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Nuclear fusion reactions of D-D are examined in an environment comprised of high density cold fuel
embedded in metal lattices in which a small fuel portion is activated by hot neutrons. Such an environment
provides for enhanced screening of the Coulomb barrier due to conduction and shell electrons of the metal
lattice, or by plasma induced by ionizing radiation (γ quanta). We show that neutrons are far more efficient than
energetic charged particles, such as light particles (e−, e+) or heavy particles (p, d, α) in transferring kinetic
energy to fuel nuclei (D) to initiate fusion processes. It is well known that screening increases the probability of
tunneling through the Coulomb barrier. Electron screening also significantly increases the probability of large vs
small angle Coulomb scattering of the reacting nuclei to enable subsequent nuclear reactions via tunneling. This
probability is incorporated into the astrophysical factor S(E ). Aspects of screening effects to enable calculation
of nuclear reaction rates are also evaluated, including Coulomb scattering and localized heating of the cold
fuel, primary D-D reactions, and subsequent reactions with both the fuel and the lattice nuclei. The effect of
screening for enhancement of the total nuclear reaction rate is a function of multiple parameters including fuel
temperature and the relative scattering probability between the fuel and lattice metal nuclei. Screening also
significantly increases the probability of interaction between hot fuel and lattice nuclei increasing the likelilhood
of Oppenheimer-Phillips processes opening a potential route to reaction multiplication. We demonstrate that the
screened Coulomb potential of the target ion is determined by the nonlinear Vlasov potential and not by the
Debye potential. In general, the effect of screening becomes important at low kinetic energy of the projectile. We
examine the range of applicability of both the analytical and asymptotic expressions for the well-known electron
screening lattice potential energy Ue, which is valid only for E � Ue (E is the energy in the center of mass
reference frame). We demonstrate that for E � Ue, a direct calculation of Gamow factor for screened Coulomb
potential is required to avoid unreasonably high values of the enhancement factor f (E ) by the analytical—and
more so by the asymptotic—formulas.

DOI: 10.1103/PhysRevC.101.044609

I. INTRODUCTION

Electron screening is essential for efficient nuclear fusion
reactions to occur. Screening effects on fusion reaction rates as
measured in deuterated materials have been demonstrated to
be important. The nuclear reaction rate includes two primary
factors: the Coulomb scattering of the projectile nuclei on the
target nuclei as well as nuclei tunneling through the Coulomb
barrier. During elastic scattering of charged projectiles on a
target nucleus, such as a deuteron, some of the energy of the
projectile particle is transferred to the target nucleus, hence
heating it. Depending on the projectile particle energy and

*Corresponding author: vpines@wowway.com

the efficiency of kinetic energy transfer during the scattering
event, the target deuteron may become energetic enough
to enable subsequent nuclear fusion reactions via tunneling
through the Coulomb barrier. Electron screening may play a
significant role in this process because of hot fuel interact-
ing with lattice nuclei in the highly screened environment,
as has been demonstrated in the companion experimental
work reported in Steinetz et al. [1]. In the current work we
analyze the electron screening effect on Coulomb scattering
and the tunneling process involving charged projectiles. We
then demonsrate the superior efficiency of the kinetic en-
ergy transfer by energetic neutrons on the target deuteron
nuclei resulting in subsequent nuclear reactions. Such a pro-
cess is a key ingredient in achieving and sustaining nuclear
reactions.
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II. NUCLEAR FUSION CROSS SECTION OF BARE
NUCLEUS IONS

In the standard case of subbarrier quantum tunneling
through the Coulomb barrier between positive nucleus ions,
the nuclear fusion cross section of bare nucleus ions σbare(E )
can be written [2] as

σbare(E ) = S(E )

E
exp [−G(E )], (1)

where E is the energy in the CM (center of mass) reference
frame, G(E ) is the Gamow factor, and S(E ) [2,3] is the astro-
physical S-factor containing the details of nuclear interactions.
It is noted that the theoretical development proceeds in Gauss
units (not SI). In the nonrelativistic case, the relation between
energy E in the CM frame and the kinetic energy K1∞ of the
projectile nucleus ion in the laboratory (lab) frame takes the
simple form

K1∞ ≡ m1�v2
1∞

2
=

(
1 + m1

m2

)
E . (2)

In the lab frame, the target nucleus ion with mass m2 is at
rest (i.e., �v2 = 0), and the projectile nucleus ion with mass m1

has velocity �v1∞ at infinity.
In the Wentzel-Kramers-Brilloin (WKB) approximation,

G(E ) involves the evaluation of the following integral [2]:

G(E ) = 2

h̄

∫ rct p

r0

{2μ[UC (r) − E ]}1/2dr. (3)

Here, UC (r) is the Coulomb potential energy (or the
Coulomb barrier), UC (r) = Z1eZ2e/r of a projectile nucleus
with charge Z1e in the Coulomb field Z2e/r of target nucleus;
μ = m1m2/(m1 + m2) is the reduced mass of projectile and
target nuclei; r0 = (R1 + R2) is the classical distance of clos-
est approach with nuclei (effective) radii R1 and R2; and rct p

is the classical turning point, determined from the following
expression:

E = UC (rct p) → rct p = Z1e · Z2e/E . (4)

Evaluation of the integral in Eq. (3) gives the standard
expression for the Gamow factor [2], as derived in Eq. (6):

GC (E ) =
(

EG

E

)1/2
{

2

π
cos−1

[ √
E

VC
−

√
E

VC

(
1 − E

VC

)]}
,

(5)
where VC = Z1e · Z2e/r0 is the full height of the Coulomb
barrier, EG = 2μc2 (παZ1Z2)2 is the Gamow energy, and
α = e2/h̄ c.

In the limit of
√

E/VC � 1 (which is usually the case), the
Gamow factor reduces to the simple Sommerfeld expression
[2,3]:

GC,asymptotic(E )=
(

EG

E

)1/2
(

1 − 4

π

√
E

VC
+ · · ·

)
→

(
EG

E

)1/2

.

(6)

III. NUCLEAR FUSION WITH ELECTRON SCREENING

A. Coulomb barrier screening by lattice electrons

In experiments with deuteron beams and deuterated targets,
when target deuterium nuclei (D) were embedded in insulators
and semiconductors [4,5], a relatively small enhancement of
nuclear reaction rates was found for the D(d, p)T nuclear
fusion reaction compared to reactions with gaseous D2 target
experiments [6]. These enhancements of reaction rates for
the D(d, p)T nuclear reaction in host insulators and semicon-
ductors is naturally explained by the screening of interacting
nuclei with static electron clouds localized in atomic shells
of host materials [4]. Collectively, shell electrons are produc-
ing a negative screening potential for the projectile nucleus,
effectively reducing the height and spatial extension of the
Coulomb barrier between interacting nuclei [5].

However, much larger effects have been readily measured
with deuterated metal targets (excluding the noble metals
such as Cu, Ag, and Au) [5,7,8]. A large enhancement of
the nuclear reaction rates for the D(d, p)T fusion reaction in
host metals can be considered as the result of an additional
dynamic screening by free-moving conduction electrons,
which are readily concentrated near the positive ions [5].
These screening effects are collectively referred to as “lattice
screening.”

