellow and located a few MeV above the bottom of the valley
V1. For comparison, in the case of the D1S interaction [see
Fig. 9(a)], only a well-defined valley exists. The exit point
is characterized by Q20 
 230 b (210 b) and Q40 
 315 b2

(255 b2) for the D1ST2a (D1S) interaction. To analyze in
more details these results, the evolution of the barrier heights
between the fission V1 and the fusion (called “fus”) valleys as
a function of Q20 is shown in Fig. 10(a) for both the D1ST2a
(full black circles) and the D1S (full red squares) interactions.
These barrier heights have been defined as the values deduced
from transversal slices to the path which follows the bottom of
the valley. At the beginning, around Q20 
 130 b, the barrier
height is around 7 MeV for the D1ST2a interaction. Then,
increasing the elongation Q20 of the nucleus, it decreases and
reaches a value which is lower than 1 MeV around 180 b.
Finally, it remains stable up to 
225 b and disappears around
230 b at the exit point. With the standard D1S interaction,
the value of the barrier is systematically higher by 2–3 MeV
along the symmetric path. Only at the end, its value decreases
rapidly and goes to zero at a value of Q20 slightly smaller,
around 
210 b. From these results, we conclude that the
tensor term tends to decrease by several MeV the height of
the V1 to fusion barrier.

For the 226Th isotope, the difference between the patterns
obtained with the D1ST2a and the D1S interactions begins to
intensify. The main valley V1 existing in the 230Th isotope
is still there. However, as seen from Fig. 8(b), the plateau
changes into a kind of protovalley, called V2 in the following.
It appears around Q20 
 140 b for a smaller value of Q40

which characterizes the valley V1, around 
110 b2. The evo-
lution of the values of the different transverse barrier heights is
reported on Fig. 10(b). Concerning the principal valley V1, the
barrier heights “V1 → fus” (full black circles for D1ST2a and
full red squares for D1S) are of the same order of magnitude as
the ones obtained in 230Th, even a little smaller. Their relative
behavior is similar with a cancellation of the barriers around
Q20 
 222 b for D1ST2a and 
208 b for D1S. Concerning the
barrier between the principal valley V1 and the protovalley
V2 (green stars), which exists with the D1ST2a interaction
and which is referred to as “V1→ V2,” its height is equal to

4 MeV at its nascence around Q20 
 140 b and decreases
by 2 MeV up to Q20 
 157 b where V2 suddenly disappears.
At this elongation, the barrier between the principal valley V1
and the fusion valley “fus” is still ∼2 MeV.

The value of the barrier between the protovalley V2 and the
fusion valley, named “V2→ fus” (full blue triangles), starts
at 
2.5 MeV, decreases regularly and cancels around Q20 

165 b. Please note that its associated exit point is characterized
by smaller values of Q20 and Q40 than the ones of the main
valley V1, 
166 b and 
150 b2, respectively. It signals the
possible existence of a symmetric compact fission mode. The
main question which remains to answer is the possibility of
feeding the protovalley which is located at a couple of MeV
above V1 in this isotope. One can invoke two possibilities
in the adiabatic hypothesis: either by tunnel effect or by
excitation of a transverse mode which is the most probable
mechanism. Another possibility would be to populate the
valley through individual quasi-particle excitation with the
available energy acquired after the saddle point.

In the case of the 222Th isotope, the observations made for
226Th are confirmed. The protovalley transforms into a well-
identified second valley which appears around Q20 
 130 b
and Q40 
 100 b2, as seen in Fig. 8(c). For comparison, the
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FIG. 8. {Q20, Q40} potential energy surfaces associated with the
symmetric fission path (Q30 = 0) for (a) 230Th, (b) 226Th, (c) 222Th,
and (d) 216Th. Calculations have been done with the D1ST2a inter-
action. Energies are expressed in MeV.

FIG. 9. Same as described in the caption of Fig. 8 but for the D1S
interaction.

044615-12



DESCRIPTION OF THE ASYMMETRIC TO SYMMETRIC … PHYSICAL REVIEW C 101, 044615 (2020)

FIG. 10. Evolution of barrier heigths in (a) 230Th, (b) 226Th,
(c) 222Th, and (d) 216Th calculated with the D1S and D1ST2a Gogny
interactions. Energies are expressed in MeV.

associated value of Q40 for the V1 valley is 
120 b2, which
corresponds to an increase of 20%. These values associated
with the new valley V2 are also smaller than the ones of the
protovalley in the 226Th isotope. We note that the new valley
V2 is higher in energy than the valley V1, but it is lower
in energy than the protovalley V2 found in 226Th isotope.
Its exit point is found at Q20 
 166 b and Q40 
 150 b2.
The exit point of the principal valley V1 is characterized by
Q20 
 208 b and Q40 
 265 b2, which are much larger values.
Thus, the V1 and V2 valleys define two distinct modes in the
symmetric path for 222Th: the classic super long mode from
V1 and a new compact mode induced by the tensor term of
the nuclear interaction.

