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Particle-vibration coupling for giant resonances beyond the diagonal approximation
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A self-consistent particle-vibration coupling (PVC) model without diagonal approximation is presented.
The diagonal approximation, that neglects completely the interaction between the doorway states, has been
removed by taking into account the interaction between the two particle-holes inside the doorway states. As
applications, isoscalar giant monopole, dipole, and quadrupole resonances in 16O are investigated based on the
use of Skyrme functionals. The diagonal approximation is found to clearly impact the strength distribution of the
giant quadrupole resonance, and the description of the experimental data is improved without this approximation.
The impact of the diagonal approximation is analyzed in detail, especially its effect on the eigenenergies and the
induced coupling between neutron and proton particle-hole configurations. The latter is a direct and physically
sound effect of the improvement on our formalism. The importance of using self-consistently the full effective
interaction in the PVC vertex, and the effect of its renormalization via the subtraction method, are also discussed.
For completeness, we also analyze the dependence of our results on the Skyrme parametrization.
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I. INTRODUCTION

Probing the response of a nucleus to the scattering of a
particle or photon is a powerful tool to study the underlying
nuclear structure. In the excitation energy range from 10 to
30 MeV nuclear systems show prominent and broad reso-
nances, that are called giant resonances. Giant resonances
have been experimentally studied for a long time [1], and
yet the techniques that have been developed are still im-
proving towards unprecedented and advanced levels [2,3].
These studies provide extremely rich information on nuclear
phenomenology. To name a few highlights, we mention the
studies of compression modes such as the isoscalar giant
monopole and dipole resonances that are undertaken in order
to understand the incompressibility of uniform nuclear matter
[4]; the isovector giant dipole resonance and the associated
dipole polarizability that is studied due to its implication for
the symmetry energy [3,5–7]; the low-lying dipole strength
in the isovector dipole channel for its possible relation to the
neutron skin thickness [8–12]; the isoscalar giant quadrupole
resonance which is tightly connected to the nucleon effective
mass close to the Fermi surface [13]; and the Gamow-Teller
resonance [14] for its key role in astrophysically relevant
weak-interaction processes [15] (cf. also the general discus-
sion about giant resonances and the parameters of the nuclear
equation of state in Ref. [16], and the report on giant reso-
nances in nuclei far from stability in Ref. [17]).

On the other hand, the rich information on giant reso-
nances also sets a challenge for theoretical descriptions. In the
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random phase approximation (RPA), the giant resonances are
described as coherent superpositions of one-particle–one-hole
(1p-1h) excitations. The centroid of giant resonances and the
energy weighted sum rule (EWSR) can be well described.
However, the experimental resonance width �, which directly
relates with the lifetime τ ≡ h̄

�
, cannot be described by RPA

due to the absence of the coupling with more complicated
correlations.

Two main effects were identified to contribute to the width:
the escape of a nucleon from the nucleus (escape width) and
the spreading of the excitation energy into more complicated
configurations (spreading width) [18]. Different efforts have
been made to take into account these effects; for example,
in second RPA (SRPA) the coupling of 1p-1h excitations
with two-particle–two-hole (2p-2h) excitations is taken into
account [19–23]. In the quasiparticle-phonon model, the ex-
cited states are composed of two-phonon excitations [24–27].
The quasiparticle-phonon model based on the time-blocking
approximation (TBA) [28–30] and its relativistic extension
(RTBA) [31–33] are developed within the many-body Green’s
function formalism, in which the 1p-1h (or two-quasiparticle)
⊗ phonon configurations are included and more compli-
cated intermediate states are blocked. In the equation-of-
motion phonon method, a set of equations for multiphonon
states are derived, within the Tamm-Dancoff approximation
(TDA).

Recently, a systematic approach to the response functions
with nonperturbative treatment of higher configurations was
formulated in the equation-of-motion framework, with a trun-
cation at the level of two-fermion correlation functions. The
PVC-TBA method is then compared here with the formu-
las of the equation-of-motion approach, and this provides
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guidance to develop a systematic treatment of the response
functions [34].

In this work we use the particle-vibration coupling (PVC)
model, which takes into account the coupling between a
nucleon and the low-lying nuclear collective excitations
(phonons) [35]. In early applications, phenomenological in-
puts were used for the PVC vertex and parameters were
adjusted to reproduce the data, making it difficult to have a
universal description [18,36,37]. A self-consistent treatment
for the interaction in the PVC vertex, on top of a mean
field associated with Skyrme functionals, was worked out in
Ref. [38], although only the velocity-independent central term
was included in the vertex. The approach was further devel-
oped in Refs. [39–42], and now the full Skyrme interaction is
used for both the PVC vertex and the mean field. The same
consistency has been achieved also in the relativistic PVC
[43]. The PVC was extended to describe open-shell nuclei
within the Hartree-Fock (HF) plus BCS framework [44], and
later on in the Hartree-Fock-Bogoliubov framework [45].
By including both collective and noncollective excitations,
the so-called hybrid configuration mixing (HCM) model was
developed to study the low-lying spectroscopy of odd nuclei,
and shell-model-type states like 2p-1h can be well taken into
account [46]. To better understand the renormalization of
the effective interaction, the subtraction method developed in
Ref. [28] has been studied in the PVC [47]. The PVC has
been used to investigate, for example, the β decay [48,49],
and good descriptions were achieved.

However, in the above PVC studies the so-called diagonal
approximation was used; that is, the 1p-1h state coupled
with a phonon, which is also called a doorway state, has
no interaction with other doorway states. This is similar
to the diagonal approximation in the SRPA where there is
no interaction among the 2p-2h states. In the context of
SRPA, this approximation has been tested against the fully
self-consistent framework, and it has been shown to affect
significantly the strength distributions [21]. Such correlations
have also been considered in the TBA [28] and studied by
RTBA [50,51], based on the equation-of-motion method [52].
It was found that the two-phonon correlations push a large part
of the pygmy strength above the neutron threshold, in better
agreement with available data for the tin isotopes and 68Ni
[50,51]. Further progress on higher-order correlations beyond
the 2p-2h level of configuration can be found in Refs [30,53].

Therefore, it is of importance to have a closer view into the
diagonal approximation in the PVC. Here we adopt a different
approach than Refs. [50,51]. We will use an equation-of-
motion method similar to the one used in the SRPA described
in Ref. [54], and the two particle-holes inside the doorway
states will interact through the particle-hole interaction. We
will compare the effect of removing the diagonal approxi-
mation with the results using SRPA [21] and RTBA [50,51].
An analytical comparison to the formalisms of RTBA will
also be given in the Appendix. The sum rules in the current
PVC framework will also be discussed both analytically and
numerically.

In Sec. II, we give a brief summary of the formalisms
of the HF, RPA, and PVC. The numerical details for the
calculations are discussed in Sec. III. Results for the isoscalar

giant monopole, dipole, and quadrupole resonances of 16O
by PVC without diagonal approximation are presented in
Sec. IV. Finally, the summary and perspectives for future
investigations will be given in Sec. V.

