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Constraints on the effective mass splitting by the isoscalar giant quadrupole resonance
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Background: Previous theoretical work has found that the effective mass of the nucleon influences the excitation
energy of the isoscalar giant quadrupole resonance (ISGQR).
Purpose: The present paper presents an attempt to constrain the effective mass splitting by using the isospin
dependence of the ISGQR energies.
Methods: Using the macroscopic Langevin equation (LE), the ISGQR energies are calculated from the particle
density and kinetic energy density of the nucleus in the ground state, obtained from either the Thomas-Fermi
(TF) approach or the Skyrme Hartree-Fock-Bogolyubov (SHFB) model.
Results: It is found that the calculations of the ISGQR energies by the SHFB+LE model agree with, or are
even better than, the results by other approaches when applying the Skyrme functional Sly4. The values of the
isoscalar and isovector effective masses are optimized by fitting the data for the ISGQR energies for a mass
region from 28 to 238. The root-mean-squared deviation of the best fit to the data measured after the year 2000 is
0.22 MeV by the TF+LE model and 0.30 MeV by the SHFB+LE model. The extracted isoscalar effective mass
is 0.70 < m∗

s /m < 0.73. With respect to the isovector effective mass m∗
v , the constrained value is about half of

the isoscalar effective mass m∗
s .

Conclusions: The present work supports the statement that, in neutron-rich matter, the effective mass of the
neutron is definitely larger than that of the proton.

DOI: 10.1103/PhysRevC.101.044606

I. INTRODUCTION

The residual strong interactions between nucleons are of
fundamental importance in understanding the nature of asym-
metric nuclear objects including supernovae, neutron stars,
and nuclei [1–4]. However, there still exist large uncertain-
ties in our current knowledge. For decades the momentum-
dependent potential has been predicted from microscopic cal-
culations, such as the Dirac-Brueckner-Hartree-Fock model
[5–7], the Skyrme-Hartree-Fock (SHF) model [8], and the
relativistic mean-field model [9]. The concept of nonrelativis-
tic effective mass m∗ is used to parametrize the nonlocality
of the single-particle potential [10,11]. Generally speaking
the nucleon effective mass in symmetry nuclear media is
generally determined (m∗/m = 0.7 ± 0.05) at normal density
and Fermi momentum [12–14]. However, the splitting of the
effective masses between neutron and proton in asymmetric
nuclear media has been a long-standing and controversial
issue [15–18].

Many observables have been applied to constrain the ef-
fective mass. One of them is the isoscalar giant quadrupole
resonance (ISGQR), which was discovered in the early 1970s
[19,20]. So far, the ISGQR has been measured systematically
over the nuclear mass range by using inelastic electron-
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scattering and light-ion-scattering experiments [21–31]. Be-
cause of the difficulty to produce targets of radioactivity
nuclei, those measurements are limited to stable nuclei. Some
new techniques, which were developed for measuring nu-
clear reactions at low momentum transfer in inverse kine-
matics, have been successfully used in the study of IS-
GQR [32,33]. In the future, those experimental methods can
be applied to investigate the giant resonances of a large
domain of isospin asymmetric nuclei, including unstable
ones.

The ISGQR has been extensively studied in the past based
on different theoretical models, such as the SHF model
[34–36], the random-phase approximation (RPA) or its im-
proved version the subtracted second random-phase approx-
imation (SSRPA) [37,38], and the time-dependent Hartree-
Fock model including pairing in the BCS approximation
(TDHF + BCS) [39]. Those theoretical works support the
hypothesis that the momentum-dependent part of the nuclear
effective interaction strongly affects the ISGQR energy. In
fact, efforts have been made to constrain neutron-proton
effective-mass splitting based on the ISGQR data of several
nuclei [40].

The present work is an attempt to investigate the effect
of the effective-mass splitting on the ISGQR based on the
systematic data. The paper is organized as follows: In Sec. II,
we describe the method. In Sec. III, we present both the results
and discussions. Finally, the summaries are given in Sec. IV.