For the D1S interaction, a kind of “tilted plateau” appears
on the right side as can be seen in Fig. 9(c). It clearly ends in
the principal valley V1. The structure of this “tilted plateau”
seems to be different from the structure of a valley. In par-
ticular, it disappears in the 216Th isotope, as discussed below.
The exit point corresponds to a well-elongated fission with
Q20 
 206 b and Q40 
 255 b2. The evolution of the barrier
heights can be seen on Fig. 10(c). Because of the existence of
the “tilted plateau” with the D1S interaction, we have drawn
for both interactions the barriers “V1→ fus,” “V2→ fus,”
and “V1→ V2,” where V2 represents the second valley in the
case of D1ST2a and the tilted plateau for D1S. Those barriers
are the energy difference between the bottom of the first valley
and the crest separating the two valleys.

When considering the “V1→ fus” barrier obtained with
the D1ST2a interaction (full black circles), one has to be
careful with the interpretation and has also to consider the
barrier “V1→ V2” (full blue triangles) which separates both
valleys. Indeed, the principal valley is not connected directly
to the fusion valley at the beginning of the path up to the
exit point of the valley V2. Around Q20 
 130 b, the barrier
height “V1→ fus” is equal to 
4 MeV, which is lower by 1.5
MeV in comparison with the one obtained in 226Th. Then, it
quickly decreases up to Q20 
 156 b where it reaches a small
value of 
400 keV. However, as previously mentioned, the
“V1→ V2” barrier height in this deformation region is around
1.7 MeV. Moreover, around Q20 
 158 b, both barriers “V1→
V2” and “V1→ fus” become mixed up. The “V1→ V2”
barrier disappears at Q20 
 168 b (the exit point of the valley
V2). Only the barrier “V1→ fus” exists for larger values of
Q20. Its height stay more or less constant up to Q20 
 200 b
and is equal to 
1.7 MeV. Then, it decreases rapidly and goes
down to zero at Q20 
 208 b. Finally, one observes that the
“V1→ V2” barrier height is not changing too much, being
equal to 
3 MeV for the smallest Q20 values and 
1.7 MeV
for larger ones. Concerning the “V2→ fus” barrier height,
after a fluctuation around 
3 MeV for the smallest values
of Q20, it decreases and disappears at Q20 
 165 b, a value
compatible with the compact fission mode.

For the D1S interaction, the situation is different because
of the presence of the tilted plateau. First of all, the height
of the tilted plateau to the bottom of the principal valley V1,
called “V1→ V2,” changes rapidly (purple crosses). Around
Q20 
 130 b, it is equal to 
2.0 MeV. Around the elonga-
tion Q20 
 145 b, it disappears. For larger deformations, the
principal valley V1 is directly connected to the fusion valley
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TABLE V. Values of the Q20 (expressed in b) and Q40 (expressed
in b2) collective variables of the exit points in the 230Th, 226Th, 222Th,
and 216Th isotopes. Calculation have been done for the symmetric
path with the D1S Gogny force.

Nucleus Valley Q20 (b) Q40 (b2)

230Th V1 210 255
226Th V1 208 255
222Th V1 206 255
216Th V1 198 240

D1S, Symmetric path.

(full red circles) through the barrier “V1→ fus” whose height
is 
3 MeV. Then, it begins to decrease and goes away at a
larger deformation Q20 
 202 b. The exit point of the princi-
pal valley V1 is obtained for Q20 
 206 b and Q40 
 255 b2.

In the 216Th isotope, one obtains for the first time a valley
V2 which is lower in energy than the principal valley V1
as can be observed in Fig. 8(d), when using the D1ST2a
interaction. The exit point of the valley V2 is still strongly
compatible with a compact fission mode, with Q20 
 162 b
and Q40 
 150b2. For the principal valley V1, the exit point
has Q20 
 190 b and Q40 
 225 b2. In the calculations with
the D1S interaction a unique valley V1, corresponding to a
well-elongated fission mode, is obtained. This valley ends at
Q20 
 198 b and Q40 
 240 b2.