II. THEORETICAL FRAMEWORK

A. From Hartree-Fock to random phase approximation

Our starting point is the Skyrme functional which is con-
structed from the Skyrme effective interaction solved within
the Hartree-Fock (HF) approximation. The details of the
Skyrme interaction and the corresponding formulas of the
Skyrme Hartree-Fock theory in spherical nuclei have been
given in detail [55] and will not be repeated here. In this work
we take the doubly magic nucleus 16O as an example, so that
effects of pairing and deformation [56] can be ignored. The
Hartree-Fock ground state |�HF

0 〉 is a single Slater determi-
nant. In the second quantized form it can be written as

∣∣�HF
0

〉 =
A∏
i

a†
i |〉, (1)

where A is the number of nucleons of a given nucleus, a†
i

is the creation operator of HF single-particle state |i〉, and
|〉 is the bare vacuum. The HF equation is solved with a
box boundary condition and a set of discrete occupied and
unoccupied states |i〉 are obtained. The Hamiltonian of the
system can be expressed as

H = H0 + Vres, (2)

where H0 is the HF Hamiltonian and Vres the residual interac-
tion:

H0 =
A∑
i

eia
†
i ai − 1

2

A∑
i j

V̄i ji j, (3)

Vres = 1

4

∑
k′l ′kl

V̄k′l ′kl : a†
k′a

†
l ′alak : . (4)

In the above equations, ei is the single-particle energy of state
|i〉 and V̄i ji j = Vi ji j − Vi j ji is the antisymmetrized two-body
matrix element. The normal ordered product of operators
a†

k′a
†
l ′al ak is labeled as : a†

k′a
†
l ′al ak : with respect to the HF

particle-hole vacuum |�HF
0 〉.

To study the excited state properties, one can use the RPA,
in which all the possible 1p-1h excitations are considered.
If we define the HF ground state |�HF

0 〉 and all the 1p-1h
excitations |ph〉 built upon as the subspace Q1, the RPA
solution can be obtained by diagonalizing the Hamiltonian in
this subspace Q1HQ1. For the derivation of the RPA equations
and their solution we refer the reader to Ref. [57]. The RPA
equation reads

∑
ph

(
A B

−B∗ −A∗

)
p′h′,ph

(
X (n)

ph

Y (n)
ph

)
= ωn

(
X (n)

p′h′

Y (n)
p′h′

)
(5)

with ωn the excitation energy of RPA state |�RPA
n 〉 (that can

be simply labeled as |n〉 when there is no ambiguity) and X (n)
ph
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and Y (n)
ph the corresponding RPA wave function coefficients.

The matrix elements A and B are

Ap′h′,ph = 〈0|[a†
h′ap′ , [H, a†

pah]]|0〉,
= δp′h′,ph(ep − eh) + V̄p′hh′ p, (6a)

Bp′h′,ph = −〈0|[a†
h′ap′ , [H, a†

hap]]|0〉 = V̄p′ ph′h, (6b)

where |0〉 is the RPA ground state |�RPA
0 〉, and within the

quasiboson approximation it is replaced by the HF ground
state |�HF

0 〉 [57]. Without causing confusion, the simple form
|0〉 of the ground state will be used later on also in the
framework of PVC. The RPA excited states, or the phonons,
can be expressed as

|n〉 = Q†
n|0〉, (7)

with

Q†
n =

∑
ph

[
X (n)

ph a†
pah − Y (n)

ph a†
hap

]
, (8)

and the RPA ground state satisfies

Qn|0〉 ≡ 0. (9)

B. Particle-vibration coupling

As we briefly mentioned in the Introduction, the RPA
can give a good description of the centroid energy of giant
resonances as well as of the EWSR exhausted by each mode.
However, properties such as the width of the resonances
cannot be well described. Part of the width comes from the
so called Landau damping effect and part of it is due to
correlations beyond 1p-1h [18]. The Landau damping effect
produces a fragmentation of the strength, in contrast with the
ideal situation in which there is a single collective peak. Such
an effect depends on the intensity of the residual interaction
that 1p-1h configurations feel, as well as the density of the
unperturbed 1p-1h states around the resonance energy. Cou-
pling with more complicated states than 1p-1h produce the
resonance spreading width. Our formalism can also account
for the other mechanism giving rise to the resonance width,
since the escape of a nucleon can also be described.

To take into account these effects, two subspaces P and Q2

are built. Similarly to Q1, subspace P is made up with 1p-1h
configurations but now the particle is a continuum state and
orthogonal to all the states in |i〉. For subspace Q2, one can
chose the 2p-2h configurations and the resulting framework
would be the second RPA [58]. In the particle-vibration
coupling model, the Q2 space is composed of the so-called
doorway states |N〉 with 1p-1h excitation coupled to a RPA
phonon,

|N〉 = |ph〉 ⊗ |n〉. (10)

The corresponding excitation operator reads

Q̃†
N =

∑
ph,n

[
X̃ N

ph,na†
pahQ†

n − Ỹ N
ph,nQna†

hap

]
. (11)

Now, the PVC equation is an eigenequation in the P +
Q1 + Q2 space,

H (P + Q1 + Q2)� = ω(P + Q1 + Q2)�, (12)

� being the full-space wave function to be projected out.
After truncating higher orders, this equation can be mapped
into Q1 with an energy dependent Hamiltonian as [40] (see
Appendix A)

H(ω)Q1� =
(

	ν − i
�ν

2

)
Q1�. (13)

Both the effective Hamiltonian H and the eigensolutions are
complex. The effective Hamiltonian is composed of three
terms,

H(ω) ≡ Q1HQ1 + W ↑(ω) + W ↓(ω)

= Q1HQ1 + Q1HP
1

ω − PHP + iε
PHQ1

+ Q1HQ2
1

ω − Q2HQ2 + iε
Q2HQ1, (14)

i.e., the RPA term, escape term (W ↑), and spreading term
(W ↓). For the calculation of the escape term, one is referred
to Ref. [40]. For more detail of the spreading term and the
diagonal approximation of it, see Sec. II C.

As one is now working in the Q1 subspace, the RPA
solutions can be used as a basis to expand the PVC state as

|ν〉 =
∑

n

F (ν)
n |n〉. (15)

Then the PVC equation (13) takes the matrix form

∑
n

Hn′n(ω)F (ν)
n =

(
	ν − i

�ν

2

)
F (ν)

n′ , (16)

with

Hn′n(ω) = ωn + W ↑
n′n(ω) + W ↓

n′n(ω). (17)

The matrix of the wave function coefficients is complex
orthogonal,

F T F = FF T = 1. (18)

The polarizability associated with the operator O is defined
as

�(ω) = 〈0|O† 1

ω − H(ω) + iε
O|0〉. (19)

The corresponding strength function is

S(ω) = − 1

π
Im �(ω) = − 1

π
Im

∑
ν

〈0|O|ν〉2 1

ω − 	ν + i �ν

2

.

(20)

The sum rules, or the kth moments mk of the strength function,
are defined as

mk =
∫ ∞

0
S(ω)ωkdω. (21)
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Among them, the energy-weighted sum rule m1 is of particular
interest as it can be expressed in a simple form via a double
commutator evaluated in the ground state, namely

m1 = 1
2 〈0|[O†, [H, O]]|0〉. (22)

C. Spreading term in PVC

The spreading term is the last term in Eq. (14),

W ↓(ω) = Q1HQ2
1

ω − Q2HQ2 + iε
Q2HQ1. (23)

It describes the process in which 1p-1h configurations of the
Q1 subspace are coupled to the more complicated doorway
states of the Q2 subspace. These terms can be derived with
the equation-of-motion method [59] as in the SRPA [54].
Similar to the RPA matrix Q1HQ1 in Eq. (5), one has the
matrices Q1HQ2 and Q2HQ2 in the particle-hole and phonon
representation:

Q1HQ2 =
(

Aph,p1h1n Bph,p1h1n

−B∗
ph,p1h1n −A∗

ph,p1h1n

)
, (24)

Q2HQ2 =
(

Ap1h1n1,p2h2n2 Bp1h1n1,p2h2n2

−B∗
p1h1n1,p2h2n2

−A∗
p1h1n1,p2h2n2

)
, (25)

with the matrix elements defined similarly to Eq. (6),

Aph,p1h1n = 〈0|[a†
hap, [H, a†

p1
ah1

Q†
n]]|0〉, (26)

Bph,p1h1n = −〈0|[a†
hap, [H, Qna†

h1
ap1

]]|0〉, (27)

