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Effect of density and nucleon-nucleon potential on the fusion cross section
within the relativistic mean field formalism
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We have studied the effect of density and the nucleus-nucleus interaction potential on the fusion reaction
cross section for the synthesis of heavy and superheavy nuclei within the relativistic mean field formalism.
The double-folding procedure is used to obtain the nuclear interaction potential for the well-known M3Y and
recently developed R3Y nucleon-nucleon potential for relativistic mean field densities. The NL3∗ parameter set
is used to calculate the density distributions for targets and projectiles and is further used to obtain the nuclear
potential. The �-summed Wong formula is used to provide a transparent and analytic way to formulate the fusion
cross sections for even-even 48Ca + 154Sm, 48Ca + 238U, 48Ca + 248Cm, 64Ni + 238U, 26Mg + 248Cm; even-odd
46K + 181Ta; and odd-odd 31Al + 197Au and 39K + 181Ta systems. The structural effects are also correlated with
the fusion cross section through the equivalent diffuseness parameter using the densities of interacting nuclei for
all nuclei (projects and targets) involved in the reactions just listed.
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I. INTRODUCTION

At low energy, a large amount of information on fu-
sion dynamics is available from experiments and theories,
which mainly explains the fusion hindrance phenomenon, the
neutron transfer effect, the effect of quasibound projectiles,
breakup effects, synthesis of heavy and superheavy nuclei
(SHN) away from the valley of stability, and prediction of
the island of stability [1–22]. Furthermore, the fusion reac-
tions also provide significant information in nuclear structure
and vice versa. At present, the experimental emergence of
hot and cold fusion reactions has dramatically renovated the
formation or synthesis of exotic drip-line and superheavy
nuclei in the laboratory [13–22]. Until now, the superheavy
element with charge number Z = 118 has been produced
via hot fusion reactions at the Joint Institute for Nuclear
Research in Dubna, Russia (JINR) [23]. The formation of
superheavy nuclei in experiments is extremely challenging
[24–28]. To synthesize the neutron-rich heavy and superheavy
nuclei (SHN), one can opt for neutron-rich radioactive beams,
although the intensities of these beams are less than those of
stable beams. Also, the properties of weakly bound nuclei
and the isospin dependence of fusion reactions are prime
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elements for future experiments [29–40]. Furthermore, the
estimation of fusion characteristics of heavy ions at extreme
subbarrier energies is of great interest for understanding the
reaction mechanisms in astrophysics and the synthesis of
the superheavy nuclei [27,41,42].

In nuclear fusion, the nucleon-nucleon interaction is the
key to a proper understanding of any nuclear phenomena
because the nuclear structure effect enters mainly through
this interaction. Theoretically, it is suggested that, below
the Coulomb barrier, nuclear structure effects dominate the
fusion dynamics, whereas the centrifugal potential suppresses
structure effects at or above the barrier. However, the nuclear
interaction part is not fully understood as yet. Thus, for
a better understanding of the fusion reaction phenomenon,
more accurate and microscopic methods for calculating the
ion-ion interaction between the colliding nuclei should be
exploited. In this work, we introduce the mean field nature
of the heavy-ion reaction, namely, the mean field treatment
of the nucleus-nucleus optical potential. At the mean field
level, such an optical potential is readily obtained in the
double-folding model [43–46] using the ground-state (g.s.)
densities of the two colliding nuclei (projectiles and targets)
and a realistic nucleon-nucleon (NN) interaction. This type of
nucleus-nucleus optical potential has successfully explained
many aspects of nuclear physics such as nuclear radioactivity,
nuclear scattering, and nuclear fission and fusion process
[10,47–49]. Recently, we have introduced a new effective NN
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interaction, entitled the R3Y potential [10,47–49] analogous
to the M3Y form [46] that can be derived from the rela-
tivistic mean field Lagrangian, which mainly depends on the
relativistic force parameters, the coupling constant among the
interacting mesons, and their masses [10,47–49]. In some of
our previous works, we applied the R3Y potential to the study
of the fusion hindrance phenomenon of the Ni-based reac-
tions [10], namely, 64Ni + 64Ni, 64Ni + 124Sn, 64Ni + 132Sn,
58Ni + 58Ni, 58Ni + 124Sn, and 58Ni + 132Sn. We calculated
the fusion cross section and their excitation functions for these
even-even systems. From our previous investigations [10], we
find that the R3Y interaction is in reasonably good agreement
with the available experimental data as compare with the M3Y
potential.