Looking at the barrier heights in Fig. 10(d), one observes
that all the barriers, namely, “V1→ fus,” “V2→ fus,” and
“V1→ V2,” start with a lower energy than the equivalent
ones obtained in the previous isotopes with either D1ST2a
or D1S Gogny interaction. In particular, at Q20 
 130 b, the
“V2→ fus” barrier (full blue triangles) is higher in energy
than the “V1→ fus” one. This is consistent with the fact that
the principal valley V1 is located above the V2 one. This
observation remains true up to Q20 
 158 b where the valley
V2 disappears. Here, the “V1→ fus” barrier height starts to
increase again and reaches 
2 MeV at Q20 
 172 b. Then, it
decreases and fades away at Q20 
 190 b.

It is also interesting to note that the barrier “V1→ V2”
(green stars) is very low at the beginning of the curve, around

1 MeV. Then, it decreases with the quadrupole deformation
up to Q20 
 152 b, where it reaches 
300 keV. It increases
again up to Q20 
 158 b where reaches the 
 800 keV height

TABLE VI. Same as Table V but for the D1ST2a Gogny
interaction.

Nucleus Valley Q20 (b) Q40 (b2)

230Th V1 230 315
226Th V1 222 295

V2 166 150
222Th V1 208 265

V2 166 150
216Th V1 190 225

V2 162 150
D1ST2a, Symmetric path.

TABLE VII. Same as Table V but for the asymmetric valley.

Nucleus Valley Q20 (b) Q30 (b3/2) Q40 (b2)

230Th V1 136 28 80
226Th V1 140 40 94
222Th V1 172 69 159
216Th V1 150 52 116

D1S, Asymmetric path.

and disappears at the end of the valley V2. Finally, for the D1S
interaction, the behavior of the “V1→ fus” barrier is similar to
the one obtained in the 222Th isotope, but with a little shorter
extension before disappearing.

All the characteristics of the exit points, in terms of values
of the collective variables Q20, Q30, and Q40, and associ-
ated with the symmetric and the asymmetric valleys, are
given in Tables V–VIII, for both the D1S and the D1ST2a
interactions.

Preliminaries calculations in neutron-deficient uranium
and radium isotopes seem to display also a second symmetric
valley corresponding to a compact fission mode.

To finish this section let us say a few words about the origin
of the valleys V2 which are well pronounced in the 222Th and
216Th isotopes. In Fig. 11, a 2D representation of the symmet-
ric {Q20, Q40} PESs calculated with the D1ST2a interaction
for both isotopes is displayed. Here, results include smaller
values of Q20, namely, Q20 = 0 b and beyond. Besides, we
have kept the fusion valley which appears in dark blue on the
right side of the fission valleys.

In Fig. 11(a) we observe the existence of a plateau in 222Th
which extends between Q20 
 90 b and 
100 b. Just after the
plateau, one sees the nascence of the valley V1. Concerning
the valley V2, it appears at a much larger elongation, around
Q20 
 128 b. Invoking only the topology of the PES and this
difference in quadrupole deformation, we can argue that, in
the adiabatic approximation, the flux of the wave function will
feed directly and largely the valley V1 in the region Q20 ∈
[100b, 130b]. In addition, using the findings of the (Q20, Q40)
dynamical study proposed by J.F. Berger and collaborators
in the context of cold fission for the 240Pu nucleus [4], the
valley V2 may be fed partly by the wave function through
the excitation of transverse modes for larger elongations.
The height of the barrier “V1→ V2” discussed previously
[see Fig. 10(c), green stars] is fully compatible with such a
process. In that context, the symmetric fission is understood
as a mixing of a compact and the super long modes whose
weight can be determined by a dynamical treatment.

TABLE VIII. Same as Table VI but for the asymmetric valley.

Nucleus Valley Q20 (b) Q30 (b3/2) Q40 (b2)

230Th V1 136 33 85
226Th V1 134 39 87
222Th V1 162 64 142
216Th V1 150 51 116

D1ST2a, Asymmetric path.

044615-14



DESCRIPTION OF THE ASYMMETRIC TO SYMMETRIC … PHYSICAL REVIEW C 101, 044615 (2020)

FIG. 11. Creation of the two valleys using Q20 and Q40 as col-
lective variables along the symmetric path, in (a) 222Th and (b) 216Th
with the D1ST2a interaction. Energies are expressed in MeV.