Electron screening of target nuclei either by atomic shell
electrons or conduction electrons are usually both approxi-
mated by a negative uniform shift–Ue of the Coulomb barrier
UC (r). Here Ue is the electron screening potential energy and
is given by the simple formula [9]

Ue = Z1eZ2e

λsc
, (7)

where Z1 and Z2 are the atomic number of projectile and target
nuclei, respectively, and λsc is the corresponding screening
length. The standard derivation of Eq. (7) and the effect of
electron screening can be straightforwardly estimated by re-
calculating the Gamow factor G(E ) in Eq. (3) by replacing the
Coulomb potential energy UC (r) with the general expression
for the screened Coulomb potential energy UC,sc(r) [10]:

UC, sc(r) = Z1eZ2e

r
exp

(
− r

λsc

)
. (8)

Since the radial distance r in Eq. (3) is smaller or equal to
the classical turning point rct p, given by Eq. (4), which in turn
is generally much smaller than the characteristic distance of
electron cloud distribution from reacting nuclei, which is the
corresponding screening length λsc, that is

r0 � r � rct p � λsc, (9)

one can expand exp(− r
λsc

) = (1 − r
λsc

) in Eq. (8) to find that
the screened Coulomb potential energy UC,sc(r) (the screened
Coulomb barrier) can be rewritten [9] as

UC,sc(r) = Z1eZ2e

r

(
1 − r

λsc

)

= Z1eZ2e

r
− Z1eZ2e

λsc
= UC (r) − Ue, (10)
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TABLE I. Enhancement factor values for ErD3 at various energy levels.

E fdirect (E ) fUe (E ) fUe,asymptotic(E )

eV [Eq. (21)] [Eq. (17)] [Eq. (18)] fUe (E )
fdirect (E )

fUe,asymptotic (E )

fdirect (E )

1
2Ue 1.09 × 1012 2.36 × 1013 1.9 × 1032 21.5 1.7 × 1020

Ue 9.89 × 105 3.09 × 106 1.96 × 1011 3 2 × 105

2Ue 539 676 8286 1.25 15.4
3Ue 45.7 46.4 127 1.017 2.8

with the standard Coulomb barrier UC (r) as

UC (r) = Z1eZ2e

r
(11)

and the electron screening potential energy Ue, naturally de-
termined [9] as

Ue = Z1eZ2e

λsc
. (12)

Therefore, the concept of an electron screening potential
energy Ue, introduced above in Eqs. (7)–(11), can be theoreti-
cally justified if the classical turning point rct p is much smaller
than the corresponding screening length λsc. This necessary
condition, stated in Eq. (9), can be rewritten as

E � Ue, (13)

using the definition of the classical turning point rct p given by
Eq. (4).

Obviously for low energy, E � Ue, the concept of an
electron screening potential energy Ue given by Eqs. (7)–(11)
is not applicable, and the direct numerical evaluation of the
Gamow factor G (E ) in Eq. (3) with the screened Coulomb
potential energy UC,sc(r) from Eq. (8) is required.

It is well known [5,9] that the lowering of UC (r) by Ue is
equivalent to the increase of E by Ue, as can be seen in Eq. (3),
namely, [UC (r) − Ue] − E = UC (r) − (E + Ue). The uniform
shift Ue is called the “electron screening potential energy” [5].

Therefore, the experimentally measured tunneling proba-
bility σexp(E ) in the screened target at the ion energy E in the
CM frame can be evaluated as the experimentally measured
tunneling probability for bare ions collision at higher energy
(E + Ue) [11]:

σexp(E ) ≡ σscreen(E ) = σbare(E + Ue). (14)

The experimental fusion cross-section σexp(E ) can be written
[11,12] as

σexp(E ) = σbare(E ) f (E ), (15)

which is essentially the definition of the enhancement factor
f (E ).

From Eq. (1) the expression for an enhancement factor
fUe (E ) in the lattice potential approximation is found to be

fUe (E ) = S(E + Ue)

S(E )

E

(E + Ue)
exp[GC (E ) − GC (E + Ue)].

(16)

In the case of S(E + Ue) ∼= S(E ), which is usually the
general case, the enhancement factor fUe (E ) can be finally
written [5] as

fUe (E ) = E

(E + Ue)
exp [GC (E ) − GC (E + Ue)]. (17)

In the limit of
√

E/VC � 1, Eq. (17) is further reduced to the
following asymptotic formula [5,11,12]:

fUe,asymptotic(E ) = E

(E + Ue)
exp

[
Ue

2E

(
EG

E

)1/2
]
, (18)

following from Eq. (6).
For low energy (when E � Ue) the concept of an electron

screening potential energy Ue given by Eqs. (7)–(11) is not
applicable, and the direct numerical evaluation is required. For
the Gamow factor Gdirect (E ) in Eq. (3) with UC (r) → UC,sc(r),

Gdirect (E ) ≡ GC,Sc(E ) = 2

h̄

∫ r∗
ct p

r0

{2μ[UC,sc(r) − E ]}1/2
dr,

(19)

where r∗
ct p is the modified classical turning point determined

numerically from the following equation:

UC, sc(r∗
ct p) ≡ Z1eZ2e

r∗
ct p

exp

(
− r∗

ct p

λsc

)
= E , (20)

where the screened Coulomb potential energy UC,sc(r) is
obtained from Eq. (8).

The enhancement factor in this case is obviously equal to

fdirect (E ) = exp [GC (E ) − Gdirect (E )], (21)

where GC (E ) is determined from Eq. (5).
Table I presents the calculated values of enhancement

factors for deuterated erbium ErD3 for various levels of energy
of interest. Note that Ue was calculated using Eqs. (46) or (54)
noted below and was found to be Ue = 347 eV.

Note, for example, that the value of 3Ue corresponds to
2 keV kinetic energy of the projectile in the lab frame,
illustrating that the analytical formula for fUe (E ) is valid, but
the asymptotic formula for the enhancement factor is still
inappropriate. Since the electron screening effect becomes
important at low kinetic energy of the projectile, direct numer-
ical calculation of the Gamow factor is required for accurate
results.

The above equations show a sharp rise in enhancement fac-
tor f (E ) for deuterium interaction with host metals, especially
at moderately low deuteron energies. The enhancement factor
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f (E ) further increases with Z and with decreasing projec-
tile energy. This may enable Oppenheimer-Phillips stripping
reactions resulting in the production of energetic protons
and neutrons, and a possible route for multiplication. Such
Oppenheimer-Phillips stripping reactions appear to have been
observed in the companion experimental work reported in
Steinetz et al. [1].

Measured Ue for select targets. The experimental values
for electron screening potential energies Ue are as follows:
Ue = 25 ± 15 eV for gaseous targets [6], and Ue = 39−52 eV
for deuterated insulators and semiconductors targets [4,5,7].
However, for deuterated metal targets much larger values of
electron screening potential energies Ue are measured [5,7,8],
ranging from Ue = 180 ± 40 eV (Be) to 800 ± 90 eV (Pd).
The exclusion is observed for deuterated noble metal targets
[5,7,8], namely Ue = 43 ± 20 eV (Cu), Ue = 23 ± 10 eV
(Ag), and Ue = 61 ± 20 eV (Au).