In this context, it will be of great interest to ex-
amine the performance of the relativistic R3Y potential
along with the microscopic relativistic mean field density
in terms of nuclear interaction potential for the study of
fusion reaction for a variety of possible systems (even-
even, even-odd, and odd-odd) at low energies. In the
present analysis, we have chosen the lighter mass pro-
jectiles with heavier mass targets with possible combina-
tions as even-even 48Ca + 154Sm, 48Ca + 238U, 48Ca + 248Cm,
64Ni + 238U, 26Mg + 248Cm; even-odd 46K + 181Ta; and odd-
odd 31Al + 197Au and 39K + 181Ta systems. These systems
are quite appropriate for the synthesis of exotic drip-line
nuclei including superheavy, as well as for the astrophysi-
cal nucleosynthesis process. In addition, the understanding
of extra driving energy from the barrier distribution may
help to predict new possible ways of synthesizing heavy
and superheavy nuclei [50]. As we mentioned above, the
present analysis is a microscopic description of the interaction
potential that incorporates the physical process, which can
significantly influences the fusion process. To generate the nu-
clear potential, one needs to integrate an NN interaction over
the matter distributions of the two colliding nuclei. Here the
nuclear densities and nucleon-nucleon potential are obtained
within the relativistic mean field formalism for the NL3∗
force parameter set. Parallel to the structural properties of
the nuclei, the densities and potentials are slightly parameter
dependent, which is reflected in the fusion properties as well.
More details on various relativistic force parameters and their
predictions can be found in Ref. [51] and references therein.

This paper is organized as follows: The relativistic mean
field approach along with the double-folding procedure to
generate the nucleus-nucleus potential will be discussed in
Sec. II. The �-summed Wong model will also be discussed in
this section. Section III will be assigned to the discussion of
the results obtained from our calculation. Finally, a summary
and a brief conclusion will be given in Sec. IV.

II. RELATIVISTIC MEAN FIELD FORMALISM

The mean field treatment of quantum hadrodynamics
(QHD) has been widely used to describe successfully nuclear
structure and infinite nuclear matter properties [10,52–60]. In
the relativistic mean field approach, the nucleus is considered
as a composite system of nucleons interacting through the
exchange of mesons and photons [53,61–65]. We use the

microscopic self-consistent relativistic mean field (RMF) the-
ory as a standard tool to investigate the fusion characteristics
via the �-summed Wong model. The form of a typical rela-
tivistic Lagrangian density for a nucleon-meson many-body
system is [52,53,57,58,60–68]

L = ψ{iγ μ∂μ − M}ψ + 1

2
∂μσ∂μσ

−1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4 − gsψψσ

−1

4
�μν�μν + 1

2
m2

wωμωμ − gwψγ μψωμ

−1

4
�Bμν · �Bμν + 1

2
m2

ρ �ρ μ · �ρμ − gρψγ μ�τψ · �ρ μ

−1

4
FμνFμν − eψγ μ (1 − τ3)
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The ψ are the Dirac spinors of the nucleons. Here gσ (mσ ), gω

(mω), and gρ (mρ) are the coupling constants (masses) for the
σ , ω, and ρ mesons, respectively. The isospin and the third
component of the isospin are denoted τ and τ3, respectively.
The constants g2, g3, and e2