Ap1h1n1,p2h2n2 = 〈0|[Qn1
a†

h1
ap1

, [H, a†
p2

ah2
Q†

n2
]]|0〉, (28)

Bp1h1n1,p2h2n2 = −〈0|[Qn1
a†

h1
ap1

, [H, Qn2
a†

h2
ap2

]]|0〉. (29)

They can be evaluated as

Aph,p1h1n = δhh1〈p|V |p1, n〉 − δpp1〈h1|V |h, n〉, (30)

Ap1h1n1,p2h2n2 = δn1n2 [δp1h1,p2h2 (ωn1 + ep1h1 ) + V̄p1h2h1 p2 ],

(31)

Bph,p1h1n = Bp1h1n1,p2h2n2 = 0, (32)

with ωn the energy of the phonon |n〉, eph = ep − eh, and

〈a|V |b, n〉 =
∑

ph

[
X (n)

ph V̄ahbp + Y (n)
ph V̄apbh

]
. (33)

The matrix element Aph,p1h1n in Eq. (30) represents the in-
teraction between the 1p-1h state |ph〉 in the Q1 space and the
doorway state |p1h1〉 ⊗ |n〉 in the Q2 space. A diagrammatic
representation of this interaction is given in the left part of
Fig. 1, where straight lines denote fermions (with up arrow a
particle and down arrow a hole) and red wavy lines are for
phonons. The solid circle between two particle (or two hole)
lines and a phonon is for the phonon vertex 〈p|V |p1, n〉 (or
〈h1|V |h, n〉) in Eq. (30). The matrix element Ap1h1n1,p2h2n2 in
Eq. (31) represents the interaction among the doorway states,
and its diagrammatic representation is also provided in the
right part of Fig. 1. The noninteracting part (first one) is

Q1HQ2 Q2HQ2

FIG. 1. Schematic picture of the interaction of Q1HQ2 and
Q2HQ2, corresponding to the matrix elements in Eqs. (30) and (31).
The straight lines are used to represent fermions (with up arrow
for a particle and down arrow for a hole), while wave lines are
for phonon states. The solid circle between two particle (or two
hole) lines and a phonon is for the phonon vertex 〈p|V |p1, n〉 (or
〈h1|V |h, n〉) in Eq. (30), the dashed line is for the interaction between
two particle-holes V̄p1h2h1 p2 in Eq. (31).

denoted as δn1n2δp1h1,p2h2 (ωn1 + ep1h1 ), and the dashed line in
the interacting part (second one) is for the interaction between
two particle-holes V̄p1h2h1 p2 in Eq. (31).

The full spreading term can then be written as

W ↓
p′h′,ph(ω) =

∑
p′

1h′
1 p1h1n

Ap′h′,p′
1h′

1n

× (ω − Ap′
1h′

1n,p1h1n + iε)−1Ap1h1n,ph. (34)

In the above notation (ω − Ap′
1h′

1n,p1h1n + iε)−1 is not the in-
verse of a single matrix element, but the matrix element of the
inverted matrix of ω − Ap′

1h′
1n,p1h1n + iε.

In previous investigations, the diagonal approximation was
used, that is, no interaction among the doorway states was
considered [40]. Within this approximation, the matrix ele-
ment Ap1h1n1,p2h2n2 in Eq. (31) becomes

Ap1h1n1,p2h2n2 = δn1n2δp1h1,p2h2 (ωn1 + ep1h1 ). (35)

The matrix Q2HQ2 then becomes diagonal, and the spreading
term can be easily evaluated as

W ↓
p′h′,ph(ω) =

∑
p1h1n

Aph,p1h1nAp1h1n,ph

ω − ωn − ep1h1 + iε
. (36)

When the diagonal approximation is not considered, there
is an extra step of inverting the matrix ω − Q2HQ2 + iε
before evaluating the spreading term. See Appendix C for
more details.

Finally, interactions that are fitted at the mean-field level
and are used within effective theories that go beyond mean
field should in principle be refitted against to experimental
data in order to avoid double counting. That is, a renormaliza-
tion of the model parameters is compulsory. The parameters
will change their value since many-body contributions beyond
mean field are now explicitly included. The purpose of the
subtraction method [28,47] is to provide a recipe for the
renormalization of the effective interaction within the adopted
model scheme that avoids a refitting of the parameters. For
that, the spreading term in Eq. (14) should be replaced by

W ↓(ω) → W ↓(ω) − W ↓(ω = 0). (37)

D. Sum rules

In this subsection we discuss the sum rules. Following a
similar derivation from the response theory in the extended
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RPA [60], the sum rules (21) can be obtained as

mk = 1
2 O†T (M −1I )kM −1T †O, (38)

with O the one-body excitation operator being the same as in
Eq. (19),

O =
∑

i j

Oi ja
†
i a j . (39)

I is the stability matrix, and T and M are the metric
matrices,

Tcβ = (Ũcβ Ṽcβ ), Mαβ =
(

Uαβ Vαβ

−Vαβ −Uαβ

)
. (40)

For Q1 subspaces only, considering the case of p′h′ (h′ p′ will
be similar) one has

Ũcβ : Ũp′h′,ph = 〈0|[a†
h′ap′ , a†

pah]|0〉 = δp′h′,ph, (41)

Ṽcβ : Ṽp′h′,ph = 〈0|[a†
h′ap′ , a†

hap]|0〉 = 0, (42)

Uαβ : Up′h′,ph = 〈0|[a†
h′ap′ , a†

pah]|0〉 = Ũp′h′,ph, (43)

Vαβ : Vp′h′,ph = 〈0|[a†
h′ap′ , a†

hap]|0〉 = Ṽp′h′,ph. (44)

The index c is used to denote the pair a†
i a j in Eq. (39). The

indices α and β for Q1 subspace are for a†
pah or a†

hap in Eq. (8);

for Q2 subspace they are for a†
pahQ†

n and Qna†
hap in Eq. (11);

the P subspace is similar to Q1 but with the particle in the
continuum, which we will label as

Q†
ñ =

∑
p̃h

[
X (ñ)

p̃h a†
p̃ah − Y (ñ)

p̃h a†
hap̃

]
. (45)

When P and Q2 subspaces are included, the dimension of
metric matrices in Eq. (40) will be enlarged accordingly. It
has been shown for SRPA [60] that even though the 2p-2h
correlations are considered in the excitation state, only the
1p1h components of (M −1I )k contribute to the sum rules,
because of the absence of ground-state correlations. This can
be seen when one tries to evaluate the metric matrix elements
with the ground state |0〉 chosen as the HF state |�HF

0 〉,
Ũi j,p1 p2h1h2 = 〈0|[a†

j ai, a†
p1

a†
p2

ah2 ah1 ]|0〉 = 0. (46)

In the end one can prove that the m0 and m1 are the same for
SRPA and RPA [60]. For extended RPA, however, the 2p-2h
correlations are also included in the ground state |0〉 and in
this case Ũi j,p1 p2h1h2 has nonzero components, pp (Ũpp,p1 p2h1h2 )
and hh (Ũhh,p1 p2h1h2 ). As a result, m0 and m1 are different from
RPA [60].

In our PVC framework, the Q2 subspace [Eqs. (10) and
(11)] is similar to the 2p-2h subspace in SRPA, and the ground
state |0〉 is also chosen as the HF ground state. It is then not
difficult to find a conclusion similar to that in SRPA,

Ũi j,phn = 〈0|[a†
j ai, a†

pahQ†
n]|0〉 = 0, (47)

that is, the one-body excitation operator O (39) cannot con-
nect the ground state to the Q2 subspace in our framework.
Therefore, as a result, the m0 and m1 should be the same as in

RPA. This also agrees with the TBA, that when the effective
interaction coincides with the one of RPA, the EWSR is the
same as RPA [28].