Theoretical values for Ue, considering screening by static
electron clouds localized in atomic shells of host materials,
that are calculated in the adiabatic limit utilizing differences
in atomic binding energies [4], correlate well with experimen-
tally measured values for Ue in gaseous targets as well as in
deuterated insulator and semiconductor targets [4,5,7,8].

In contrast, theoretically calculated values of screening
potential energies Ue by static electron clouds in atomic shells
of host metals, are almost one order of magnitude smaller
[4] than values of electron screening potential energies Ue

experimentally measured for deuterated alkaline metal targets
[5,7,8]. These discrepancies obviously require different phys-
ical mechanisms for theoretical clarification of experimental
results. The novel physical mechanism, which takes into ac-
count the presence of quasifree moving conduction electrons
in metals as an additional source for screening of interacting
nuclei [5], will be discussed in Sec. III C.

B. Coulomb barrier screening by plasma particles

In deuterated materials exposed to ionizing radiation (γ
quanta or energetic electron e beam) dense plasma channels
are created inside an irradiated sample comprising nonequilib-
rium two-temperature plasma with free moving hot electrons
and free-moving cold deuteron ions.

Energetic electrons in plasma cannot create a bound state
with deuteron ions, because the mean kinetic energy of hot
electrons (K̄e ∼ kTe) is much larger than the Coulomb inter-
action (Ūie ∼ qiqe/r̄) between them [13]:

K̄e � |Ūie|. (22)

The inequality in Eq. (22) represents the necessary condition
for plasma existence and also can be written as

kTe � e2n1/3, (23)

using the obvious fact that the mean distance r̄ between ions
is of the order of n−1/3:

r̄ ∼ n−1/3. (24)

Introducing the electron Debye length λDe, which is defined
as

λDe =
(

kTe

4πe2n

)1/2

, (25)

Eq. (23) is rewritten with the help of Eq. (24) as

λDe
2 � r̄2

4π
→ λDe >

r̄√
4π

∼= 0.28r̄. (26)

Equation (26) indicates that in plasma the electron Debye
length λDe is larger in order of magnitude than the mean
distance r̄ between ions.

It also follows from Eqs. (24) and (26) that the number of
electrons in the electron Debye sphere NDe in plasma is much
larger than 1 [13]:

NDe ∼ n

(
4π

3
λ3

De

)
� 1. (27)

Therefore, the statement λDe > 0.28r̄ as given by Eq. (26)
and the equivalent statement NDe � 1 as given by Eq. (27)
follow from the plasma existence necessary requirement of
K̄e � |Ūie|, which is expressed by Eq. (22).

The undisturbed plasma in plasma channels is electroneu-
tral, with the total electric charge density Q0 being equal to
zero in each unit volume:

Q0 = qini0 + qene0 = 0, (28)

where ni0 is the undisturbed mean ion number density, ne0 is
the undisturbed mean electron number density, qi is the ion
electrical charge, and qe is the electron electrical charge. It
follows from Eq. (28) that the electron and ion undisturbed
number densities ne0 and ni0, respectively, are equal to each
other if qi = −qe = e:

Q0 = qi · ni0 + qe · ne0 = 0 → n ≡ ne0 = ni0. (29)

However, the long-range Coulomb forces between ions in
the plasma act at distances that are much larger than the
mean distance r̄ between plasma particles. The interaction
between any two charged ions at such distances is influenced
by the presence of a large number of charged particles. Con-
sequently, the resulting effective field is collectively produced
by many charged particles and naturally described by the
self-consistent Vlasov field, which is not a random one, but
macroscopically certain; that is, not causing the entropy of the
system to increase [13,14].

In accord with the above description, each ion in the
plasma can be considered as surrounded by a spherically
symmetrical (on average) charged ion cloud with nonuniform
charge density distribution Q(r):

Q(r) = qini(r) + qene(r), (30)

where r is the distance from the ion (located at r = 0). Here
ne(r) is the electron number density and ni(r) is the ion
number density, both distributed in the self-consistent Vlasov
potential field φ(r) around the ion in consideration.

Since in the Vlasov field φ(r) the potential energy of an
electron is qeφ(r) and of the ion is qiφ(r), the corresponding
electron number density ne(r) and ion number density ni(r)
are both given by the corresponding Boltzmann’s distribution
[13,14]:

ne(r) = ne0 exp

[
−qeφ(r)

kTe

]
, ni(r) = ni0 exp

[
−qiφ(r)

kTi

]
,

(31)
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where Te and Ti are the electron and ion temperatures, respec-
tively. Here ne0 and ni0 are the mean electron and ion number
densities in undisturbed plasma.

The Vlasov potential φ(r) in the ion cloud around any
considered ion obeys the nonlinear electrostatic Poisson’s
equation (the Vlasov equation):

�∇2φ = 1

r2

∂

∂r

[
r2 ∂φ(r)

∂r

]
= −4πQ(r) = −4πQ[φ(r)],

(32)
where the total electric charge density Q(r) is the nonlinear
function in φ(r), as given by Eq. (30) together with Eq. (31).

The solution of the Vlasov equation, Eq. (32), should be
used in the evaluation of the Gamow factor in Eq. (3) for
the screened Coulomb barrier UC,sc. For the projectile nucleus
with charge +e in the Vlasov potential field φ(r) of target
nucleus with charge qi = +e, the screened Coulomb barrier
UC,sc by definition is

UC,sc ≡ eφ(r). (33)

At large distance from the considered ion (located at r = 0),
the Vlasov field goes to zero φ(r → ∞) → 0, since it de-
scribes the deviation from reference potential of unperturbed
plasma. Thus

ne(r → ∞) → n ≡ ne0 and ni(r → ∞) → n ≡ ni0. (34)

As the undisturbed plasma is electroneutral, the total electric
charge density Q0 is equal to zero in each unit volume:

Q(r → ∞) → Q0 = qini0 + qene0 = 0 → n ≡ ne0 = ni0

(35)

[see Eqs. (28) and (29)].
Since at large distance r from the ion (located at r = 0),

the Vlasov potential φ(r) is small, the ion and electron charge
density distributions can be reduced to linear expressions in
term of φ(r):

ne(r) = ne0

(
1 − qe

kTe
φ(r)

)
and

ni(r) = ni0

(
1 − qi

kTi
φ(r)

)
, (36)

leading to a linear expression in φ(r) for the total charge
density Q[φ(r)]:

Q[φ(r)] = Q0 −
(

q2
i ni0

kTi
+ q2

e ne0

kTe

)
φ(r), Q0 = 0. (37)

Substitution of Eq. (37) into Eq. (32) gives the linearized elec-
trostatic Poisson’s equation (Debye equation) for the Vlasov
potential φ(r) [13]:

1

r2

∂

∂r

(
r2 ∂φ(r)

∂r

)
= 1

λ2
D

φ(r), (38)

where λD is the Debye screening length in two-component,
two-temperature plasma [15]:

λ−2
D = λ−2

Di + λ−2
De , (39)

where λDi and λDe are the ion and electron Debye lengths,
respectively. They are defined as