4π
are the coupling constants for

self-interacting nonlinear σ -meson field and photon, respec-
tively. The quantities Aμ and M stand for the electromagnetic
field and the mass of the nucleon, respectively. The vector
field tensors for the ωμ, �ρμ, and photon are given by

Fμν = ∂μAν − ∂νAμ, (2)

�μν = ∂μων − ∂νωμ, (3)

�Bμν = ∂μ�ρν − ∂ν �ρμ, (4)

respectively. From the above Lagrangian density we obtain the
field equations for the Dirac nucleons and the mesons (i.e., σ ,
ω, and ρ, field) as

[−iα · ∇ + β(M + gσ σ ) + gωω + gρτ3ρ3]ψ = εψ,(−∇2 + m2
σ

)
σ (r) = −gσ ρs(r) − g2σ

2(r) − g3σ
3(r),(−∇2 + m2

ω

)
V (r) = gωρ(r),(−∇2 + m2

ρ

)
ρ(r) = gρρ3(r). (5)

In the limit of one-meson exchange, for a static baryonic
medium, the single nucleon-nucleon potentials for scalar (σ ),
and vector (ω, ρ) fields are given by [48,69,70],

Vσ = − g2
σ

4π

e−mσ r

r
+ g2

2

4π
re−2mσ r + g2

3

4π

e−3mσ r

r
,

Vω(r) = + g2
ω

4π

e−mωr

r
, Vρ (r) = + g2

ρ

4π

e−mρr

r
. (6)

The total effective NN interaction is obtained from the scalar
and vector parts of the meson fields. A recently developed
relativistic NN interaction potential analogous to the M3Y
form [46] is entitled the R3Y potential. The relativistic ef-
fective nucleon-nucleon interaction V R3Y

eff for the NL3∗ force
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including the single-nucleon exchange effect as [10,46–49]

V R3Y
eff (r) = g2

ω

4π

e−mωr

r
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+ J00(E )δ(r). (7)

On the other hand, the M3Y effective interaction, obtained
from a fit of the G-matrix elements based on the Reid-Elliott
soft-core NN interaction [46], in an oscillator basis, is the sum
of three Yukawa terms (M3Y) with a long-range tail of the
one-pion exchange potential (OPEP). The widely used M3Y
effective interaction V M3Y

eff (r) is given by

V M3Y
eff (r) = 7999

e−4r

4r
− 2134

e−2.5r

2.5r
+ J00(E )δ(r), (8)

where the ranges are in fm and the strengths in MeV. More de-
tails of Eqs. (7) and (8) can be found in Refs. [10,47,48,69,70].
The nuclear interaction potential Vn(R) between the projectile
(p) and the target (t) nuclei, with the respective RMF (NL3∗)
calculated nuclear densities ρp and ρt , is

Vn( �R) =
∫

ρp(�rp)ρt (�rt )Veff (|�rp − �rt + �R| ≡ r)d3rpd3rt ,

(9)

obtained by using the well-known double-folding proce-
dure [46] for the M3Y and the relativistic R3Y interac-
tion potential, proposed in Refs. [10,47,48], supplemented
by a zero-range pseudopotential representing the single-
nucleon exchange effects. Adding the Coulomb potential
VC (R) (=ZpZt e2/R) with the nuclear interaction potential
Vn(R) [obtained from Eq. (9)] results the total nuclear interac-
tion potential VT (R) [10,47,48], which will be used for fusion
study within the �-summed Wong model in the preceding
section. As we know, pairing plays an important role in the
nuclear bulk properties, including the density distribution
of open-shell nuclei. Hence, we consider the BCS pairing
approach to account for pairing correlation in the present
analysis and also use a blocking procedure to take care of the
odd-A and odd-odd nuclei [57–59,71,72].