2469-9985/2020/101(4)/044606(7) 044606-1 ©2020 American Physical Society

https://orcid.org/0000-0002-8518-6443
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.101.044606&domain=pdf&date_stamp=2020-04-14
https://doi.org/10.1103/PhysRevC.101.044606


JUN SU, LONG ZHU, AND CHENCHEN GUO PHYSICAL REVIEW C 101, 044606 (2020)

II. THEORETICAL FRAMEWORK

A. Langevin equation for isoscalar giant quadrupole resonance

When the velocity field can be described by a collective
variable, the dynamic evolution of a nuclear system can be
described by the Langevin equation for the collective vari-
able, which is the fluid dynamic reduction of the Boltzmann-
Langevin equation [41,42]. The ISGQR of a nuclei can be
characterized by the collective variable

X =
√

5

16π
β cos γ , (1)

where the parameters β and γ are respectively the Hill and
Wheeler coordinates in the spherical harmonics representa-
tion,

R(θ, ϕ) = R0 + R0β cos γY 0
2 (θ, ϕ)

+ R0√
2
β sin γ

[
Y 2

2 (θ, ϕ) + Y −2
2 (θ, ϕ)

]
, (2)

where R0 is the radius of the sphere and Ym
l is the spherical

harmonic.
The Langevin equation for the collective variable X reads
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(3)
where M is the inertia parameter, � is the stiffness, τ is
the relaxation time, V is the potential energy, and w(t ) is
the random force. By applying the Skyrme energy density
functional, one can express the inertia parameter M as [42]
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where τn(p) is the kinetic-energy density of the neutron
(proton), and εeff is the momentum-dependent part of the
potential-energy density. Considering the definition of the
effective mass m∗

n(p),
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2m∗
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+ 1
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the stiffness � reads

� = 8
∫

d3r
(

h̄2

2m∗
n

τn + h̄2

2m∗
p

τp

)
. (7)

In Eq. (3), since the average value of the random force w(t )
is zero, it does not affect the excitation energy. In the GQR, the

volume of the system remains constant. Thus, the potential
force arising from the density variation is much smaller than
that due to the deformation of the Fermi surface [third term in
Eq. (3)]. One can ignore the random force and the potential
energy when calculating the excitation energy rather than
the width of the resonance. In this case, the solution of the
Langevin equation is

Ẋ (t ) = Ẋ0e−t/2τ cos

(√
�

M
t + ϕ

)
. (8)

The Fourier transform of the solution results in the excitation
energy of the ISGQR,

E∗ = h̄

√
�

M
. (9)

Equations (4), (7), and (9) provide a method to calculate
the excitation energy of the ISGQR from the particle density
and kinetic-energy density of the nucleus in the ground state.
Meanwhile, one sees that the excitation energy of the ISGQR
depends on the momentum-dependent part of the potential-
energy density, and hence on the effective mass.

B. Excitation energy by the Thomas-Fermi approach

In the TF approximation, the kinetic-energy density can
be expressed as a function of density. For the hard-sphere
distribution at normal density, the integral in Eq. (7) can be
calculated:

�hs = 24

5
AεF

[
m

m∗
n

(1 + δ)5/3

2
+ m

m∗
p

(1 − δ)5/3

2

]
, (10)

where εF is the Fermi energy at the normal density, δ =
(N − Z )/A is the isospin asymmetry, which is calculated from
the neutron number N , proton number Z , and mass number A
of the nucleus. Unfortunately, the density of the nucleus is not
the hard-sphere distribution, but with the surface arising from
the density dispersion. Considering the surface effect, the
stiffness � is assumed to be the product of �hs and a factor f ,

� = f �hs. (11)

On the other hand, the inertia parameter M is expressed as

M = 2Am〈r2〉, (12)

where 〈r2〉 is the mean-square radius of the nucleus, which
can be taken from Refs. [43,44]. The root-mean-square charge
radii are listed in Ref. [43]. Then the neutron radii can be
calculated by using the empirical formula for the neutron
skin [44].