λDi =
(

kTi

4πni0e2

)1/2

and

λDe =
(

kTe

4πne0e2

)1/2

. (40)

If the electron temperature Te is much higher than the ion
temperature Ti (i.e., hot electrons and cold ions), then the De-
bye screening length λD for two-component, two-temperature
plasma is determined by the ion Debye length λDi:

Te � Ti → λD = λDi =
(

kTi

4πnioe2

)1/2

, (41)

as it follows from Eqs. (39) and (40).
Near the ion with charge qi = +e (located at r = 0), the

Vlasov potential φ(r) reduces to the Coulomb potential qi/r,
generated by this ion:

φ(r → 0) → qi

r
. (42)

The exact solution of the Debye equation, Eq. (38), for the
Debye potential φD(r) that satisfies the boundary condition
expressed by Eq. (42), takes the following simple form known
as the Debye potential:

φD(r) = qi

r
exp

(
− r

λD

)
. (43)

The usual approximation of the Vlasov potential φ(r) that
obeys the nonlinear equation Eq. (32) by the linear Debye
potential φD(r) is expressed by Eq. (43) with the correct
boundary condition from Eq. (42), which is extensively used
in the nonlinear theory of plasma sheath [15,16].

This approximation can also be used to obtain the analyti-
cal expression for the plasma-screened Coulomb barrier UC,sc.
The Debye potential energy UD(r) of the projectile nucleus
with charge +e in the Debye potential field φD(r) of the target
nucleus with charge qi = +e, given by Eq. (43), by definition
is as follows:

UC,sc ≡ UV (r) = eφ(r) ≈ UD = eφD(r) = e2

r
exp

(
− r

λD

)
.

(44)

In summary, the correct expression for the screened
Coulomb barrier UC,sc is determined by the Vlasov potential
and not by its linearized version, the Debye potential, and
the Vlasov potential is valid at any temperature. The Vlasov
potential can be obtained by direct numerical solution of the
nonlinear equation, Eq. (32), with the total electric charge
density Q(r) given by Eqs. (30) and (31). Alternatively, as
commonly done in an evaluation of the nonlinear plasma
sheath problem, it is linearized to the Debye potential given
by Eq. (43), with the correct boundary condition Eq. (42), to
merge with the Coulomb potential near the bare ion.

In dense nonequilibrium two-temperature plasma channels
created in deuterated metal by γ -ionizing radiation, the elec-
tron temperature Te is much higher than ion temperature Ti,
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and therefore the Debye screening length λD is determined
mainly by the ion Debye length λDi, as it follows from
Eqs. (39) and (40). Therefore, the Debye screening length λD

as given by
Eq. (41) converts to

Te � Ti → λD = λDi =
(

kTi

4πnioe2

)1/2

= 4.15 × 10−10 cm,

(45)

since in deuterated erbium ErD3 exposed to γ -ionizing radi-
ation ni0 = ne0 = 8 × 1022 cm−3 and Ti = 293 K (room tem-
perature). Also, the plasma-particle screening potential energy
Ue, which is given by Eq. (12) for deuterated erbium ErD3,
becomes equal to

Ue = e2

λD
= 347 eV, (46)

with λD from Eq. (45).

C. Coulomb barrier screening by conduction electrons
in metal lattice

In order to theoretically explain the high values of elec-
tron screening potential U exp

e experimentally measured for
deuterated alkaline metal targets [5,7,8], it was suggested in
[5] to take into account the presence of quasi-free moving
conduction electrons in metals for screening of interacting
nuclei. Indeed, when atoms are tightly packed, such as in solid
host metals, wave functions of valence electrons of individual
atoms are overlapped, acquiring a considerable kinetic energy
K̄e,degeneracy due to quantum degeneracy. The Fermi repulsion
is large enough to liberate valence electrons from individual
atoms into a sea of conduction electrons, since they are
identical particles and are truly indistinguishable.

This electron degeneracy energy K̄e,degeneracy, called the
Fermi energy εF , can be straightforwardly estimated from the
Heisenberg uncertainty relation:


pe
r ∼ h̄. (47)

The root-mean-square of electron momentum pe ≡
√

〈pe
2〉 is

equal to momentum uncertainty 
pe, if 〈pe〉 = 0:

pe = 
pe =
√〈

p2
e

〉 − √
〈pe〉2 =

√
〈pe

2〉 (48)

and 
r is of the order of the characteristic distance between
electrons r̄, which in turn is of the order of n−1/3

e :


r ∼ r̄ ∼= n−1/3
e , (49)

where ne is the electron number density. The value of pe is
obtained from Eqs. (32)–(34):

pe ∼ h̄

r̄
∼= h̄n1/3

e . (50)

Then the Fermi energy εF is estimated to be

K̄e,degeneracy ≡ εF ∼ p2
e

me

∼= h̄2

me
n2/3

e . (51)

More precise calculation of the Fermi energy εF (for degener-
ate electron gas) is given by the following expression [13]:

εF = (3π2)2/3

2

h̄2

me
ne

2/3 = 4.78
h̄2

me
ne

2/3. (52)

It was considered in [5] that differences between the
Fermi-Dirac and classical (Boltzmann) distributions of the
conduction electrons may be expected to be negligible for
the electron screening at room temperature [5,17]. In that sim-
plified model [5], deuteron ions together with metal conduc-
tion electrons were treated as a one-component equilibrium
classical plasma, which comprises metallic quasifree moving
conduction electrons (providing plasma screening), and singly
charged localized deuteron ions (not contributing to plasma
screening). The Debye screening length in one-component,
equilibrium (Te = Ti) classical (Boltzmann) plasma that ap-
proximates the screening by conduction electrons, λDe,c, is
then reduced to the electron Debye screening length λDe:

λDe,c = λDe =
(

kTe

4πne0e2

)1/2

. (53)

For deuterated erbium ErD3 with material parameters
ne0 = ni0 = 8 × 1022 cm−3 and Te = 293 K (room tempera-
ture), Eq. (53) gives λDe,c = 4.15 × 10−10 cm. Therefore, the
conduction-electron screening potential energy Ue, which is
given by Eq. (12) for deuterated erbium ErD3, is equal to

Ue = e2

λDe,c
= 347 eV, (54)

with λDe,c from Eq. (53). It is obvious that a much better
estimate of Ue,c can be achieved with Fermi-Dirac statis-
tics for the description of conduction electrons rather than
with the classical (Boltzmann) statistics. It is noted that the
screening potential values calculated for plasma and conduc-
tion electrons are identical, although for different reasons.
Indeed, plasma formation may also contribute to screening in
nonmetal targets, e.g., in dense deuterium gas irradiated by
ionizing radiation.