Fusion cross section in terms of partial waves

Wong established a formula [73] to study the possible
formation of a compound nucleus (CN), and it was further
extended by Gupta and collaborators by carrying out the
actual summation over � partial waves [74]. The fusion cross
section for two colliding spherical nuclei with center-of-mass
energy Ec.m. in terms of � partial waves is given by [73]

σ (Ec.m.) = π

k2

�max∑
�=0

(2� + 1)P�(Ec.m.), (10)

with k = ( 2μEc.m.

h̄2 )1/2 and μ being the reduced mass. P� is
the transmission coefficient for each � which describes the
penetration of barrier V �

T (R), which is given by

V �
T (R) = Vn(R, Ai ) + VC (R, Zi ) + h̄2�(� + 1)

2μR2
. (11)

Here, �max is the maximum value that the angular momentum
contributes to the fusion cross section σfus(mb). In the present
work, the �max values are obtained from the sharp cutoff model
[75] for energies above the barrier and are extrapolated for
below-barrier energies.

Using the Hill-Wheeler [76,77] approximation, the pene-
trability P� in terms of its barrier height V �

B (Ec.m.) and curva-
ture h̄ω�(Ec.m.) is

P� =
(

1 + exp

{
2π

[
V �

B (Ec.m.) − Ec.m.

]
h̄ω�(Ec.m.)

})−1

, (12)

with h̄ω� evaluated at the barrier position R = R�
B correspond-

ing to the barrier height V �
B , which is given as

h̄ω�(Ec.m.) = h̄
[∣∣d2V �

T (R)/dR2
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R=R�

B
/μ

]1/2
, (13)

with R�
B obtained from the condition∣∣dV �

T (R)/dR
∣∣
R=R�

B
= 0.

The Hill-Wheeler approximation assumes the interaction bar-
rier to be parabolic, which leads to the analytical expression
for the transmission and is widely used in the fusion reactions
of heavy ions. However, for the case of asymmetric reactions,
the potential deviates from the inverted oscillator even near the
barrier. More details can be found in Refs. [78–80]. Since it is
a widely used approximation, and hence for the comparison,
we also adopted the same.

Instead of solving Eq. (10) explicitly, which requires the
complete �-dependent potentials V �

T (R), Wong [73] carried
out the � summation in Eq. (10) approximately under specific
conditions

(i) h̄ω� ≈ h̄ω0 and
(ii) V �

B ≈ V 0
B + h̄2�(�+1)

2μR0
B

2 ,

which assumes R�
B ≈ R0

B also. In other words, both V �
B and h̄ω�

are obtained for the � = 0 case. Using these approximations,
and replacing the � summation in Eq. (10) by an integral,
gives, upon integration, the � = 0 barrier-based Wong formula
[73],

σ (Ec.m.) = R0
B

2
h̄ω0

2Ec.m.

ln

{
1 + exp

[
2π

h̄ω0

(
Ec.m. − V 0

B

)]}
.

(14)
This is the simple formula to calculate the fusion cross

section by using the barrier characteristics V0
B, R0

B, and h̄ω0

within the barrier-penetration model for spherical nuclei.
However, Wong’s specific �-summation procedure, leading
to the use of only the � = 0 barrier, excludes modifications
entering the potential due to its � dependence. For details see
Ref. [74]. So a more precise formula, as given in Eq. (10),
with penetrability P� given by Eqs. (12) and (13), is employed
in the present work for calculating the fusion cross section.

III. CALCULATION AND DISCUSSIONS

The RMF calculations furnish principally basic nuclear
structure properties such as the binding energy, root-mean-
square radius (proton, charge, and neutron), quadrupole
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FIG. 1. The RMF (NL3∗) total radial density distribution for
projectiles (solid line) 26Mg, 31Al, 39,46K, 48Ca, and 64Ni nuclei and
targets 154Sm, 181Ta, 197Au, 238U, and 248Cm nuclei. See text for
details.