For the P subspace (45), the following term in the metric
matrix is nonzero:

Ũp̃′h′,p̃h = 〈0|[a†
h′ap̃′ , a†

p̃ah]|0〉 = δp̃′h′,p̃h. (48)

While such contribution from the continuum (P subspace)
should be small, the approximations done in dealing with the
escape term W ↑ in Eq. (14) (see, e.g., Ref. [40]) could have
an influence, and in the end the sum rules given by PVC with
the escape term could be slightly different from those of RPA.
The numerical results will be shown in Sec. IV.

In any case, when the diagonal approximation is removed,
the sum rules m0 and m1 will not be influenced as this ap-
proximation only affects the interaction Q2HQ2. Similarly to
SRPA, this part will affect the sum rule from m3, which is [60]

mSRPA
3 = 1

2 O†H3
11M O + 1

2 O†(H12H21H11 + H11H12H21

+ H12H22H21)M O, (49)

with expressions H11 = Q1HQ1 and so on.

III. NUMERICAL DETAILS

The nucleus 16O is studied as an example since it provides
a simple case for various theoretical investigations and
tests. As it is a doubly magic nucleus, the effects of pairing
and deformation can be ignored. The Skyrme functional
SAMi [61] will be used in all calculations except in the
last section where a systematic study on the dependence
on the parametrization of the Skyrme functional is given.
Three isoscalar (IS) non-charge-exchange excitation modes
will be examined: the giant monopole resonance (GMR,
Jπ = 0+), giant dipole resonance (GDR, Jπ = 1−), and giant
quadrupole resonance (GQR, Jπ = 2+). The corresponding
adopted excitation operators are [62]

O(ISGMR) =
A∑

i=1

r2
i Y00, (50a)

O(ISGDR) =
A∑

i=1

(
r3

i − 5〈r2〉
3

ri

)
Y1M , (50b)

O(ISGQR) =
A∑

i=1

r2
i Y2M, (50c)

with ri the radial coordinate of the ith nucleon and YLM the
spherical harmonic function. The special form of the ISGDR
is aimed at removing the contribution from the spurious state
[62]. The spurious state in the RPA solution has also been ex-
cluded in the selection of doorway states |N〉 in Eq. (10). The
corresponding EWSR is evaluated by the double commutator
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TABLE I. Sum rules for the ISGMR, ISGDR and ISGQR re-
sponses in 16O calculated by RPA, PVC-dia without Coulomb and
spin-orbit interactions (PVC-d, Vc), PVC-dia with full interaction
(PVC-d), PVC, and PVC with subtraction (PVC-s). The EWSR m1

by double commutator (DC) is also given. In all cases the SAMi
functional is used. The units of m−1, m0, and m1 are fm4/MeV, fm4,
and fm4 MeV, respectively, for the ISGMR and ISGQR; they are
fm6/MeV, fm6, and fm6 MeV for the ISGDR.

SR RPA DC PVC-d,Vc PVC-d PVC PVC-s

ISGMR m−1 1.14 1.25 1.25 1.25 1.17
m0 27.3 27.9 27.8 27.8 27.8
m1 689 688 701 701 700 740
m1/m0 25.3 25.2 25.2 25.2 26.6√

m1
m−1

24.6 23.7 23.7 23.7 25.1

ISGDR m−1 38.4 42.5 43.0 43.0 42.8
m0 968 981 982 981 1008
m1 29567 29493 29583 29619 29591 30607
m1/m0 30.5 30.2 30.2 30.2 30.4√

m1
m−1

27.7 26.4 26.2 26.2 26.7

ISGQR m−1 18.4 22.6 23.2 23.3 20.9
m0 397 419 420 420 413
m1 8613 8604 8503 8488 8489 8949
m1/m0 21.7 20.3 20.2 20.2 21.7√

m1
m−1

21.6 19.4 19.1 19.1 20.7

(DC) in Eq. (22) with HF ground state |0〉 = |�HF
0 〉 [62]:

m(DC)
1 (ISGMR) = h̄2

2m

A

π
〈r2〉, (51a)

m(DC)
1 (ISGDR) = h̄2

2m

A

4π
(33〈r4〉 − 25〈r2〉2), (51b)

m(DC)
1 (ISGQR) = h̄2

2m

25A

2π
〈r2〉, (51c)

with m the nucleon mass. To take into account the one-body
center-of-mass correction, in the end the DC sum rules are to
be multiplied by a factor of (A − 1)/A.

The HF equation is solved in a spherical box with size R =
20 fm and a radial step dr = 0.1 fm. In the RPA calculation,
the single-particle energy cutoff is ecut = 80 MeV, so that it
ensures the convergence of our results, as can be seen from
the EWSR for ISGMR, ISGDR, and ISGQR in 16O that are
all 100% fulfilled; see the column “RPA” in Table I. For the
PVC calculation, the phonons selected in the doorway states,
i.e., the summation index n in Eq. (34), include multipolarity
Jπ = 0+, 1−, 2+, 3−, 4+, 5−. Contributions from unnatural
parity states such as 0− should be negligible and therefore
are not included. Convergence of the results by considering
natural parity phonons up to 5− is well achieved. The phonon
energy cutoff is ωn,cut = 30 MeV. A further criterion for the
selection of a phonon is its strength: only those phonons
with B(EJ )/m0 � Fcut will be selected in the doorway states
and the fraction cutoff is Fcut = 2%. These cutoffs have been
checked in previous investigations [47]. The smearing param-
eter ε in Eq. (14) is chosen as 0.25 MeV.

IV. RESULTS AND DISCUSSION

A. Spectrum and sum rules

In Fig. 2 we show the strength function of ISGMR, ISGDR,
and ISGQR in 16O calculated by RPA (bars) and PVC (lines),
in comparison with experimental data [63,64]. The original
data are given in terms of the fraction of EWSR F (E ) in
Ref. [64], with totals of (48 ± 10)%, (32 ± 7)%, and (53 ±
10)% of the EWSR in the region Ex from 11 to 40 MeV. These
data is transformed to the strength distribution by

S(E ) = F (E )

E
m1, (52)

with the values of m1 adopted as the double commutator ones
in Table I. For the dipole resonance, the level at 7.12 MeV
which exhausts 4.2% of the EWSR is taken from Ref. [63].

In previous studies of PVC such as Refs. [40,47], the
interaction vertex Q1HQ2 in Eq. (24) includes only the central
term of the Skyrme interaction. The effect of other terms on
the single-particle properties was investigated in Ref. [41,42].
Here we would like to investigate the effect of those terms
on the strength function, therefore in Fig. 2 the results of
PVC both with central interaction (Vc) and with full inter-
action (Vfull) are given, within the diagonal approximation
(PVC-dia). For PVC without diagonal approximation (PVC),
only the results with full interaction are given. In all cases,
the HF+RPA calculations are performed with full Skyrme
interaction.

It can be seen from Fig. 2 that, by including the escape and
spreading effects within the PVC, the width of the strength
distribution appears naturally, unlike in the case of RPA. This
makes the comparison with experimental data more realistic.
On the other hand, the centroid of the distribution (m1/m0)
is shifted to a lower energy, from few hundreds of keV for
the ISGMR and ISGDR to a maximum of about 1.5 MeV for
the case of the ISGQR (cf. Table I). It is important to note
here that functionals are usually calibrated in order to give a
reasonable description of the experimental centroid energy at
the RPA level and, therefore, such a shift may lead to worse
agreement with the data.

By comparing the results with central term only and re-
sults with full interaction, it can be seen that by including
the Coulomb term and the spin-orbit term, the strength is
generally slightly shifted to a lower energy. In the case of
ISGMR and ISGDR, the shape of the strength distribution
does not change too much, while in ISGQR such a change
is more significant.