D. Screening of reacting hydrogen isotope nuclei by atomic shell
(bound) electrons in deuterated metals

The screening of ions by atomic shell (bound) electrons is
modeled by the Thomas-Fermi model. The Wentzel-Thomas-
Fermi screened Coulomb atomic potential (energy) is

VC, sc(r) = Z1e(Z2e)

r
exp

(
− r

λTF

)
, (55)

where Z1 and Z2 are the atomic numbers of projectile and
target (host) nuclei, respectively, and, for instance, the mod-
ified (to better fit experimental data) Thomas-Fermi screening
length λTF (atom size) by atomic shell electrons of the host
material is given by the following relation [11]:

λTF = 1.4a0

Z1/3
, (56)

where a0 is the Bohr radius, a0 = 5.29 × 10−9 cm and Z is
the atomic number of the host material.
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IV. GENERAL SCREENING CASE FOR REACTING
HYDROGEN ISOTOPE NUCLEI

In the general case, taking into account possible simul-
taneous screening of reacting hydrogen isotope nuclei by
atomic shell electrons of the host material and by conduction
electrons, or by atomic shell electrons of the host material and
plasma electrons, the total screening potential energy Ue,sc can
be estimated [18] as

Ue,sc = e2

λsc
, (57)

where the screening length λsc is given by one of the following
general relations [18]:

λ−2
sc = λ−2

TF + λ−2
De,c or λ−2

sc = λ−2
TF + λ−2

D , (58)

where λTF is the modified Thomas-Fermi screening length by
atomic shell electrons of host material, λDe,c is the screening
length by conduction electrons, and λD is the Debye screening
length in plasma.

Since the inverse square of screening length λ−2
TF , λ−2

De,c,
or λ−2

D is proportional to the corresponding electron number
density, the derivation of Eqs. (57) and (58) is similar to the
derivation of Eqs. (39) and (40), as the summation of electron
number densities was used in both of them to contribute to
the total charge density in electrostatic Poisson’s equation for
screened Coulomb interaction potential.

V. COULOMB SCATTERING ON TARGET NUCLEI

A. Light particles elastic Coulomb scattering (e−, e+)

Coulomb scattering of energetic projectile particles on
target nuclei is the principle process associated with fusion
reactions of interest. Fusion nuclear events are more likely
under the condition of large-angle scattering, which brings
the reacting ions to the classical distance of closest ap-
proach to successfully tunnel through the Coulomb barrier.
However, the elastic scattering at a small angle dominates
the Coulomb scattering interaction. Generally, the electron
screening of the Coulomb barrier could significantly reduce
the small-angle elastic scattering, increasing the probability of
large-angle scattering and correspondingly successful nuclear
fusion events. Elastic scattering studies on Coulomb scattering
of energetic projectiles on target nuclei are analyzed and
extended to include the electron screening by plasma electrons
as well as by conduction electrons in deuterated metals. It is
also found that the kinetic energy transfer (kinetic heating) to
fuel nuclei is most effective by energetic neutrons, such as γ

induced photoneutrons.
The Coulomb scattering of relativistic projectile elec-

trons on target atoms (absorbing medium) characterizes by
the projectile electron-target atom differential cross section
dσ/d�|e−a, which is determined as the sum of the projectile
electron-target nucleus differential cross section dσ/d�|e−N

and the projectile electron-target orbital electron differential
cross section dσ/d�|e−e multiplied by Z (the atomic num-
ber of target atoms). It is given by the following relation

[14,19,20]:

dσ

d�

∣∣∣∣
e−a

= dσ

d�

∣∣∣∣
e−N

+ Z
dσ

d�

∣∣∣∣
e−e

= D2
e−a

(
1 − β2

2 (1 − cos θ )
)

[
2(1 − cos θ ) + θ 2

min

]2 , (59)

where θ is the electron scattering angle, β = ve/c (with ve

being the velocity of the projectile electron and c being the
speed of light) and θmin is the atomic screening parameter
defined as

θmin = h̄/λTF

pe
, (60)

where h̄ is the reduced Planck constant and λT F is the mod-
ified Thomas-Femi target atomic radius given by Eq. (56).
The electron momentum pe is determined by the following
relations:

pe = Ee

c

(
1 + 2mec2

Ee

)1/2

, (61)

where Ee = Ee,tot − me c2 is the kinetic energy of projectile
electron (Ee,tot is the total energy of projectile electron and me

is the electron mass).
Equation (59) was derived in the first Born approximation

to the Dirac equation for the Wentzel-Thomas-Fermi screened
Coulomb atomic potential (energy) given by Eq. (55):

VC, sc(r) = e(Ze)

r
exp

(
− r

λTF

)
, (62)

where λTF is the Thomas-Fermi screening length (atom size)
by atomic shell electrons of host material given by Eq. (56).

The projectile electron-target atom elastic scattering char-
acteristic distance De−a is determined from the following
relation:

D2
e−a = D2

e−N + ZD2
e−e, (63)

where the projectile electron-target nucleus characteristic
scattering distance De−N is determined by

De−N = Ze2

γ mev2
e /2

= 2Zre

√
1 − β2

β2

= 2Ze2

βEe(1 + 2mec2/Ee)1/2 (64)

with γ = 1/
√

1 − β2, and the projectile electron-target orbital
electron characteristic scattering distance De−e is given by
Eq. (63) with Z = 1.

Here re = e2/mec2 is the classical radius of an electron
re = 2.82 fm = 2.82 × 10−13 cm. Substitution of De−N from
Eq. (64) and De−e into Eq. (63) yields

De−a = 2re
√

Z (Z + 1)

γ β2
= 2 e2√Z (Z + 1)

βEe(1 + 2 mec2/Ee)1/2 . (65)

The total cross section se−a is obtained by integrating
over d� the differential cross section for projectile electrons
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scattering on target atoms from Eq. (59):

σe−a =
∫

dσ

d�

∣∣∣∣
e−a

d� = πD2
e−a

θ2
min

×
[(

4 + β2θ2
min

4 + θ2
min

)
− β2θ2

min

4
ln

(
4

θ2
min

− 1

)]
, (66)

where θmin = (h̄/pe)λ−1
TF, is given by Eq. (60). The expression

for se−N follows from Eq. (66) with the obvious substitution
D2

e−a → D2
e−N .

For Ee = 2 MeV and mN = md (deuteron mass), the nu-
merical value for se−d is

σe−d =
∫

dσ

d�

∣∣∣∣
e−d

d� ≈ πD2
e−d

θ2
min

= 4πe4λ2
TF

h̄2c2β 2
= 38.41 kb

(67)

since πD2
e−d = 45.1 mb, but θ2

min = (h̄/pe)2λ−2
TF = 1.17×10−6.

The target nucleus recoil energy can be found from the
conservation of the total momentum in the elastic projectile
electron-target nucleus scattering process

�pN = �pe − �p′
e, (68)

where �pN is the target nucleus recoil momentum, �pe is the
momentum of the incident electron, and �p′

e is the momentum
of the scattered electron. Since in elastic scattering pe =
| �pe| ≈ | �p′

e| (for the reason that small-angle scattering is the
most probable event), it follows from Eq. (68) that

p2
N = �p2

N = �p2
e + �p′2

e − 2pe p′
e cos θ ≈ 2p2

e(1 − cos θ ), (69)

where θ is the scattering angle. Correspondingly, it follows
from Eq. (69) with the help of Eq. (61) that the target nucleus
recoil energy EN (θ ) is

EN (θ ) = p2
N

2mN
≈ p2

e

mN
(1 − cos θ )

= E2
e

mN c2

(
1 + 2mec2

Ee

)
(1 − cos θ ), (70)

where Ee = Ee,tot − mcc2 is the kinetic energy of projectile
electron (Ee,tot is the total energy of projectile electron, and
me and mN are the electron and nucleus mass, respectively).