moment Q20, the total density distribution (i.e., the sum of the
proton and neutron densities), and the single-particle energy
level for nucleons. To study the fusion hindrance phenomenon
by using the self-consistent relativistic mean field formalism
via the �max-summed Wong model, we need the nuclear
density distribution of the interacting nuclei (projectile and
target nucleus) and the nucleon-nucleon potential, which are
obtained from the relativistic mean field Lagrangian. Here,
we use spherical densities for the target (t) and projectile
(p) as the input to estimate the nucleus-nucleus interaction
potential using Eq. (9). Many other studies have already
adopted the densities from a well-defined mean field model
and folded them with a phenomenological nucleon-nucleon
(NN) interaction to obtain a nuclear interaction potential
[81–85]. Here we introduce the relativistic NN potential from
the relativistic Lagrangian by solving the field equations in
Eq. (5) for the interacting mesons to obtain the nucleus-
nucleus interaction potential. This kind of relativistic NN-
potential (so-called R3Y potential) has been successfully
applied in some of our recent works for the study of the
radioactive decay process [47–49]. It is worth mentioning
that we also applied this R3Y potential in the fusion study
for selected Ni-based reactions [10]. The present work is of
great interest to apply R3Y potential for fusion studies of
various systems. In Fig. 1, we have shown the total density
distributions for interacting projectiles (solid line) and targets
(dashed line) obtained from the NL3∗ parameter set as a
function of radius. From the figure, one finds that the central
density is a bit smaller in magnitude and enhanced a little
towards the surface region, due to Coulomb repulsion in case
of projectiles, which is a very general feature in the light-mass
nuclei.

A. Nucleus-nucleus optical potential

The nuclear interaction potential Vn(R) between the pro-
jectile (p) and target (t) nuclei is calculated by using the well-
known double-folding procedure in Eq. (9) [46,47] using the
RMF densities ρp and ρt for the phenomenological M3Y and

FIG. 2. The total nuclear potential VT (R) for odd-odd
31Al + 197Au, 39K + 181Ta; even-even 26Mg + 248Cm; and even-odd
46K + 181Ta systems using the phenomenological M3Y (solid black
line) and relativistic R3Y (solid red line) nucleon-nucleon potentials
as a function of radial separation R. See text for more details.

recently developed relativistic R3Y NN potential. The R3Y
potential can be obtained either analytically or numerically for
many relativistic parameter sets, as it obtains from the masses
and coupling constants of the interacting meson fields, where
an effective Lagrangian describes the interaction among the
nucleons through the effective mesons and electromagnetic
fields. Here, the R3Y interaction is obtained for the NL3∗
parameter set for the analysis [10]. It is worth mentioning
that the R3Y interaction potential has already been applied
to radioactivity studies of several highly isospin asymme-
try systems using a preformed cluster decay model (PCM)
[47–49] and very recently to the fusion hindrance of Ni-based
systems [10].

The total nuclear interaction potential VT (R) =
Vn(R) + VC (R) is obtained for the even-even 48Ca + 154Sm,
48Ca + 238U, 48Ca + 248Cm, 64Ni + 238U, 26Mg + 248Cm;
even-odd 46K + 181Ta; and odd-odd 31Al + 197Au and
39K + 181Ta systems, where Vn and VC stand for the nuclear
and Coulomb potentials, respectively. The total interaction
potentials for the R3Y (solid red line) and M3Y (solid
black line) potential for all the systems are displayed in
Figs. 2 and 3 for comparison. The fusion barrier heights
of M3Y and R3Y potentials are also tabulated in Table I.
The Bass barriers are also given for the comparison. From
the figures, we note that VT (R) follows a similar pattern
for both R3Y and M3Y NN interactions. The difference
in the total potential VT is due to the difference of the
nucleon-nucleon potential, which is reflected through
Vn, because the Coulomb potential is independent of the
nucleon-nucleon interaction potential of choice. The nuclear
potentials Vn for M3Y and R3Y differ significantly in the
central region and this difference decreases gradually as
the radial separation increases. Furthermore, the height
of the barrier for the M3Y NN interaction is slightly higher
than that of the R3Y case (more clearly seen in the inset
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FIG. 3. Same as Fig. 2, but for even-even 48Ca + 154Sm,
48Ca + 238U, 48Ca + 248Cm, and 64Ni + 238U systems. See text for
more details.

figures). Thus, the barrier height from R3Y is more attractive
than the M3Y interaction, which will be reflected in the fusion
characteristics.