From PVC-dia to PVC, the strength function is also much
influenced in the ISGQR case. For PVC-dia, there are two
major peaks, near 17 and 18.5 MeV; while for PVC there
are four major peaks, near 14.5, 17, 18.5, and 19.5 MeV,
with lower strength and wider distribution. The lowest peak
near 14.5 MeV is of particular interest as there is no sign
of this peak in PVC-dia. It will be used as an example
in Sec. IV C to analyze the difference between calculations
with and without the diagonal approximation. Regarding the
ISGMR, the removal of the diagonal approximation also
shows some effect, for example the lowest peak near 16.5
MeV is slightly shifted to a lower energy and the strength

044316-6



PARTICLE-VIBRATION COUPLING FOR GIANT … PHYSICAL REVIEW C 101, 044316 (2020)

FIG. 2. Strength function of ISGMR (a), ISGDR (b), and ISGQR (c) in 16O calculated by RPA with full interaction and by PVC with
diagonal approximation and central interaction (PVC-dia, Vc), with diagonal approximation and full interaction (PVC-dia, Vfull), and without
diagonal approximation and with full interaction (PVC, Vfull). In all cases the SAMi functional is used. See text for details of the experimental
data [63,64].

increases. The distributions of the peaks near 20, 21.5, 24,
and 29.5 MeV are also affected, but, overall, the effect is
weaker than the case of ISGQR. Among the three cases, the
ISGDR is the one where the diagonal approximation shows
less influence.

As mentioned in the Introduction, the diagonal approxi-
mation has been investigated in the SRPA framework for the
giant resonances of 16O in Ref. [21]. From RPA to SRPA, the
strength distributions are shifted towards a lower energy, sim-
ilar to the effect of PVC in Fig. 2. However, quantitatively, the
effect of SRPA is larger. For ISGMR, IVGDR, and ISGQR,
the main peaks are shifted towards a lower energy by about
4, 6, and 8 MeV, respectively [21], while for PVC the shifts
are ≈2–3 MeV. For the ISGMR, the diagonal approximation
in SRPA shifts the distribution to a lower energy by about
2 MeV, while in PVC it changes mildly (see Fig. 2(a) of this
work and Fig. 8(a) of Ref. [21]). For the dipole case, the effect
of diagonal approximation is small in both SRPA and PVC
(see Fig. 2(b) of this work and Fig. 15(b) of Ref. [21]). For
the ISGQR, the diagonal approximation in SRPA shifts the
distribution towards a lower energy by around 2 MeV, similar
to ISGMR, while in PVC it is more complicated as the shape
has changed much (see Fig. 2(c) of this work and Fig. 9(a)
of Ref. [21]). In all the cases, the diagonal approximation
in SRPA does not change much the shape of the strength
distribution, while in PVC this is not the case for the ISGQR.

The diagonal approximation has also been studied in the
RTBA framework [50,51], where it was removed by including
additional phonon coupling between two quasiparticles inside
the two-quasiparticle ⊗ phonon configuration. The low-lying
dipole excitations in 116,120Sn and 68,70,72Ni were investigated.
By removing the diagonal approximation, a larger fraction of
the pygmy mode is pushed above the neutron threshold. For a
detailed comparison between RTBA and current framework,
see Appendix B.

In Fig. 3 the effects of the subtraction [Eq. (37)] in the PVC
calculation are shown for the ISGMR, ISGDR, and ISGQR
strength distributions of 16O. As a reference, the results of
the RPA and experimental data shown in Fig. 2 are also
displayed in Fig. 3. It can be seen that. by adopting the
subtraction procedure, the strength distributions are generally
shifted towards a higher energy by about 1 MeV, except in
the ISGDR case where the main peak at 17 MeV vanishes

and a new peak at 14 MeV appears. The effects of subtraction
presented here are consistent with the findings of a previous
investigation using PVC-dia (see Fig. 4 of Ref. [47]).

In Ref. [65], the quasiparticle-phonon coupling model
with the time-blocking approximation was used to study the
ISGMR, ISGQR, and isovector GDR of 16O, 40Ca, and 208Pb.
A systematic downward shift of the centroid energy of the
giant resonances was found from RPA to TBA with subtrac-
tion. This effect is similar to the one of PVC presented here,
though quantitatively it is smaller (see Fig. 3 of this work and
Fig. 4 of Ref. [65]). Especially in the case of ISGQR, the PVC
calculation (with or without subtraction) gives very different
strength distribution from the one given by RPA, while they
are similar for TBA and RPA [65]. This might be related with
the diagonal approximation, as removing it shows quite some
effect here.

The subtraction in SRPA has been investigated for ISGMR
and ISGQR and it also pushes the strength distribution to a
higher energy [66]. However, comparing with the results of
PVC shown in Fig. 3, the effect in SRPA is again larger. With
subtraction, the strength are shifted towards a higher energy
by about 2 MeV in SRPA while in PVC it is generally less than
1 MeV; see Figs. 1 and 4 of Ref. [66]. Comparing the results
of SRPA including subtraction with RPA given in Ref. [66],
the main peaks of ISGMR and ISGQR given by SRPA with
subtraction are about 1.5 and 1 MeV lower than those by
RPA. These are similar to the differences between PVC with
subtraction and RPA shown in Fig. 3.

In comparison with the experimental data, the three peaks
of ISGMR around 18, 23, and 26 MeV may correspond to
the three peaks given by the PVC, though the energies are
slightly lower than the data. This may be understood because
the SAMi functional has been developed in such a way that the
experimental ISGMR is reproduced at the RPA level, which
can be seen from the black vertical lines in Fig. 3. When the
PVC is included, although the description of resonance width
has been improved, the centroid is pushed to a slightly lower
energy and the subtraction remedies to this problem only to
some extent. The peaks around 12 and 14 MeV may be due to
α-clustering effects [67].

In the case of ISGDR the description of PVC with SAMi
functional is rather good; especially the low-lying 7.1 MeV
level has been nicely reproduced. The peaks around 12 and
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FIG. 3. Same as Fig. 2, but for comparison between PVC calculation with and without subtraction.

18 MeV and the resonance shape above 20 MeV are also well
described. The subtraction worsens the description of the data
below 20 MeV.

In the case of the ISGQR, the peak at 15 MeV by PVC
might be attributed to the peak at 12 MeV or 14 MeV of the
data. The experimental data for the high energy part of ISGQR
is concentrated from 18 to 26 MeV, while the theoretical
distribution is from 16 to 22 MeV, slightly lower than the data.
Again, the strength distribution given by subtraction method
is shifted towards higher energy, but the peak position is still
lower than the experimental data. It has been shown that the
dominant decay channel of ISGQR of 16O is α emission to the
ground and first excited states of 12C [68]. Such an effect is not
included in the current PVC framework and could be among
of the reasons for the disagreement with the data. Besides
that, taking into account the coupling with more phonons [34]
and ground-state correlation might also help to improve the
descriptions of the ISGMR and ISGQR of 16O.

FIG. 4. Sum rules m0 and m1 of ISGMR in 16O as a function
of the upper limit of the integrated energy range, calculated by
PVC with escape term (W ↑), spreading term (W ↓), and both terms.
Horizontal black dashed lines are RPA results (for m0) and DC results
(for m1); see Table I for the values.

The sum rules for the above discussed calculations are
shown in Table I, including the results for the RPA, PVC-dia
without Coulomb and spin-orbit interactions in the PVC ver-
tex (PVC-d, Vc), PVC-dia with full interaction (PVC-d), PVC,
and PVC with subtraction (PVC-s). The strength functions
given by PVC are integrated up to E = 120 MeV. The EWSR
m1 by the double commutator in Eq. (51) are also shown.