The neutron (proton) effective mass m∗
n (m∗

p) in Eq. (10)
can be expressed as a function of the isoscalar and isovector
effective masses m∗

s and m∗
v ,

1

m∗
n

= 1

m∗
s

+
(

1

m∗
s

− 1

m∗
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)
δ,

1
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= 1
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−
(

1
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− 1
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)
δ. (13)
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Substituting Eqs. (10)–(13) into Eq. (9), the square of the
ISGQR energy can be expressed as

E∗2 = 12h̄2εF

5m〈r2〉
f m

m∗
s

[(
1 + δ − m∗

s

m∗
v

δ

)
(1 + δ)5/3

2

+
(

1 − δ + m∗
s

m∗
v

δ

)
(1 − δ)5/3

2

]
. (14)

Given the parameters f m/m∗
s and m∗

s /m∗
v further, one can

calculate the excitation energy of the ISGQR. Let us note
that Eq. (14) is deduced based on the macroscopic Langevin
equation and the Thomas-Fermi approach. In the following,
we call it “TF + LE” for short.

Equation (14) demonstrates the mass dependence of the
ISGQR energy. As is well known, the radius of the nucleus
is approximatively in direct proportion to A1/3, where A is the
mass number of the nucleus. Thus, one sees the approximate
relation between the ISGQR energy and the mass number
E∗ ∝ A−1/3. More importantly, Eq. (14) shows that the isospin
dependence of the ISGQR energy results from the isospin
dependence of the radius, the effective-mass splitting, and the
Fermi-surface splitting.

C. Excitation energy by Skyrme
Hartree-Fock-Bogolyubov model

In fact, the Skyrme Hartree-Fock-Bogolyubov (SHFB)
model [45] has been widely applied to study the nucleus in
the ground state. In this case, one can perform the SHFB
calculation and then consider Eqs. (4), (5), and (9), which
provide a method to calculate the ISGQR energy from the
properties of the nucleus in the ground state. Let us call this
method “SHFB + LE” for short.

FIG. 1. Excitation energies of the ISGQR as a function of mass
number. The calculations by the RPA (up triangles) and SSRPA
(diamonds) models are taken from Ref. [38]. The calculations by
the TDHF + BCS model (stars) are taken from Ref. [39]. In all
calculations, the Skyrme force Sky4 is applied. Experimental data
are taken from Refs. [21–32]. The data are divided into two groups:
Group O includes those measured before the year 2000 and is shown
as solid circles. Group N is for those measured after the year 2000
and is shown as open circles.

III. RESULTS AND DISCUSSIONS

A. Reliability of approaches

Let us test the reliability of the approach by comparing
the predictions of the SHFB + LE model with the results
of other approaches. The available data of ISGQR energies
as well as the calculations by several models with the same
functional Sky4 are shown in Fig. 1. The data are divided
into two groups. Group O includes those measured before the
year 2000 and is shown as solid circles. Group N is for those
measured after the year 2000 and is shown as open circles. It
is shown that the error bars for group O are generally larger
than those for group N. Moreover, the values for 116Sn in
Group O are systematically deviated. With the development
of the measuring technique, the data are more and more
accurate and precise. The data show a A−1/3 law. This is
because the ISGQR energy is inversely proportional to the
root-mean-square radius, while the radius of the stable nuclei
is proportional to A1/3.

Several models have been applied to calculate the mass
dependence of the ISGQR energies. Although they are differ-
ent types of approaches, the RPA and TDHF + BCS models
provide calculations with agreement (as shown in Fig. 1). In
comparison with the RPA model, the SSRPA model makes
an important improvement and can provide calculations with
better global agreement with the experimental data (see
diamonds in Fig. 1). The SHFB + LE model reproduces the
ISGQR energies globally but overestimates those of 208Pb
and 238U, which is consistent with SSRPA model. In fact, the
simple formula (9) is used to describe the ISGQR energies.
However, the calculations agree with or are even better than
the results of other approaches. An example can be seen for
56Ni. The data and the calculation by our model for 56Ni
are about 16.5 MeV. But the calculations by the other three
models are greater than 17 MeV and diverge from the A−1/3

law.
The reliability of the TF + LE approach is also tested. The

ISGQR energy cannot be calculated directly from Eq. (14)
without the parameters f m/m∗

s and m∗
s /m∗

v . But one obtains an
interesting proportional relationship by defining the weighted
effective mass m∗

w:

E∗2 ∝ m

m∗
w

,
m

m∗
w

= m

m∗
s

[(
1 + δ − m∗

s

m∗
v

δ

)
(1 + δ)5/3

2

+
(

1 − δ + m∗
s

m∗
v

δ

)
(1 − δ)5/3

2

]
. (15)

We test this proportional relationship for a given nucleus by
performing the SHFB + LE calculations with thirty sets of
Skyrme functionals, which are listed in Table I. The values
of the incompressibility for the chosen functionals are about
230 MeV, which is the consensus reached by studying the
isoscalar giant monopole resonance. The uncertainty of the
symmetry energy is considered. The values of the symmetry
energy at normal density S0 for the chosen functionals are in
the region from 28 to 32 MeV, meanwhile their slopes over
density L are distributed from −0.31 to 70.31 MeV.

Figure 2 shows the correlation between the square of
the ISGQR energy E∗2 and the reciprocal of the weighted
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TABLE I. The Skyrme functionals applied in this work, and the
corresponding incompressibility K0, symmetry energy S0, slope of
the symmetry energy over density L, and isoscalar and isovector
effective masses (m∗

s and m∗
v) at normal density in symmetric nuclear

matter.

K0 S0 L m∗
s m∗

v

MeV MeV MeV m0 m0

SkMP 230.9 30 70.31 0.654 0.739
SLy9 229.8 32 54.86 0.666 0.572
SLy10 229.7 32 38.51 0.683 0.596
SLy7 229.7 32 46.94 0.689 0.605
SLy6 229.9 32 47.45 0.69 0.607
SLy4 229.9 32 45.94 0.694 0.612
SLy5 229.9 32 48.15 0.697 0.619
SKz4 230.1 32 5.75 0.7 0.554
SKz3 230.1 32 12.96 0.7 0.638
SKz2 230.1 32 16.81 0.7 0.781
SKz1 230.1 32 27.67 0.7 0.915
BSk9 231.3 30 38.29 0.8 0.717
BSk8 230.3 28 14.85 0.8 0.740
MSL0 230.0 30 60 0.8 0.934
BSk7 229.3 28 17.99 0.801 0.741
BSk6 229.1 28 16.84 0.801 0.750
SkS2 229.0 29 37.84 0.853 1.850
v110 231.2 28 7.51 1.05 1.004
MSk5 231.2 28 7.57 1.05 1.05
MSk2 231.6 30 33.35 1.05 1.05
MSk6 231.2 28 9.63 1.05 1.05
BSk1 231.3 28 7.19 1.05 1.05
MSk4 231.2 28 7.2 1.05 1.05
MSk7 231.2 28 9.4 1.05 1.05
v105 231.2 28 7.08 1.05 1.05
v100 231.2 28 8.73 1.05 1.105
v090 231.2 28 5.04 1.05 1.260
v080 231.2 28 2.23 1.05 1.524
v075 231.3 28 −0.31 1.05 1.750
MSk8 229.3 28 8.26 1.1 1.1

effective mass m/m∗
w for the nuclei 40Ca, 90Zr, and 208Pb.

The good linear relationship between E∗2 and m/m∗
w can be

seen. The surface effect is neglected when we deduce the
proportional relation between E∗2 and m/m∗

w. The surface
effect for light nuclei is more obvious than that for heavy
nuclei. Thus, the linear relation for the heavy nucleus 208Pb
is better than that for the light nucleus 40Ca. In addition,
the slope for 208Pb is smaller than that for 40Ca. This is
consistent with the fact that the ISGQR energy depends on
the root-mean-square radius.