The mean target nucleus recoil energy ĒN in single elastic
projectile electron-nucleus (target) collision is obtained by
averaging of EN (θ ) over d�:

ĒN =
∫

EN (θ )dσ/d�|e−N d�∫
dσ/d�|e−N d�

. (71)

Substitution of dσ/d�|e−N into Eq. (71) and taking the inte-
gral yields the expression for the mean target nucleus recoil
energy ĒN in single elastic projectile electron-nucleus (target)
collision:

ĒN = h̄2

mNλ2
T F

×
{
(2 + α)(1 + αβ2) ln

(
2+α
α

) − 2[1 + (1 + α)β2]
}

2(2 + αβ2) − α(2 + α)β2 ln
(

2+α
α

) ,

(72)

where α = θ 2
min/2, β = ve/c. For Ee = 2 MeV and mN = md

(deuteron mass), the numerical value for the mean target
nucleus recoil energy ĒN = Ēd in single elastic projectile
electron-target deuteron nucleus collision is

Ēd = 24.75 meV. (73)

B. Heavy particle elastic Coulomb scattering (p, d, α)

The Coulomb scattering of the heavy projectile particles on
target nuclei is characterized by the differential cross section
of the heavy projectile particles and nuclei, which is given
by Eq. (59) for the obvious substitution D2

e−a → D2
p−N S with

β = vp/c, and

θmin,p = h̄/λ TF

pp
= h̄/λ TF√

2mpEp
, (74)

where pp = √
2mpEp is the projectile momentum and mp and

Ep are the projectile mass and kinetic energy, respectively.
The projectile particle-target nucleus characteristic scatter-

ing distance Dp−N is determined by

Dp−N = zpZN e2

Ep
, (75)

where zp is the projectile particle atomic number (zp = 1 for
the proton and deuteron projectile, zp = 2 for the α projectile)
and ZN is the target nucleus atomic number.

The total cross section σp−N is obtained from Eq. (66) with
the obvious substitution D2

e−a → D2
p−N and with β → βp �

1, since the heavy projectiles are nonrelativistic:

σp−N = πD2
p−N

θ2
min,p

(
1 + θ2

min,p

4

)−1

→ πD2
p−N

θ2
min,p

= 2πmpe4z2
pZ2

N

h̄2

λ 2
TF

Ep
(76)

since θmin,p = h̄/(λ TF pp) � 1, λ T F = 1.4 a0ZN
−1/3, and

pp = √
2mpEp.

For a proton projectile with Ep = 3 MeV and deuteron
target nucleus (mN = md ), the numerical value for σp−D (total
scattering cross section) is

σp−D =
∫

dσ

d�

∣∣∣∣
p−D

d� ≈ πD2
p−D

θ2
min,p

= 2πmpe4

h̄2

λ 2
TF

Ep
= 5.76 Mb. (77)

For a deuteron projectile with Ed = 3 MeV and deuteron
target nucleus (mN = md ), the numerical value for σd−D is

σd−D =
∫

dσ

d�

∣∣∣∣
d−D

d� ≈ πD2
d−D

θ2
min,d

= 2πmd e4

h̄2

λ 2
TF

Ed
= 11.51 Mb, (78)

whereas for deuteron projectile with Ed = 10 keV and
deuteron target nucleus (mN = md ), the numerical value for
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σd−D is as follows:

σd−D =
∫

dσ

d�

∣∣∣∣
d−D

d� ≈ πD2
d−D

θ2
min,d

= 2πmd e4

h̄2

λ 2
T F

Ed
= 3.45 Gb. (79)

The relative probability Psc(π/2 �θ � π ) to scatter in the
back hemisphere (π/2 �θ � π ) is equal to

Psc(π/2 �θ � π ) = 1

σd−D

∫ π

π/2
dσ/d�|d−D2π sin θdθ.

(80)

For a deuteron projectile with Ed = 3 MeV and deuteron
target nucleus (mN = md ), the numerical value of Psc(π/2 �
θ � π ) for screening by a deuteron shell electron (λsc =
λTF = 1.4a0 = 7.4 × 10−9 cm) is equal to

Psc(π/2 �θ � π ) = 1.57 × 10−10, (81)

and the value for screening by a metal conduction electron
(λsc = λDe,c = 5 × 10−10 cm) is equal to

Psc(π/2 �θ � π ) = 3.45 × 10−8. (82)

In the case of conduction electron screening in Eq. (82), the
screened Coulomb potential energy VC,sc(r) is defined by the
same Eq. (62) with λTF → λsc = λDe,c = 5 × 10−10 cm.

For a deuteron projectile with Ed = 10 keV and deuteron
target nucleus (mN = md ), the probability Psc(π/2 � θ �
π ) for screening by a deuteron shell electron (λsc = λTF =
1.4a0 = 7.4 × 10−9 cm) is equal to

Psc(π/2 �θ � π ) = 4.73 × 10−8 (83)

and for screening by a metal conduction electron (λsc =
λDe,c = 5 × 10−10 cm) is equal to

Psc(π/2 �θ � π ) = 1.04 × 10−5. (84)

Generally, the deep electron screening of the Coulomb bar-
rier (with λDe,c � λTF) could significantly reduce the small-
angle elastic scattering dominance, increasing the probabili-
ties of large-angle scattering [thus increasing the astrophysical
factor S(E )] and successful nuclear fusion events.

For an α projectile with Eα = 3 MeV and deuteron target
nucleus (mN = md ), the numerical value for σα−D (total scat-
tering cross section) is

σα−D =
∫

dσ

d�

∣∣∣∣
α−D

d� ≈ πD2
α−D

θ2
min, α

= 8πmαe4

h̄2

λ2
TF

Eα

= 91.48 Mb, (85)

whereas for α projectile with Eα = 1 MeV and deuteron target
nucleus (mN = md ), the numerical value of σα−D increases
due to the inverse depencence on energy:

σα−D = 274.5 Mb. (86)

The target nucleus recoil energy can be found from the
conservation of the total momentum in the elastic projectile

particle-target nucleus scattering process:

�pN = �pp − �p′
p, (87)

where �pN is the target nucleus recoil momentum, �pp is the
momentum of the incident projectile particle, and �p′

p is the
momentum of the scattered projectile particle. Since in elastic
scattering pp = | �pp| ≈ | �p′

p| (for the reason that small-angle
scattering is the most probable event), it follows from Eq. (87)
that

p2
N = �p2

N = �p2
p + �p′2

p − 2pp p′
p cos θ ≈ 2p2

p(1 − cos θ ), (88)

where θ is the scattering angle. Correspondingly, the target
nucleus recoil energy EN (θ ) follows from Eq. (88):

EN (θ ) = p2
N

2mN
≈ p2

p

mN
(1 − cos θ ) = 2mp

mN
Ep(1 − cos θ ), (89)

where Ep = p2
p/2mp is the kinetic energy of the projectile

particle.
The mean target nucleus recoil energy ĒN in single elastic

nonrelativistic projectile-target nucleus collision is obtained
by averaging of EN (θ ) over d�, and from Eq. (71) with the
usual substitution α → αp = θ2

min,p/2 it follows that

ĒN (βp � 1) = h̄2

mNλ 2
TF

ln

(
2

θmin,p

)

= h̄2

mNλ 2
TF

ln

(
2λ TF

h̄

)√
2mpEp) (90)

since θmin,p = h̄/(λ TF pp) = h̄/(λ TF
√

2 mpEp) � 1.