First, the EWSR (m1) values given by the RPA calculation
in all three cases, for ISGMR, ISGDR, and ISGQR, are fully
exhausted compared to the ones obtained by the double com-
mutator. For the PVC results there are small discrepancies.
As discussed in Sec. II D, when only the spreading term is
taken into account, the m0 and m1 given by PVC should be
the same as those of RPA, similar to the case of SRPA [60].
To verify this, we show in Fig. 4 the m0 and m1 as a function
of the upper limit of the integrated energy range. The case of
ISGMR is taken as an example, while the others give similar
results. In this figure the horizontal dashed lines are the RPA
results for m0 and DC for m1 (see Table I). One can see that
when only the spreading term (W ↓) is included in the PVC
calculation, the m0 and m1 are the same as those of RPA.

When escape term (W ↑) is included, the sum rules m0

and m1 are slightly different from those of RPA. This could
be due to the approximation in the escape term that the
interaction has not taken into account [40]. To verify this, we
compare the sum rules of PVC with escape term only, starting
from RPA phonons, to the results starting from unperturbed
phonons (without particle-hole interactions). The latter one is
labeled UNP and the results are listed in Table II. To achieve
a higher precision, the smearing parameter ε in Eq. (14) is
chosen as 0.1 MeV in this table instead of 0.25 MeV in other
calculations. It can be seen that when interactions are not
taken into account at the beginning, the m0 and m1 given by
PVC with escape term are almost the same as those from the
original calculation in Q1 subspace, with a relative difference

TABLE II. Sum rules for the ISGMR in 16O calculated by RPA
(or unperturbed calculation, UNP) and PVC with escape term only
(W ↑). The relative differences between PVC and RPA (or UNP) are
also given (δ). In all cases the SAMi functional is used.

SR RPA W ↑ δ UNP W ↑ δ

m0 (fm4) 27.27 27.88 2.2% 28.13 28.06 0.2%
m1 (fm4 MeV) 689.1 702.8 2.0% 816.8 815.5 0.2%
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FIG. 5. Strength function of ISGQR in 16O calculated by RPA
with full interaction, PVC with central interaction (PVC, Vc), PVC
with central plus Coulomb interactions (PVC, Vc + VCou.), PVC with
central plus spin-orbit interactions (PVC, Vc + Vs.o.), and PVC with
full interaction (PVC, Vfull). In all cases the SAMi functional is used.

of 0.2%. When interaction is included in Q1 subspace (RPA
calculation) but not in P subspace (PVC with escape term),
the sum rules will be slightly influenced.

As discussed in Fig. 2, the strength distributions given
by PVC are generally shifted to a lower energy compared
to those by RPA. Therefore, the inverse EWSR (m−1) are
larger compared to RPA even when the subtraction method is
implemented, and the centroid energies (m1/m0 or

√
m1/m−1)

are smaller. The influence of noncentral terms of the inter-
action (comparing PVC-d,Vc and PVC-d) on the sum rules
is negligible in the case of ISGMR, while for ISGDR and
ISGQR a small effect shows up. In all cases, the diagonal ap-
proximation (comparing PVC-d and PVC) has little influence
on the sum rules. On the other hand, the subtraction has much
influence on the sum rules (comparing PVC and PVC-s).
The EWSRs are significantly larger and agree less with the
double commutator sum rule when subtraction is performed,
in agreement with the findings in the PVC-dia calculation [47]
and SRPA [66]. This is a feature of the subtraction method
that needs to be better investigated. We recall here that the
subtraction method was devised for exactly keeping the m−1

value obtained within the RPA in beyond-RPA calculations,
while no procedure of renormalization was imposed on m1.

B. Different components of interaction

Next, we show how different components of the interaction
contribute to the strength function in Fig. 2, using the ISGQR
as an example.

In Fig. 5 the strength distributions calculated by PVC and
with different terms of interaction are shown, including those
with central terms only (Vc), with central terms and Coulomb
term (Vc + VCou.), with central terms and spin-orbit term (Vc +
Vs.o.), and with full interaction (Vfull). It can be seen that the
Coulomb interaction has a negligible effect on the strength
distribution, except for a small influence near 14 and 21 MeV.
On the other hand, the spin-orbit term has much influence and
clearly changes the distribution. With the central term there is
only one minor peak near 14 MeV and one major peak near

FIG. 6. Contribution to the ISGQR strength function of 16O at
ω = 14.6 MeV from different PVC eigenstates ν with different exci-
tation energies; see also Eq. (20). Results of (a) PVC (red lines) and
(b) PVC-dia (blue lines) are shown. The position of ω = 14.6 MeV
is given by the vertical dashed line, and the RPA states are given by
the gray vertical lines (with unit fm4).

18.5 MeV. When including the spin-orbit term, the strength of
the major peak decreases much and two other peaks near 17
and 19.5 MeV become larger.

C. Influence of diagonal approximation: Eigenenergies

In this subsection, we analyze the difference between PVC
with and without diagonal approximation in Fig. 2. The low
energy peak at ω = 14.6 MeV in the ISGQR will be used as an
example, as it is manifestly different in the two calculations.
In the following results, all PVC calculations are performed
with the full interaction at ω = 14.6 MeV. The integration of
the strength around this energy (14.6 ± 0.4 MeV) within PVC
calculation gives

∫
SPVCdω = 34.9 fm4, whereas within PVC-

dia it is
∫

SPVC-diadω = 3.7 fm4.
Figure 6 shows the strength contributions from different

PVC states ν, as given by Eq. (20). The position of ω =
14.6 MeV has been indicated by the vertical dashed line,
and the RPA states are given by the gray vertical lines in
the background. For PVC, the largest contribution to the
strength at ω = 14.6 MeV comes from the PVC state at 	ν =
15.5 MeV, while for PVC-dia the largest contribution comes
from the state at 	ν = 18.0 MeV.

Let us express the square of the transition matrix elements
explicitly in terms of its real and imaginary parts,

〈0|O|ν〉2 = aν + ibν, (53)

with aν and bν both real numbers. From Eq. (20), the strength
function can be written as

S(ω) = 1

π

∑
ν

aν
�ν

2 − bν (ω − 	ν )

(ω − 	ν )2 + �2
ν

4

. (54)

In Fig. 7 the real part of the square of the transition matrix
element, aν = Re(〈0|O|ν〉2), is shown. It can be seen that both
the transition matrix element of the state at 	ν = 15.5 MeV in
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FIG. 7. Real part of the square of the transition matrix element
〈0|O|ν〉 for PVC states ν with different excitation energies. The
calculation is performed for the ISGQR of 16O at ω = 14.6 MeV
(vertical dashed line) by (a) PVC and (b) PVC-dia.

PVC and that of the state at 	ν = 18.0 MeV in PVC-dia, are
very large. Although the value of the 	ν (PVC) = 15.5 MeV
one is slightly larger than the one of the 	ν (PVC-dia) =
18.0 MeV, the difference is not large enough to explain the
difference in the final contribution to the strength shown in
Fig. 6. Therefore, according to Eq. (54), the much stronger
strength in the PVC from 	ν (PVC) = 15.5 MeV state must
be due to the position of this state, which is much closer to
the energy being evaluated, that is, ω = 14.6 MeV. In this
way, the energy denominator in Eq. (54) of this state is much
smaller than the 	ν (PVC-dia) = 18.0 MeV state and as a
consequence the strength is larger.

Next, we will study the origin of the large difference in the
eigenenergies of these two states. First, one needs to identify
the components of these two states, or, more specifically,
from which RPA states they come. For this purpose, we will
identify them by looking at the corresponding wave functions.