In 216Th [Fig. 11(b)], the pattern is rather different. Indeed,
the V2 valley appears first around Q20 
 110 b and it is the
lowest in energy. From the plateau in energy which exists
between 88 b and 100 b and the lowest energy path which is
located on the side of the lowest Q40 value, one concludes that,
this time, the valley V2 will be the one preferentially fed by

the time evolution of the collective wave function. As in 222Th
and considering the heights of the barriers “V2→ fus” and
“V1→ V2” [see Fig. 10(d), full blue triangles and green stars,
respectively], one predicts an exchange between the valleys
V2 and V1 through transverse modes and the manifestation of
both the compact and super long symmetric modes.

C. Interplay between tensor force, deformation,
and pairing correlations

We now turn our attention to the mechanism responsible
for the existence of the new valley V2, which is interpreted as
the experimentally observed new symmetric compact mode.
The present analysis has been done by inspecting the different
contributions to the total HFB energy. More precisely, we have
separated the HFB binding energy in two (three) contributions
in the case of the D1S (D1ST2a) interaction in such a way that

ED1S
HFB = ED1S

MF + ED1S
pair ,

D1ST2a
HFB = ED1ST2a

MF + ED1ST2a
pair + ETS, (7)

where EMF is the mean-field energy, not including the tensor
contribution in the D1ST2a case. The particle-particle energy
Epair = 1

2 Tr (�κ ) is usually referred to as the pairing energy
and is proportional to the amount of pairing correlations in the
system. It should not be confused with the real pairing corre-
lation energy given by the difference between the HFB and
HF energies. Finally, the tensor energy ETS is the contribution
of the tensor term to the HFB energy and therefore it is zero
in the D1S case.

In Fig. 12, we display the energy differences:

�EHFB = ED1ST2a
HFB − ED1S

HFB (full black circles),

�EMF = ED1ST2a
MF − ED1S

MF (full red squares),

�Epair = ED1ST2a
pair − ED1S

pair (full green triangles),

as well as ETS (blue stars), as a function of the hexade-
capole moment Q40 expressed in b2. We have also depicted
the accumulated sum SMF+pair = �EMF + �Epair (orange full
diamonds). The calculations have been performed with the
additional constraint Q20 = 130 b (left column), 140 b (central
column), and 150 b (right column), for (a) 230Th, (b) 226Th,
(c) 222Th, and (d) 216Th.

The most streaking feature observed in all the panels is
the similar behaviour of �EHFB, whatever the isotope and the
deformation Q20. Starting from the barrier which separates the
fusion and the fission valleys at the smallest Q40 values, one
first observes a linear increase of �EHFB. The positive sign of
this variation indicates that the D1ST2a interaction produces
less binding energy than the D1S one. A maximum is obtained
at a Q40 value which corresponds to the ridge between the new
valley V2 (when it exists) and the main valley V1. One notes
that, even if the valley V2 is not apparent, as it is the case in
230Th, a maximum for ETS is also obtained in the same Q40

region. In addition, the intensity of the phenomenon is nearly
the same for all the isotopes. It starts around 3–4 MeV at the
fusion-fission barrier with a variation of 3–4 MeV. After the
maximum reached by ETS, �EHFB decreases or stabilizes in
several cases.
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FIG. 12. Evolution of �EHFB, �EMF, �Epair , and ETS (see text for explanation) as a function of Q40 (in b2) for (a) 230Th, (b) 226Th,
(c) 222Th, and (d) 216Th. Calculations have been done at Q20 = 130 b (left column), 140 b (central column), and 150 b (right column). Energies
are expressed in MeV.

The general trend obtained for �EHFB seems to be strongly
correlated with the ETS contribution and this represents a first
strong hint of a tensor effect. To better isolate this effect, we
have plotted in Fig. 13 the evolution of EHFB–EHFB (g.s.) as
a function of Q40, calculated with D1S (full black circles)
and D1ST2a (full red squares). In the same figure, the curve
corresponding to the results obtained with the D1ST2a force
but subtracting the tensor energy ETS (full orange diamonds)
is also shown. To facilitate the interpretation of the results,
the quantity ETS (blue stars) is also drawn. As an illustration,
calculations are shown for the four isotopes with the constraint
Q20 = 140 b. The similarity of the “D1S” and “D1ST2a-ETS”
curves leads to the conclusion that the birth of the new valley
V2 is due to the increase of ETS with the hexadecapole
moment up to a certain value of Q40 which is coupled to
the decreasing slope of the MF plus pairing contributions
obtained in this region. This effect is not sufficient in 230Th
to create a new valley V2. However, the slope of the curve
is softened by the tensor contribution (see the curves with
red square and orange diamonds). The preservation of the
valley V1 for larger values of Q40 is due to the decrease
or stabilization of ETS. One notes that in 222Th there is a
local effect around Q40 
 135b2 for the “D1ST2a-ETS” curve
which leads to a more pronounced minimum than for the
“D1S” curve. To end with the effect associated with the

ETS contribution, we have displayed in Fig. 14 the evolution
of the proton ETSp (full red squares) and the neutron ETSn

(full blue triangles) component of the total tensor energy ETS

(black full circles) as a function of Q40, for all the considered
isotopes. We observe that in the region of the new valley, both
proton and neutron contributions increase with the proton one
dominating over the neutrons. For larger values of Q40, they
show a rather constant behavior with similar contributions in
the two cases.