C. Compton scattering on free deuteron

The differential Klein-Nishina (1929) cross section
dσ KN

C /d� per unit solid angle d� for Compton scattering (of
an electron) on a deuteron is given by the standard expression

dσ KN
C

d�
= r2

D

2

{
1 + cos2θ

[1 + εD(1 − cos θ )]2 + ε2
D(1 − cos θ )2

[1 + εD(1 − cos θ )]3

}
,

(91)

where rD is the deuteron classical radius rD = e2/mDc2, eD =
Eγ /mDc2 and Eγ is the photon energy.

The total cross section σ KN
C is obtained by integrating the

differential cross section for Compton scattering given by
Eq. (91) over d�:

σ KN
C =

∫
dσ KN

C

d�
d� =

∫ π

0

dσ KN
C

d�
2π sin θ dθ. (92)

The above integration produces the standard known formula:

σ KN
C = 2πr2

D

[
1 + εD

ε2
D

(
2(1 + εD)

1 + 2εD
− ln (1 + 2εD)

εD

)

+ ln (1 + 2εD)

2εD
− 1 + 3εD

(1 + 2εD)2

]
. (93)

For Eγ = 2 MeV and mN = md , the numerical value for σ KN
C

is as follows:

σ KN
C = 49.43 nb (94)
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TABLE II. Mean deuteron recoil energies for various reactions.

Reaction Total cross Mean deuteron
(particle, D) section, σ (barn) recoil energy

Light particles (e−, e+) Ee = 2 MeV 38.41 kb 24.75 meV
Heavy particles Ep = 3 MeV 5.76 Mb 41.4 meV

Ed = 3 MeV 11.51 Mb 42.7 meV
Eα = 3 MeV 91.48 Mb 44 meV

Compton γ Eγ = 2 MeV 49.43 nb 2.13 keV
Neutron, n En = 2.45 MeV 3 b 1.09 MeV

For small εD = Eγ /mDc2 � 1 the expression for σ KN
C is

reduced to

σ KN
C (εD � 1)

= 8πr2
D

3

(
1 − 2εD + 26

5
ε2

D − 133

10
ε3

D + 1144

35
ε4

D − · · ·
)

.

(95)

For Eγ = 2 MeV and mN = md , the numerical value for
σ KN

C (εD � 1), calculated with the help of Eq. (95), is almost
as in Eq. (93), namely

σ KN
C (εD � 1) = 49.43 nb. (96)

The deuteron recoil energy ED(θ ), which is the kinetic energy
transferred to free (unbounded) deuteron by γ quanta with
energy Eγ , is given by the standard known expression:

ED(θ ) = Eγ εD
(1 − cos θ )

1 + εD(1 − cos θ )
,

εD = Eγ

mDc2
, (97)

where θ is the photon scattering angle. When Eγ �
mDc2, (i.e., εD � 1) then Eq. (97) is reduced to

ED(θ ) ≈ E2
γ

mDc2
(1 − cos θ ) = Eγ εD(1 − cos θ ),

εD = Eγ

mDc2
� 1. (98)

Mean deuteron recoil energy ĒD in single Compton col-
lision is obtained by averaging ED(θ ) from Eq. (96) with
dσC/d� from Eq. (91) over d�:

ĒD =
∫

ED(θ ) dσ KN
C

d�
d�∫ dσ KN

C
d�

d�
= 1

σ KN
C

∫ π

0
ED(θ )

dσ KN
C

d�
2π sin θ dθ.

(99)
The above integration produces the standard known expres-
sion

ĒD = Eγ

[
2εD

(
9 + 51εD + 93ε2

D + 51ε3
D − 10ε4

D

)
− 3(3 − εD)(1 + εD)(1 + 2εD)3 ln(1 + 2εD)

]
×{6εD(1 + 2εD)[2 + εD(1 + εD)(8 + εD)]

− 3(1 + 2εD)3[2 + εD(2 − εD)] ln(1 + 2εD)}−1.

(100)

When εD � 1, i.e., Eγ � mDc2, then Eq. (100) is reduced to

ĒD(εD � 1) = Eγ εD

(
1 − 11

5
εD + 51

10
ε2

D − 3931

350
ε3

D + · · ·
)

.

(101)
For Eγ = 2 MeV and mN = md , the numerical value for

ĒD(εD � 1) is

ĒD(εD � 1) = 2.13 keV. (102)

In the case of Compton scattering on free electrons, when
Eγ = 2 MeV, then εe = Eγ /mec2 = 3.914. Then it follows
from Eq. (100) that in this case (rD → re), Ēe = 1.062 MeV.
For Eγ = 1.022 MeV, εe = Eγ /mec2 = 2, and it follows from
Eq. (100) that Ēe = 0.453 MeV. Therefore, the kinetic energy
transfer to fuel nuclei (D) by energetic photons is much
more efficient than by either energetic, light charged particles
(e−, e+) or by energetic heavy, charged particles (p, d ,α).

Table II provides a comparison of the mean target nucleus
recoil energy ĒN in single elastic nonrelativistic projectile-
target nucleus collision for various projectiles and at different
projectile energies. In the table, the target is always a deuteron
nucleus (mN = md ), and the calculation provides a numerical
value for ĒD(βp � 1).

Thus, we conclude that the kinetic energy transfer to fuel
nuclei D by either energetic light charged particles (e−, e+)
or by energetic heavy charged particles (p, d ,α) is a very
inefficient process unless there is a means to increase the prob-
ability of large-angle scattering; for example, via a decreased
mean-free path by increased ion and electron densities.

VI. NEUTRON ELASTIC SCATTERING ON
DEUTERON NUCLEI

Since the deuteron nucleus possesses just single (ground)
energy level, the neutron scattering on deuteron is elastic scat-
tering process, if energy of neutron is below the disintegration
of deuteron by neutron (the deuteron disintegration threshold
by neutron Kth

n = 3.4 MeV). In this case, it is well known [21]
that the neutron elastic cross section σsc(θCM) is isotropic in
the center of mass (CM) frame; that is,

σsc(θCM) = σsc

4π
, (103)

where θCM is the neutron scattered angle in the CM frame,
and σsc is the total neutron elastic cross section. The scattering
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angle θlab in the lab frame is related to θCM as

tan θlab = md sin θCM

mn + md cosθCM
, (104)

where mn and md are the neutron and deuteron mass, respec-
tively.