In the upper panel of Fig. 8 we show the real part of the
PVC wave function F (ν)

n (15) of states 	ν (PVC) = 15.5 MeV
and 	ν (PVC-dia) = 18.0 MeV in the basis of RPA states |n〉
by PVC and PVC-dia. The transition matrix elements 〈n|O|0〉
in the RPA representation are shown in the lower panel. The
transition matrix elements 〈0|O|ν〉 in the PVC representation
in Fig. 7 can be calculated as

〈0|O|ν〉 =
∑

n

F (ν)
n 〈0|O|n〉. (55)

It can be seen that these two states have similar RPA
components in both PVC calculations. Although not really
dominant, the major component of these two states can be
identified as the 11th RPA state with the largest transition
matrix element 〈n = 11|O|0〉. This RPA state is the one lo-
cated at ωn = 21.3 MeV with the largest strength, as shown in
Fig. 2(c) or Fig. 6.

In Fig. 9, the wave functions F (ν)
n of states ων (PVC) =

15.5 MeV and ων (PVC-dia) = 18.0 MeV are transformed to

FIG. 8. (a) Real part of the PVC wave function (15) of states
	ν (PVC) = 15.5 MeV and 	ν (PVC-dia) = 18.0 MeV in the basis
of RPA states |n〉 by PVC and PVC-dia. (b) Transition matrix
elements 〈n|O|0〉.

the 1p-1h basis for the X amplitude as

F (ν)
ph =

∑
n

X (n)
ph F (ν)

n . (56)

A similar transformation can be done for the Y amplitudes,
but as their values are very small they will not be shown
here. From this figure it can be seen that the original RPA
state ωn = 21.3 MeV is a very collective state with many
1p-1h components involved. When considering the escape
and spreading effect of the PVC, we noticed that this state
becomes even more collective. In both PVC and PVC-dia cal-
culations, the wave functions F (ν)

ph of these states are similar.
After identifying the major RPA components of the PVC

states, one can see how the eigenenergies change from RPA
to PVC. In Fig. 10 we show the RPA solutions ωn for the

FIG. 9. (a) RPA wave function (X amplitude) of the state with
excitation energy ωn = 21.3 MeV in the 1p-1h representation; see
Eq. (8). Different regions divided by vertical lines are for different
hole states. (b) Real part of the PVC wave functions of states
with excitation energies 	ν (PVC) = 15.5 MeV and 	ν (PVC-dia) =
18.0 MeV, see Eq. (56), by PVC and PVC-dia.
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FIG. 10. Excitation energies of ISGQR in 16O calculated with
SAMi functional by RPA, PVC, and PVC-dia. The diagonal PVC
matrix elements before diagonalizing the PVC Hamiltonian Hnn in
Eq. (17) are also given.

ISGQR of 16O, below 23 MeV, obtained by using the SAMi
functional, together with the corresponding eigenenergies of
the PVC solutions at ω = 14.6 MeV. The diagonal matrix
elements of the PVC Hamiltonian (17) before diagonal-
izing, Hnn(ω) = ωn + Wnn(ω) have also been shown, with
W = W ↑ + W ↓ the escape term plus spreading term. The
corresponding levels are connected with dotted lines, with
bold dashed lines emphasising the link between RPA state
ωn = 21.3 MeV and PVC states 	ν (PVC) = 15.5 MeV and
	ν (PVC-dia) = 18.0 MeV.

It can be seen from Fig. 10 that the diagonal PVC matrix
elements are attractive. In PVC-dia Wnn = −2.0 MeV while
for PVC the value is −2.7 MeV, that is, 0.7 MeV more
attraction by removing the diagonal approximation. After di-
agonalizing the PVC Hamiltonian H, the energy level changes
from the perturbative approximation Hnn (originated from the
ωn = 21.3 MeV RPA state) to the final eigenvalue 	ν with
a further decrease of 1.3 MeV in PVC-dia and of 3.1 MeV
in PVC. In the end, the eigenenergy of this state in PVC-dia
is 	ν (PVC-dia) = 21.3 − 2.0 − 1.3 = 18.0 MeV, while in
PVC it is 	ν (PVC) = 21.3 − 2.7 − 3.1 = 15.5 MeV.

In Fig. 11, the PVC matrix elements W are shown with the
index n referring to the RPA basis. Since the numbering for
the RPA state we are interested in is n = 11, with excitation
energy ωn = 21.3 MeV, the matrix elements are shown for
Wn,11. In this figure, the big attraction of the diagonal matrix
elements W11,11 for both calculations can be clearly seen, with
0.7 MeV more in the PVC calculation. Moreover, the magni-
tudes of the nondiagonal matrix elements are generally larger
in the PVC calculation, which in the end leads to more mixing
of other states and lower eigenvalues after diagonalizing.

In conclusion, the extra attraction shown by removing the
diagonal approximation in the PVC model is the main cause
of the appearance of the low-energy peak in the ISGQR.

D. Influence of diagonal approximation: Coupling between
neutron and proton particle-hole configurations

In this subsection, we analyze another important differ-
ence between PVC with and without diagonal approxima-
tion shown in Fig. 2, that is, the coupling of neutron 1p-1h

FIG. 11. PVC matrix elements W = W ↑ + W ↓ with index n
referring to the RPA basis. Results are shown for PVC and PVC-dia
for the ISGQR of 16O at excitation energy ω = 14.6 MeV. The 11th
RPA state is the one with excitation energy ωn=11 = 21.3 MeV and
is discussed in the text.

excitations and proton 1p-1h excitations. The low energy
peak at ω = 16.4 MeV in the ISGMR will be used as an
example. The integration of the strength around this energy
(16.4 ± 0.4 MeV) by PVC is

∫
SPVCdω = 1.5 fm4, and by

PVC-dia it is
∫

SPVC-diadω = 1.3 fm4.
Figure 12 shows the strength contributions from different

PVC states ν, as given by Eq. (20). The position of ω =
16.4 MeV has been indicated by the vertical dashed line,
and the contributions from the RPA states are given by the
gray vertical lines in the background. For PVC, the largest
contribution to the strength at ω = 16.4 MeV comes from
the state at 	ν = 16.7 MeV while, for PVC-dia, the largest
contribution comes from the state at 	ν = 17.2 MeV. At

FIG. 12. Similar to Fig. 6, but showing the contributions to the
ISGMR strength function of 16O at ω = 16.4 MeV from different
PVC eigenstates ν with different excitation energies. Results of
(a) PVC (red lines) and (b) PVC-dia (blue lines) are shown. The
position of ω = 16.4 MeV is given by the vertical dashed line, and
the contributions from RPA states are given by the gray vertical lines
(with unit fm4).

044316-11



SHEN, COLÒ, AND ROCA-MAZA PHYSICAL REVIEW C 101, 044316 (2020)

FIG. 13. Real part of the square of the transition matrix element
〈0|O|ν〉 for PVC states ν with different excitation energies. The
calculation is performed for the ISGMR of 16O at ω = 16.7 MeV
(vertical dashed line) by (a) PVC and (b) PVC-dia.

variance with the situation discussed in Fig. 6, these two
PVC states are both close to the energy being evaluated (ω =
16.4 MeV). Therefore, from Eq. (20), one can infer that the
difference in the strength should come from the difference in
the transition matrix element in these two calculations.

In Fig. 13 the real part of the square of the transition matrix
element, Re(〈0|O|ν〉2), is shown. As expected, the transition
matrix element of the state 	ν (PVC) = 16.7 MeV is larger
than the state 	ν (PVC-dia) = 17.2 MeV, and this explains
the larger strength in PVC.

To understand the difference in the transition matrix ele-
ments, we show in Fig. 14 the PVC wave function F (ν)

n (15) of
states 	ν (PVC) = 16.7 MeV and 	ν (PVC-dia) = 17.2 MeV
in the basis of RPA phonons |n〉, and the transition matrix
elements 〈n|O|0〉 in the RPA representation. The transition

FIG. 14. (a) Real part of the PVC wave function (15) of states
	ν (PVC) = 16.7 MeV and 	ν (PVC-dia) = 17.2 MeV in the basis
of RPA states |n〉 by PVC and PVC-dia. (b) Transition matrix
elements 〈n|O|0〉.