The calculated value of the 208Pb nucleus is 10.56 MeV
for the Skyrme force SKS2 (m∗/m = 0.85), and 11.00 MeV
for the Skyrme force BSK9 (m∗/m = 0.8). Those calculations
are in the region of the data (10.5–11.0 MeV). In fact, the
earlier studies based on the RPA approach indicated the strong
relation between the ISGQR energy and the effective mass.
The literature suggests that the isoscalar mass is somewhere
between 0.8 and 0.9 based on the data of the ISGQR energies
for 208Pb [46]. Our calculations support this finding. However,
we show in the following that the isospin dependence of the

FIG. 2. Correlation between the square of the ISGQR energy and
the reciprocal of the weighted effective mass for the nuclei 40Ca,
90Zr, and 208Pb. The curves are linear fits. The data with the error
bars are shown as gray.

GQR energies is significant when we extract the isoscalar
mass from the ISGQR data.

B. Isospin dependence of ISGQR energies

One can fit the data to optimize the parameters by minimiz-
ing the root-mean-squared deviation σ as

σ 2 =
∑Nd

i

(
E calc

i −E expt
i

σ
expt
i

)2

∑Nd
i

(
1

σ
expt
i

)2 , (16)

where E calc
i and E expt

i are the calculated and measured ISGQR
energies, and σ

expt
i is the error of the data. The summation

is for the number Nd of the data. In fact, the weight of each
datum is not the same but depends on the error.

For the TF + LE model, the root-mean-squared deviations
σ are plotted as a function of fitting parameters f m/m∗

s and
m∗

s /m∗
v , as shown in Fig. 3. Since the data are divided into

two groups (see Fig. 1), we fit the data in two groups. One
sees from Fig. 1 that the error bars for the data in group N
are generally smaller than those for group O. In this case, the
value of the minimum root-mean-squared deviation 0.22 MeV
by fitting to the data in group N is smaller than the value of
0.44 MeV for group O.

Considering that the root-mean-squared deviation is
smaller than 0.22 MeV, the optimized parameters from
Fig. 3(b) are 0.104 < f m/m∗

s < 0.106 and 1.7 < m∗
s /m∗

v <

2.2. From Eq. (14), one sees that the parameter f m/m∗
s

relates the mass dependence of the ISGQR energies. Since
there are data for a wide mass region, from 28 to 238, the
uncertainty of the optimized parameter f m/m∗

s is quite small.
The parameter m∗

s /m∗
v relates the isospin dependence of the

ISGQR energies. Only the data for stable nuclei are available,
thus the uncertainty in the optimized ratio m∗

s /m∗
v is huge.

Moreover, the region of the optimized parameters for group
N is narrower than that for group O. This phenomenon is also
seen in Fig. 4.
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FIG. 3. A plot of the root-mean-squared deviations σ by TF +
LE model as a function of fitting parameters f m/m∗

s and m∗
s /m∗

v .
Panel (a) is the case to fit the data in group O and panel (b) is for
group N.

Based on the Skyrme functional Sly4, we change the
isoscalar and isovector effective masses and keep other param-
eters such as incompressibility, symmetry energy, and slope
of the symmetry energy. In this case one can calculate the
ISGQR energies by the SHFB + LE model and then the root-
mean-squared deviations σ as a function of fitting parameters
m∗

s /m and m∗
s /m∗

v . The results are shown in Fig. 4. There are
two aspects for the surface effects on the ISGQR energies.

FIG. 4. A plot of the root-mean-squared deviations σ by
SHFB + LE model as a function of fitting parameters m/m∗

s and
m∗

s /m∗
v . Panel (a) is the fit the data in group O and panel (b) is for

group N.

The first one arises from the density dispersion in the surface
region of the nucleus. It affects the mass dependence of the
ISGQR energies and has been expressed as the parameter f
in Eq. (14). The second one is the contribution of the Fermi-
surface splitting in the surface of the nucleus, which has been
neglected and results in the (1 ± δ)5/3 terms in Eq. (14). Those
aspects of the surface effects are considered self-consistently
by the SHFB model. However, one sees that the minimum of
the root-mean-squared deviation by the SHFB + LE model is
0.30 MeV, which is larger than 0.22 MeV calculated by the
TF + LE model.