Since the scattered angles θCM and θlab are different, the
angular distributions of scattered particles in CM and lab
frames are also different. However, the number of scattered
particles in the corresponding solid angle d�(θCM) in the CM
frame and in solid angle d�(θlab) in the lab frame must be the
same:

σsc(θlab)d�(θlab) = σsc(θCM)d�(θCM). (105)

However, d�(θCM) = 2π sin(θCM)dθCM and d�(θlab) =
2π sin(θlab)dθlab; therefore, Eq. (92) becomes

σsc(θlab) sin (θlab)dθlab = σsc(θCM) sin (θCM)dθCM. (106)

With the help of Eq. (104) it follows from Eq. (106) that the
angular distribution of scattered particles in the lab frame can
be determined from the corresponding angular distribution of
scattered particles in the CM frame [21], as follows:

σsc(θlab) = σsc(θCM)

[
m2

n + m2
d + 2mnmd cos(θCM)

]3/2

m2
d [md + mn cos (θCM)]

. (107)

The relation between scattered neutron velocities, �v′
n,CM in the

CM frame and �v′
n, lab in the lab frame, is given by the simple

formula

�v′
n, lab = �v′

n,CM + �VCM, VCM = mn

mn + md
�vn, (108)

where �VCM is the CM frame velocity, and �vn is the neutron ve-
locity in the lab frame. Correspondingly, the relation between
neutron and deuteron velocities �vn, CM and �vd, CM in the CM
frame and �vn and �vd in the lab frame are as follows:

�vn, CM = �vn − �VCM = md

mn + md
�vn,

�vd, CM = − �VCM = − mn

mn + md
�vn, and �vd = 0. (109)

Since the magnitude of neutron velocity in CM does not
change after collision, i.e., v′

n, CM = vn, CM, it follows with the
help of Eqs. (108) and (109) that

v′2
n, lab = v2

n,CM + V 2
CM + 2vn,CMVCM cos θCM

=
(
m2

n + m2
d + 2mnmd cos θCM

)
(mn + md )2 v2

n . (110)

Rewriting Eq. (110) in terms of the neutron kinetic energy K ′
n

after and the neutron kinetic energy Kn before yields

K ′
n =

(
m2

n + m2
d + 2mnmd cos θCM

)
(mn + md )2 Kn. (111)

It is convenient to introduce the new parameter αn by the
following definition [21]:

αn = (md − mn)2

(md + mn)2 . (112)

Then, in term of the new parameter αn, Eq. (111) is reduced
to

K ′
n = 1

2 Kn[(1 + αn) + (1 − αn) cos θCM]. (113)

From Eq. (113) it is easy to find out that the kinetic energy K ′
n

is in the following limits (0 � θCM � π ):

αnKn � K ′
n � Kn. (114)

The probability distribution P(Kn → K ′
n)dK ′

n is, by def-
inition, the probability that the neutron with initial kinetic
energy Kn will acquire kinetic energy in the energy gap
(K ′

n, K ′
n + dK ′

n) after the collision. The probability that
the neutron will be scattered in interval (θCM,θCM + dθCM) is
given by

σsc(θCM)d�(θCM)

σsc
= σsc(θCM)2π sin (θCM)dθCM

σsc
, (115)

where σsc(θCM) is the neutron differential elastic cross section
and σsc is the total neutron elastic cross section in CM. It is
clear that they are the same probabilities:

P(Kn → K ′
n)dK ′

n = −σsc(θCM)2π sin (θCM)

σsc
dθCM (116)

since dθCM > 0 → dK ′
n ≺ 0, thus providing the positivity of

the probability P(Kn → K ′
n) > 0.

From Eq. (113) it follows that

dK ′
n = − 1

2 Kn(1 − αn) sin θCMdθCM. (117)

Substitution of Eq. (117) into Eq. (116) yields [21]

P(Kn → K ′
n) = 4πσsc(θCM)

Kn(1 − αn)σsc

for

(αnKn � K ′
n � Kn). (118)

Since the neutron elastic cross section σsc(θCM) is isotropic
in the CM frame, then substitution of σsc(θCM) = σsc/4π from
Eq. (103) into Eq. (118) yields

P(Kn → K ′
n) = 1

Kn(1 − αn)

for

(αnKn � K ′
n � Kn). (119)

Therefore, the kinetic energy probability distribution
P(Kn1 → K ′

n) is independent of K ′ in the whole interval
(αnKn � K ′

n � Kn) [21].

VII. NEUTRON ENERGY LOSS IN ELASTIC COLLISIONS
WITH DEUTERON NUCLEI

By definition, the average neutron kinetic energy K̄ ′
n after

elastic collision is obtained by averaging K̄ ′
n with the proba-

bility distribution P(Kn → K ′
n) given by Eq. (119):

K̄ ′
n =

∫ Kn

αKn
K ′

nP(Kn → K ′
n)dK ′

n∫ Kn

αKn
P(Kn → K ′

n)dK ′
n

= 1

2
(1 + αn)Kn. (120)

The average kinetic energy transferred from neutron to
deuteron nucleus in elastic collision is equal to Kn − K̄ ′

n [see
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also Eq. (112)]:

K̄ ′
d = Kn − K̄ ′

n = 1

2
(1 − αn)Kn

= 2mnmd

(mn + md )2 Kn = 4

9
Kn, (121)

which is equal to one-half of the maximum energy transfer in
a head-on collision [21]:

K ′
d,max = 4mnmd

(mn + md )2 Kn. (122)

For a neutron projectile on deuteron target nucleus, with
the total elastic cross section of the order of

σsc ∼ 3 bn(25 meV � Kn � 2 MeV). (123)

Consequently, the kinetic energy transfer to fuel nuclei (D)
by energetic neutrons is the most efficient process compared
to energy transferred by energetic light charged particles
(e−, e+), by energetic heavy charged particles (p, d ,α), or
even by energetic photons.

VIII. SUMMARY

This study indicates the crucial role of electron screening
on the overall efficiency of nuclear fusion events between
charged particles. We show that neutrons are far more effi-
cient than energetic charged particles, such as light particles
(e−, e+) or heavy particles (p, d, α) in transferring kinetic en-
ergy to fuel nuclei (D) to initiate fusion processes. We provide
a theoretical framework for d-D nuclear fusion reactions in
high-density cold fuel nuclei embedded in metal lattices, with
a small fraction of fuel activated by hot neutrons, which in this
study are produced by γ induced photodissociation. We also
establish the important role of electron screening in increasing

the relative probability Psc(π/2 � θ � π ) to scatter in the
back hemisphere (π/2 � θ � π ), an essential requirement for
subsequent tunneling of reacting nuclei to occur. This will cor-
respondingly be reflected as an increase in the astrophysical
factor S(E ). We also clarify the applicability of the concept
of electron screening potential energy Ue to the calculation
of the nuclear cross section enhancement factor f (E ). We
demonstrate that the screened Coulomb potential of the target
ion is determined by the nonlinear Vlasov potential and not
by the Debye potential. In general, the effect of screening
becomes important at low kinetic energy of the projectile. We
examine the range of applicability of both the analytical and
asymptotic expressions for the well-known electron screening
lattice potential energy Ue, which is valid only for E � Ue

(E is the energy in the center of mass reference frame). We
demonstrate that for E � Ue, a direct calculation of Gamow
factor for screened Coulomb potential is required to avoid
unreasonably high values of the enhancement factor f (E ) by
the analytical—and more so by the asymptotic—formulas.
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