B. Fusion cross sections

To estimate the fusion reaction cross section, we need
the barrier characteristics such as barrier height, position,
and frequency. These inputs can be extracted from the total
interaction potential of colliding nuclei [see Eq. (11)]. In
our recent work [10], it is observed that the comparison of
calculated cross sections with experimental data is better if
�-summed Wong model is considered as compared with the
Wong formula. So in this work, the �-summed Wong formula
[see Eq. (10)] is used to obtain the fusion reaction cross sec-
tion for even-even 48Ca + 154Sm, 48Ca + 238U, 48Ca + 248Cm,
64Ni + 238U, 26Mg + 248Cm; even-odd 46K + 181Ta; and odd-
odd 31Al + 197Au and 39K + 181Ta systems. The �max values
are extracted by using the sharp cutoff model [75] for energies

TABLE I. Calculated barrier heights for M3Y and R3Y po-
tentials compared with Bass barriers used in the experimental
works for 48Ca + 154Sm, 48Ca + 238U, 48Ca + 248Cm, 64Ni + 238U,
26Mg + 248Cm, 46K + 181Ta, 31Al + 197Au, and 39K + 181Ta systems
[33–36].

Barrier height (MeV)

Reactions M3Y R3Y Bass [33–36]

31Al + 197Au 114.83 109.75 115.2
39K + 181Ta 156.24 148.85 157.5
46K + 181Ta 153.11 145.79 154.0
26Mg + 248Cm 125.83 120.77 129.0
48Ca + 154Sm 141.26 134.768 141.0
48Ca + 248Cm 200.82 191.61 202.0
48Ca + 238U 194.20 185.36 195.0
64Ni + 238U 268.14 254.70 267.5

above the barrier and are extrapolated for lower energies by
using the above-barrier �max values as a function of center-of-
mass energy.

In Fig. 4, the solid red and black lines are for the fusion
cross section using the relativistic R3Y interaction and the
phenomenological M3Y potential, respectively. The experi-
mental data [33–38] are also given for comparison, wherever
available. From the figure, it is observed that R3Y performs
relatively better than the M3Y interaction experimental data
[33–38] at below-barrier energies. In other words, the cross
section corresponding to R3Y almost overlap with the ex-
perimental data except in a few cases for energies below
the Coulomb barrier, whereas the M3Y fits the data only
at above-barrier energies. The nuclear interaction from R3Y
potential explains the cross section reasonably well at com-
paratively lower energies. It is to be noted that the fusion
cross section corresponding to the R3Y interaction is al-
ways larger compared with that of the M3Y potential. It is
observed from all these systems (see Fig. 4) that the R3Y
interaction is proven to be a relatively better choice than
M3Y for considering the fusion reactions below the barrier
at low energies. This is due to the slightly lower barrier peak
and internal depth of the nuclear potential Vn of the R3Y
potential.

C. Equivalent diffuseness parameter

In the case of even-even 26Mg + 248Cm and 48Ca + 238U
and odd-odd 39K + 181Ta systems, the cross sections from the
R3Y potential are a little different from the experimental data
at below-barrier energies. To correlate this deviation with the
density distribution, we calculate the equivalent diffuseness
parameter for all interacting (projectiles and targets) nuclei.
An equivalent diffuseness parameter ai can be obtained by us-
ing the relation, ai ≈ −ρi(r)/ dρi