The mean-field EMF and the pairing Epair energy contribu-
tions depicted in Fig. 12 suffer from strong variations when
the tensor term is added to the D1S interaction. They vary out
of phase with changes of sign for both contributions. When
the mean-field is less bound with the D1ST2a interaction
(�EMF � 0), the pairing correlations increase and vice versa.

The sum of the two quantities has a positive value as can
be seen in the curve SMF+pair. Besides, the behavior of the
quantity is found to be rather constant (the variations are
within less than 1 MeV). This last result confirms the role
played by the tensor energy ETS in the creation of the new
valley, which was discussed previously.

We would like to end this part by discussing the pairing
contribution. Indeed, even though from a total energy per-
spective the role of the pairing seems to be washed out by
the mean field contribution, many observables are sensitive

044615-16



DESCRIPTION OF THE ASYMMETRIC TO SYMMETRIC … PHYSICAL REVIEW C 101, 044615 (2020)

FIG. 13. Evolution of EHFB-EHFB (g.s.) as a function of Q40 cal-
culated with D1S (black full circles) and D1ST2a (red full squares).
Moreover, we have drawn the curve corresponding to adding the
tensor energy ETS to the D1S energy (orange full diamonds). For
comparison, the tensor contribution ETS (blue stars) is also depicted.
Energies are expressed in MeV.

FIG. 14. Evolution of the total tensor energy ETS (black full
circles), its proton component ETSp (red full squares) and its neutron
component ETSn (blue full triangles) as a function of Q40 (expressed
in b2) at Q20 = 130 b. See the text for details. Calculations have been
done for (a) 230Th, (b) 226Th, (c) 222Th, and (d) 216Th. Energies are
expressed in MeV.
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FIG. 15. Evolution of proton and neutron pairing components for
both the D1S (black full circles and red full squares, respectively) and
D1ST2a (black empty circles and red empty squares, respectively)
interactions. The proton �Epair p and neutron �Epair n differences
between both interactions (black dashed circles and red dashed
squares are also indicated. The total difference �Epair is shown in
blue dashed triangles. Calculations have been done for (a) 230Th,
(b) 226Th, (c) 222Th, and (d) 216Th at Q20 = 140 b. Energies are
expressed in MeV.

to these correlations, as, for example, the collective masses
which are crucial for the dynamical propagation. In Fig. 15,
we report the evolution of the proton and neutron pairing
components for both the D1S (full black circles and full red

squares, respectively) and D1ST2a (empty black circles and
empty red squares, respectively) interactions. Moreover, the
proton �Epairp and neutron �Epairn differences between both
interactions (dashed black circles and dashed red squares,
respectively) are also drawn. Finally, the total difference
�Epair in shown with dashed blue triangles. Calculations have
been done for (a) 230Th, (b) 226Th, (c) 222Th, and (d) 216Th.
As an example, the figure shows results for Q20 = 140 b.
One observes a similar trend for all the isotopes. From the
fusion-fission ridge and the V2-V1 ridge (A area), there is
an increase of �Epair. Then, a decrease is obtained between
the V2-V1 ridge and the bottom of the valley V1 (B area)
and finally a new increase for larger value of Q40 (C area)
manifests. Looking at the proton and neutron decomposition,
one sees that the variation �Epair in the A area is mainly
due to the proton pairing variation. The neutron one is nearly
constant and close to zero. The proton variation changes sign
whereas the neutron one is positive. In the B area, both proton
and neutron variations decrease and participate in the total
decrease which is found moderate. In the C area, the behavior
of �Epair in terms of proton and neutron components depends
on the nucleus.