Considering the root-mean-squared deviation smaller than
0.30 MeV in Fig. 4(b), the optimized isoscalar effective mass
is about 0.70 < m∗

s /m < 0.73. This restrained region agrees
to the general determination m∗

s /m = 0.7 ± 0.05 [12–14].
With respect to the isovector effective mass, the restrained re-
gion is 1.4 < m∗

s /m∗
v < 2.8. In fact, the values of the effective-

mass splitting were extracted by other observables, such as
(m∗

n − m∗
p)/m = (0.32 ± 0.12)δ, which is obtained from the

average of the nucleon isovector optical potentials [47], (m∗
n −

m∗
p)/m = (0.27 ± 0.25)δ based on the values of the symme-

try energy and its density slope at normal density extracted
from 28 different analyses [48], and (m∗

n − m∗
p)/m = (0.41 ±

0.15)δ based on the data of nucleon-nucleus reaction and
elastic angular differential cross sections [18]. The form of
the effective-mass splitting used in the work is different from
those in the earlier works. Furthermore, the extracted values
here are much larger than the earlier values. However, those
values agree that the effective mass of neutron is definitely
larger than that of proton in neutron-rich matter.

It is worth giving a short discussion about the spherical
symmetry, the surface effect, and the accuracy of the data.
The approximation of the spherical symmetry is used in the
model. But the deformation is obvious for some light nuclei.
Moreover, the density in the surface of the nucleus is smaller
than the normal density, which results in the smaller effective
mass. The surface effect is more obvious in light nuclei. Last
but not least, due the fine structure of the ISGQR, especially
in light nuclei [49], the position of the ISGQR centroid is
ambiguous. This behavior contributes to the error of the data.
Generally, the isospin asymmetry of the light stable nuclei
is smaller than that of the heavy stable nuclei. Thus, more
data for the heavy and spherical nuclei are beneficial for the
pertinent method. It is interesting to study the above three
effects for the light nuclei, which is a work in progress.

IV. CONCLUSION

In summary, thanks to the macroscopic Langevin equation
(LE), the excitation energies of the isoscalar giant quadrupole
resonance (ISGQR) are calculated from the particle density
and kinetic-energy density of the nucleus in the ground state,
which can be provided by the Thomas-Fermi (TF) approach or
the Skyrme Hartree-Fock-Bogolyubov (SHFB) model. Based
on the TF + LE approach, the weighted effective mass is
defined and demonstrated to be inversely proportional to
square of the ISGQR energy. This proportional relation for
a given nucleus is obtained by performing the SHFB +
LE calculations with thirty sets of Skyrme functionals. The
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reliability of the SHFB + LE approach is tested by comparing
the predictions with the results of other theoretical approaches
describing the ISGQR.

The effective mass in 208Pb constrained by the SHFB + LE
model is 0.8, which supports the literature suggesting tht
the isoscalar mass is somewhere between 0.8 and 0.9 [46].
Furthermore, by comparing the calculations to the existing
data, the effects of the isoscalar and isovector effective masses
at normal density are investigated. With consideration of
the accuracy and precision, only the ISGQR energy data
measured after the year 2000 are considered. The extracted
isoscalar effective mass is 0.70 < m∗

s /m < 0.73, which is
consistent with the general determination 0.7 ± 0.05 [12–14].
With respect to the isovector effective mass, the restrained
region is 1.7 < m∗

s /m∗
v < 2.2 by the TF + LE approach, and

1.4 < m∗
s /m∗

v < 2.8 by the SHFB + LE approach. Recently,

new techniques developed for measuring nuclear reactions
at low momentum transfer in inverse kinematics were suc-
cessfully used to study isoscalar giant resonances [32,33]. In
the near future those experimental methods will be applied
to investigate the ISGQR of a large domain of neutron-rich
nuclei. The method in this work can be applied to analyze
those data and improve our knowledge of the effective-mass
splitting.
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