dr , where i stands for neutron-
(an), proton- (ap), and charge-density (ach) distributions. The
results of the equivalent diffuseness parameter for neutron
and proton density from the relativistic mean field approach
for the NL3∗ parameter set are shown in Fig. 5 along with
equivalent experimental values [86,87]. The experimental
diffuseness parameters are obtained for charge-density dis-
tributions extracted from electron scattering [86,87]. From
Fig. 5, one observes that the diffuseness values for the ex-
perimental charge distributions vary around an average of
≈0.52 ± 0.02 fm, which is larger than the calculated values
for proton distributions. The average diffuseness values for
the experimental charge ach and calculated proton diffuse-
ness ap are 0.52 ± 0.02 and 0.44 ± 0.04 fm, respectively.
The difference between ach (from the experimental charge
distribution) and ap (from the calculated proton distribution)
is around ∼0.08 because the effective charge radius of the
proton is not considered in the proton-density distribution.
The reaction systems associated with a large standard devi-
ation in ap values show a difference at below-barrier energy
in the cross section. For example, for the reaction systems,
26Mg + 248Cm, 48Ca + 238U, and 39K + 181Ta, we find that
the calculated results slightly underestimate the experimental
data. Analogous to the cross sections, we also find a deviation
in ap for associated reaction systems. Hence, the structural
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FIG. 4. The fusion cross sections for even-even 48Ca + 154Sm, 48Ca + 238U, 48Ca + 248Cm, 64Ni + 238U, 26Mg + 248Cm; even-odd
46K + 181Mo; and odd-odd 31Al + 197Au and 39K + 181Ta systems using the phenomenological M3Y and relativistic R3Y nucleon-nucleon
interaction using the NL3∗ densities in the �-summed Wong model [74]. The experimental data [33–38] are given for comparison, wherever
available. See text for more details.

properties such as deformation, shell correction, and other
related observables are reflected in the density distribution
and also finally cause the small deviation in the fusion cross
sections. More systematic studies will be pursued in the near
future.

D. Barrier distribution

The projectile and target need to overcome a barrier to
fusion, which arises due to the competition between the long-
ranged and repulsive Coulomb force and short-ranged and
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FIG. 5. Values of the equivalent diffuseness parameter are ob-
tained for proton and neutron densities from the relativistic mean
field approach for 26Mg, 31Al, 39K, 46K, 48Ca, 64Ni, 154Sm, 181Ta,
197Au, 238U, and 248Cm. The experimental data are obtained for the
charge distributions extracted from electron scattering [86,87]. See
text for details.

attractive nuclear force. Classically, the transmission proba-
bility is a step function at an energy equal to the height of
the fusion barrier. The Fermi function blurs the step func-
tion into a smoother function, a parabolic barrier. Due to
quantum-mechanical tunneling, the barrier height is smeared.
The barrier distribution can be extracted from experiment data
of fusion cross sections as well. So it is of interest to compare
the barrier distribution of theoretical calculations for cross
sections with that of the experimental data. The fusion barrier
distribution function [d2(Eσ )/dE2] is obtained by differen-
tiating the transmission function with respect to center-of-
mass energy. In Fig. 6, we show d2(Eσ )/dE2 from fusion
excitation functions for the R3Y (black line) and M3Y (red
line) interactions. The fusion barrier distribution for the re-
duced cross sections of the odd-odd 31Al + 197Au [Fig. 6(a)],
even-odd 46K + 181Ta [Fig. 6(b)], even-even 48Ca + 154Sm
[Fig. 6(c)], and even-even 48Ca + 238U [Fig. 6(d)] are given
with the experimental data [33–38] for comparison. The
barrier distribution corresponding to the experimental data
shows a clear signature of nuclear structure at near- and
below-barrier energies. Furthermore, one can observe that
the behavior of the barrier distribution is sensitive to the
choice of interaction potential as well and hence the nuclear

FIG. 6. The barrier distributions for the reactions 31Al + 197Au, 46K + 181Ta, 48Ca + 154Sm, and 48Ca + 238U as a function of center-of-mass
energy. The experimental values are extracted from the fusion cross section data [33–36] for comparison. See text for details.