The neutron pairing energy along the isotopic chain is
found to be very similar for both interactions in the region
of the valley V2, with a value that changes a lot from isotope
to isotope. Indeed, one observes a strong decrease from the
heaviest to the lightest thorium isotopes. However, some vari-
ations appear in the valley V1. Concerning the proton pairing
energy, differences in both the A and B areas are observed. In
general, the proton pairing is larger in the A area and smaller
in the B area with the D1S interaction

D. Distribution of the available energy at scission
and neutron multiplicity

In this section we discuss the way the available energy of
the fissioning system is distributed among the various physical
components at scission. The available energy is defined as the
difference between the total energy of the fissioning nucleus
Etot and the sum of the ground-state energy of fragments Eg.s.

frag.
At scission, the available energy goes into two contributions:
the total kinetic energy (TKE) and the total excitation energy
(TXE),

Etot − Eg.s.
frag = TKE + TXE. (8)

The TKE takes most of the available energy and it is dom-
inated by the Coulomb repulsion ECoul energy between the
fragments. The remaining part is known as the pre-kinetic
energy Eprek. Concerning the TXE, it is the sum of the
deformation energy Edef of the fragments and their intrinsic
excitation energy Eintr . Thus,

Etot = ECoul + Eprek + Edef + Eintr + Eg.s.
frag. (9)

In the present study, as we discuss low energy fission, we
choose the total energy Etot as the HFB energy obtained at
the saddle point. Here, the scission point is defined when a
sudden drop of the density between pre-fragments occurs. All
the quantities involved in the energy distribution are evaluated
in the first point of the PES mesh when the fragments appear.
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TABLE IX. TKE and TXE evaluated at the exit point in the symmetric valley for the 230,226,222,216Th isotopes. Coulomb, deformation
energies and neutron multiplicities are added. Labels refer to the 3 scenarios. See text for explanations. Calculations have been done with the
D1S Gogny force. Energies are expressed in MeV.

Nucleus Valley TKE1 TKE2 TKE3 Ecoul TXE1 TXE2 TXE3 Edef ν1 ν2 ν3

230Th V1 178.7 170.4 157.8 157.8 15.4 23.6 36.3 15.4 ∼1 1 2
226Th V1 178.0 170.3 157.2 157.2 14.2 21.9 35.0 14.2 0 1 2
222Th V1 177.0 169.1 156.5 156.5 14.8 22.8 35.3 14.8 0 1 2
216Th V1 182.3 177.8 157.2 157.2 8.2 12.6 33.3 8.2 0 0 1

D1S, Symmetric path.

The Coulomb energy is calculated at the scission point
using the simple Coulomb formula:

ECoul = Z1Z2e2

dch
, (10)

where Z1 and Z2 define the charge of the two fragments and
dch is the distance between the center of mass of the charge
distributions of the fragments at the exit point. Coulomb
energies obtained for the symmetric valleys and for the
four thorium isotopes are reported in Table IX (D1S) and
Table X (D1ST2a). The Coulomb energy is almost isotope
independent for the results with D1S due to the fact that the
scission point are in the same quadrupole moment region (see
Table V). The same conclusion apply for the D1ST2a interac-
tion in valley V2 (see Table VI). However, in the V1 valley
and with the D1ST2a interaction we find that the heavier
the thorium isotope, the larger the elongation for the scission
point. As a result, the distance dch is larger for heavy isotopes
and the Coulomb energy is smaller. Coulomb energies from
valley V2 are always bigger than the ones in valley V1 since
their exit point occur at a smaller deformation.

The energies of the fragments at scission Efrag and the
corresponding energies when the two fragments are well
separated Eg.s.

frag are obtained by means of HFB calculations.
The deformation energy Edef is the differences between these
two energies. Quadrupole and octupole moments from the
fragments at scission are used as constraints to get the frag-
ment HFB energy Efrag. The symmetric fission in the 230Th,
226Th, 222Th, and 216Th isotopes leads to 115Rh, 113Rh, 111Rh,
and 108Rh fragments, respectively. In this work, the equal
filling approximation has been used to calculate both the
ground state and the deformed Rhodium isotopes using the
same kind of methodology as the one reported in Ref. [77]

for odd and odd-odd nuclei. Fragment deformation energies
Edef are depicted in Tables IX and X. As expected, in both
calculations with D1S and D1ST2a, the deformation energy
is bigger for more elongated fission. The most striking feature
is that D1ST2a provides more deformation energy than D1S.
This is expected when the scission point elongation is bigger
for D1ST2a than D1S such as for 230Th and 226Th but it
remains true when the elongation is about the same (222Th) or
is smaller (216Th). Besides, for D1ST2a, deformation energies
from valley V2 are significantly smaller than the ones in valley
V1 by a factor 4.