044603-7



M. BHUYAN et al. PHYSICAL REVIEW C 101, 044603 (2020)

structure. This information is a useful tool for understanding
the dynamics of subbarrier fusion reactions.

From the figure, we find the d2(Eσ )/dE2 values for R3Y
are in line with the distribution of barriers extracted from the
experimental data for the whole range of energy. The M3Y
results fit the data only above the barrier and differ signifi-
cantly at below-barrier energies. Similar to the predictions of
reaction cross sections, here we also find that the results for
the barrier-distribution function from R3Y are relatively close
to the experimental data for all range of energies, whereas
the M3Y fits the data only above barrier energies. One can
observes that d2(Eσ )/dE2 from R3Y for 48Ca + 238U differs
slightly from the experimental data as compared with the other
systems, which is also seen in case of the fusion cross section.
From the reaction cross sections and barrier distributions, one
can conclude that the R3Y interaction produces relatively
better agreement than the M3Y potential in comparison with
experimental data [33–38]. This can be connected with the
barrier energy or height. In other words, the R3Y lowers the
barrier significantly as compared with the M3Y case, as shown
in Figs. 2 and 3 and in Table I. It is worth mentioning that the
step size for energy is large for all the reactions considered ex-
cept 48Ca + 154Sm. As a result, we get roughened and bumpy
(not smoother) curves for the fusion cross sections, as shown
in Fig. 4. A reliable barrier distribution can be obtained for a
smaller step size of energy, which calls for the experiments
for the same. Furthermore, we observe structure effects in
the reaction dynamics in terms of the diffuseness parameter,
which we will study systematically in the near future. From
the above studies, we find an alternative choice for the M3Y
NN potential, in the relativistic R3Y potential for consistent
microscopic studies of fusion properties within double folding
procedure. It is worth mentioning that the systems chosen
here are combinations of light (projectile) and heavy (target)
masses. This implies that the R3Y NN potential is applicable
for fusion studies for a wide range of mass combinations.

IV. SUMMARY AND CONCLUSIONS

The role of the nucleon-nucleon potential and the
nucleon density in the fusion reaction cross section

for even-even 48Ca + 154Sm, 48Ca + 238U, 48Ca + 248Cm,
64Ni + 238U, 26Mg + 248Cm; even-odd 46K + 181Ta; and odd-
odd 31Al + 197Au and 39K + 181Ta systems, known for fu-
sion hindrance phenomena, is investigated. The fusion-barrier
distributions for the reduced fusion cross sections are esti-
mated from the fusion excitation function for the R3Y and
the M3Y NN interactions. A microscopic approach based
on an axial deformed relativistic mean field with the NL3∗
parameter set is used to obtain the density distribution of
projectiles and targets. The relativistic NN potential is also
obtained for the NL3∗ parameter set. The �-summed Wong
model is used to provide a transparent and analytic calculation
of the fusion cross section. We consider the well-known
M3Y along with relativistic R3Y NN potential to estimate
the nuclear interaction potential using NL3∗ densities within
the double-folding method. We determine the effect of the
density profile on the fusion cross section in terms of an
equivalent diffuseness parameter. The theoretical equivalent
diffuseness parameter for the relativistic mean field proton
and neutron densities is compared with the experimental
diffuseness parameter for the charge density. We find a mod-
erate correlation of structural effects in fusion cross section
through the equivalent diffuseness parameter, which requires
a systematic study in the near future. Furthermore, a slight
lowering in the barrier of the R3Y potential increases the cross
section appreciably at energies below the Coulomb barrier.
The present analysis again confirms that the R3Y interaction
is a better choice than the M3Y interaction for fusion reac-
tions considered over the entire range of barrier energies in
predicting the cross section and hence the target-projectile
combinations for the synthesis of heavy and superheavy
elements.
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