Once Coulomb and fragment energies are calculated,
Eq. (9) provides the quantity Eprek + Eintr that are discussed in
the following. Since quasi-particle excitation is not considered
in this work to build PES, a microscopic evaluation of the part
of the total available energy which is converted to intrinsic
excitation is out of the scope of this work. Such a task using
the Generator Coordinate Method framework would require
the use of a non adiabatic model such as in Ref. [10]. We thus
introduce three different scenarios about the way the energy
is shared between the pre-kinetic and intrinsic energies and
thus between the TKE and the TXE. Scenario 1 is defined as
the one in which all the available energy Eprek + Eintr goes to
the pre-kinetic energy: Eintr = 0 MeV. In the second scenario,
the intrinsic energy is chosen according to the empirical
formula Eintr = 35%TXE used in Refs. [66,78,79]. Contrary
to scenario 1, in scenario 3, all the available energy goes
to the intrinsic energy exclusively: Eprek = 0 MeV. Even if
they may not be realistic in some cases, scenarios 1 and 3
provide boundaries for the quantities under consideration. For
the three scenarios, the TKE and TXE has been obtained and
given in Tables IX and X. For D1S, scenarios 1 and 2 look
very similar: the TKE is stable for the three heaviest isotopes

TABLE X. Same as Table IX but for the D1ST2a Gogny interaction.

Nucleus Valley TKE1 TKE2 TKE3 Ecoul TXE1 TXE2 TXE3 Edef ν1 ν2 ν3

230Th V1 167.7 153.2 151.3 151.3 26.8 41.3 43.2 26.8 1 2 2
226Th V1 171.8 161.0 152.4 152.4 20.0 30.7 39.4 20.0 1 ∼2 2

V2 186.3 183.3 173.7 173.7 5.4 8.4 18.0 5.4 0 0 1
222Th V1 175.1 166.8 156.1 156.1 15.5 23.9 34.5 15.5 0 1 2

V2 187.5 185.7 171.8 171.8 3.2 4.9 18.9 3.2 0 0 1
216Th V1 180.0 174.7 160.8 160.8 9.8 15.1 29.0 9.8 0 ∼1 1

V2 187.5 186.2 172.1 172.1 2.4 3.7 17.8 2.4 0 0 1
D1ST2a, Symmetric path.
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TABLE XI. Experimental Sexp
n and theoretical SD1S,D1ST2a

n one-
neutron separation energy Sn in Rhodium isotopes. Energies are
expressed in MeV.

Isotope 115Rh 114Rh 113Rh 112Rh 111Rh

SD1S
n 6.224 4.918 7.139 5.174 7.654

SD1ST2a
n 6.907 4.771 7.321 5.075 7.638

Sexp
n 6.590 5.020 7.110 5.500 7.547

Isotope 110Rh 109Rh 108Rh 107Rh 106Rh

SD1S
n 5.606 8.194 5.480 8.168 6.084

SD1ST2a
n 5.476 8.067 5.898 8.605 4.569

Sexp
n 5.900 8.039 6.239 8.573

and becomes significantly bigger for 216Th. In a consistent
way, the TXE is almost constant and decreases for 216Th. In
scenario 3 the TKE and TXE remain almost constant along
the isotopic chain. For the D1ST2a interaction, the TKE is
always driven by the Coulomb energy: for all the scenarios it
increases with the isotope exoticism in valley V1 and is stable
in valley V2. The three TXE are driven by the deformation
energy which decreases with the mass number. Since the
deformation energy is small in valley V2, scenario 2 is much
closer to scenario 1 than scenario 3 for both TXE and TKE.

The TKE have been measured in Ref. [80] for 226Th. The
super long symmetric mode gives TKE 
 160 MeV close
to scenario 3 for D1S (157.2 MeV) and scenario 2, valley
V1 (161.0 MeV) for D1ST2a. This latter valley is the one
energetically preferred for this isotope. In Ref. [64] the overall
mean TKE in the thorium chain from 229Th to 221Th is given.
It is stable along the symmetric/asymmetric transition with
〈TKE〉 = 167.7 ± 3.4 for 226Th and 〈TKE〉 = 166.9 ± 3.3 for
222Th. A comparison with the mean TKE will be possible in
the future by solving the TDGCM equations with the static
PES.

We now focus on the number of neutrons that are emitted
at the exit points in all the symmetric valleys. Scission ends
up with two similar fragments and the neutron multiplicity
has been calculated for each of them. First, one has made
the assumption that all the available energy from the TXE
transforms itself into neutron emission. Once all the possible
neutrons are emitted, the rest of the TXE would be devoted
to γ emission, whose description is beyond the scope of this
work. To account for γ emission, GCM + particle number
projections techniques [81–84] should be used on each of the
fragments. Thus, the TXE writes as

TXE =
2∑

i=1

E (i)
γ + ν (i)

〈
E (i)

n

〉 +
ν (i)∑
j=1

S( j)
n (11)

where E (i)
γ is the part of energy used to emit γ in fragment i,

〈E (i)
n 〉 is the mean neutron kinetic energy, S( j)

n are the succes-
sive one neutron separation energy of the fragment up to the
post neutron emission fission product: S( j)

n = Sn(Zfrag, Nfrag −
j + 1). symmetric fission, the summation over the fragment’s
label i in Eq. (11) can be replaced by an overall factor 2.
Separation energies are presented in Table XI. A comparison
of D1S and D1ST2a HFB calculations with experimental

TABLE XII. Mean neutron kinetic energy 〈 E (i)
n 〉 extracted from

GEF. Energies are expressed in MeV.

Isotope 230Th 226Th 222Th 216Th

〈E (i)
n 〉 1.924 1.814 1.855 1.852

data leads to the conclusion that both interactions give a
satisfactory agreement with experiment with a deviation of a
few hundred keV.

Mean neutron kinetic energies 〈E (i)
n 〉 are displayed in Ta-

ble XII. These quantities are evaluated using the GEF model
of Ref. [79] for a neutron incident energy at the barrier.

The neutron multiplicity of each fragment ν (i) is extracted
from Eq. (11) as the biggest integer which satisfies:

TXE �
2∑

i=1

ν (i)
〈
E (i)

n

〉 +
ν (i)∑
j=1

S( j)
n (12)

Neutron multiplicities ν (i) for each fragment are reported in
Tables IX and X for all the three different scenarios. A tilde is
used when less than 500 keV are missing in the TXE to reach
the next integer value. The ν (i) globally decrease with the mass
number for both interactions. The valley V2 does not provide
neutron emission, except for scenario 3.

The emergence of the second symmetric valley V2 leads to
a bigger TKE than for the first valley V1 and thus a smaller
TXE. A drop of the experimental 〈νtot〉 for symmetric fission
is expected when going to light thorium isotopes.

As already mentioned for D1ST2a, the second valley V2 is
not energetically favored in the 226Th and 222Th isotopes, con-
trary to the 216Th case. When comparing 222Th or 216Th(valley
V2) with 230Th (valley V1) the Coulomb energy Ecoul is higher
by 
20 MeV in the lighter isotopes. This additional kinetic
energy corresponding to a compact scission mode results in
a drop of the TXE which leads to a loss of 1 neutron per
fragment for scenario 1 and 3, and 2 neutrons per fragment for
scenario 2. It is in agreement with the loss of 2–2.5 neutrons
on the total multiplicity which has been measured by the
SOFIA group [58,59].

IV. CONCLUSION AND PERSPECTIVES

In this work, the effect of the tensor term on fission paths
has been studied for the first time. In that context, we have
investigated the asymmetric to symmetric fission transition in
the light thorium isotopes which experimentally hints to the
existence of a new, compact and symmetric, fission mode. We
have used a static calculation based on an axial HFB approach
breaking reflection symmetry and introducing constraints on
multipole moments and particle numbers. Both, the D1S and
the D1ST2a (D1S plus a perturbative finite range tensor)
Gogny interactions have been used.

We have shown that, depending on the isotope, the tensor
term can change the barrier height in a non negligible way. In
particular, it is able to re-equilibrate the second hump height
between the asymmetric and symmetric path. Indeed, in the
222Th isotope, this difference with the D1S interaction has
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been found equal to 
4 MeV whereas it is reduced to 1.5 MeV
with the D1ST2a interaction. Thus, the tensor interaction
renders the pure symmetric path more probable. In the 216Th
isotope, this difference disappears.

Another striking feature is the appearance of a second
valley in the {Q20, Q40} collective variables in the presence
of the tensor term. Its existence and its deformation character-
istics (much smaller values of Q20 and Q40 than the ones of
the standard valley which leads to the known well-elongated
symmetric fission) are interpreted as the theoretical proof
of the experimentally observed symmetric compact fission
mode. It is the most remarkable result of this analysis.

The present study does not consider the dynamical aspects
of fission and therefore cannot predict fission fragment mass
distributions. To describe the population of the various val-
leys, it will be very interesting to perform a three-dimensional
dynamical calculations including Q20, Q30, and Q40 as col-

lective variables. Moreover, it would be crucial to perform
systematic calculations to localize the possible areas where
the tensor term is expected to play an important role for fission
process. Finally, a full refit of the Gogny interaction including
a finite range tensor term would be of prime interest.
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