FIG. 15. RPA wave function (X amplitudes) of the state with
excitation energy (a) ωn = 18.6 MeV and (b) ωn = 19.8 MeV in the
1p-1h representation; see Eq. (8). Different regions divided by verti-
cal lines are for different hole states. (c) Real part of the PVC wave
functions of states with excitation energies 	ν (PVC) = 16.7 MeV
and 	ν (PVC-dia) = 17.2 MeV, see Eq. (56), by PVC and PVC-dia.

matrix elements 〈0|O|ν〉 in the PVC representation in Fig. 13
can be calculated as in Eq. (55).

Differently, again, from the situation of the lowest peak in
the ISGQR, these two states in Fig. 14 have very different
RPA components. In PVC-dia, the major RPA component of
the state 	ν (PVC-dia) = 17.2 MeV can be identified as the
fourth RPA phonon, while the state 	ν (PVC) = 16.7 MeV
has the same major component but very much mixed with the
sixth RPA phonon. Since the sixth RPA phonon has a larger
transition matrix element than the fourth RPA phonon, accord-
ing to Eq. (55), the transition matrix element for 	ν (PVC) =
16.7 MeV is also larger.

In Fig. 15 we show the 1p-1h components of these two
PVC states as well as the related RPA states ωn=4 = 18.6 MeV
and ωn=6 = 19.8 MeV. As mentioned above, the PVC state
	ν (PVC-dia) = 17.2 MeV is dominated by the RPA phonon
ωn = 18.6 MeV and therefore its wave function in the 1p-1h
representation is very similar to this phonon. For PVC state
	ν (PVC) = 16.7 MeV, the RPA component ωn = 18.6 MeV,
which is mainly a neutron p1/2 excitation, is very much
mixed with the component ωn = 19.8 MeV, which is mainly
a proton p1/2 excitation. In other words, in PVC there is a
coupling between a neutron 1p-1h excitation and a proton
1p-1h excitation, which cannot show up in PVC-dia, as we
discuss in detail in what follows.

The reason for the coupling between neutron and proton
1p-1h states is shown in Fig. 16, in which the matrix elements
of the spreading term in PVC and PVC-dia are plotted. The
index ph is the same as in Fig. 15. As expected, most of the
matrix elements are attractive (negative values) and therefore
the strength distributions are shifted to a lower energy.

The general pattern of the matrix is similar for PVC and
PVC-dia. However, there is a clear difference that the matrix
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FIG. 16. Matrix elements of spreading term in the 1p-1h repre-
sentation in (a) PVC (34) and (b) PVC-dia (36).

elements of neutron-proton interaction in PVC are nonzero
while in PVC-dia they are zero. This can be understood
from the expression of spreading term in Eq. (34) and the
diagram in Fig. 1. The matrix element Ap′h′,p′

1h′
1n in Eq. (34) (or

Q1HQ2 in Fig. 1) can not couple the initial 1p-1h excitation
(p′

1h′
1) with the final 1p-1h excitation (p′h′) that has a different

charge, and the same is true for Ap1h1n,ph. Only in the denom-
inator Ap′

1h′
1n,p1h1n (or Q2HQ2 in Fig. 1) is there interaction

(V̄p1h2h1 p2 ) between the initial and final 1p-1h excitations with
different charges. When the diagonal approximation is applied
in the denominator Q2HQ2, this interaction is removed and as
a consequence the spreading term has zero matrix elements in
the off-diagonal blocks where the neutron and proton 1p-1h
excitations interact.

In the case of ISGQR, discussed in Fig. 9, the original
RPA phonon is already composed of many neutron and proton
1p-1h excitations. Therefore in that case the coupling between
1p-1h states of different charges nature via the denominator in
Eq. (34) is not significant.

E. Dependence of different functionals

To test the dependence of the results on the choice of differ-
ent functionals, in Fig. 17 we show the strength functions of
ISGMR, ISGDR, and ISGQR in 16O calculated by PVC with
and without subtraction using different Skyrme functionals:
SAMi [61], SIV [69], SkI3 [70], and SKX [71]. As can be
seen from the figure, the basic features such as the shape of
the strength distributions obtained with different functionals
are similar to each other, while in detail the results depend
very much on the selected functional. Taking the lowest peak
in (a–c) of Fig. 17 as an example, SKX gives the lowest

FIG. 17. Strength functions of ISGMR [(a) and (d)], ISGDR [(b) and (e)], and ISGQR [(c) and (f)] in 16O calculated by PVC without
[(a)–(c)] and with [(d)–(f)] subtraction using different Skyrme functionals. See Fig. 2 for the details of the experimental data [63,64].
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energy in all three cases: around 12 MeV in ISGMR, 3.5 MeV
in ISGDR, and 12.5 MeV in ISGQR; SIV gives the highest
energy, around 18 MeV in ISGMR, 9 MeV in ISGDR, and
15.5 MeV in ISGQR; SAMi and SkI3 sit in between with SkI3
giving slightly lower energy.

For ISGMR, if the states near 12 and 14 MeV are attributed
to cluster vibrations [67], the rest of the resonance strength
around 18, 24, and 31 MeV is best described by the SIV
functional. For ISGDR, SIV gives a very strong lowest excita-
tion near 9 MeV, in agreement with the strong experimental
excitation near 7 MeV; however, the strength from 12 to
24 MeV by SIV is not described as well as with the other
functionals. The dependence on the functional in the case of
the ISGDR when E > 30 MeV is very small. In the case of
the ISGQR, SIV and SkI3 give a better description, from the
excitation near 15 MeV, to 19, 21, and 25 MeV. The strong
strength near 12 MeV given by SKX is in agreement with the
data, but this model gives a too large strength near 17 MeV
where no experimental peak appears.

When subtraction is included in the PVC calculations
shown in (d–f) of Fig. 17, the effects for different functionals
are similar to the one that has been investigated in Sec. IV A
using SAMi. The strength distributions are generally shifted
to a higher energy by about ≈1–2 MeV. For ISGMR, the first
two peaks’ positions given by SIV are now slightly higher
than the data, while the major peak near ≈22–24 MeV given
by SkI3 is in good agreement with the data. For the ISGDR,
the strength distribution given by SKX has been improved,
and it describes well the experimental structures near 7, 11,
and 19–22 MeV. In this case the results from other functionals
are not as good as they were before subtraction. For the
ISGQR, the description by SkI3 is improved with subtraction
and the peaks near 19 and 21 MeV are in good agreement with
the data.

The correlation between the excitation energy calculated at
RPA level and nuclear matter properties has been extensively
studied (cf. [16] and references therein). For instance, the
compression mode ISGMR and ISGDR are correlated with
the incompressibility coefficient K∞; the ISGQR is corre-
lated with the effective mass m∗/m. Such correlations still
persist for the excitation energies calculated by PVC. For
example, among the four functionals, SAMi gives the smallest
incompressibility coefficient with K (SAMi)

∞ = 245 MeV while
SIV gives the largest, K (SIV)

∞ = 325 MeV. Accordingly, the
constrained energy Ec = √

m1/m−1 given by these two func-
tionals are E (SAMi)

c = 23.7 MeV and E (SIV)
c = 26.7 MeV for

ISGMR, E (SAMi)
c = 26.2 MeV and E (SIV)

c = 28.5 MeV for
ISGDR. SKX gives the largest effective mass with m∗

SKX/m =
0.99 and SIV the smallest, m∗

SIV/m = 0.47. Accordingly, the
centroid energy of ISGQR given by SKX is 15.0 MeV while
that by SIV is 21.6 MeV. These relations are also reflected in
Fig. 17.

In short, first, for current PVC calculation it is difficult to
find a functional which can give a satisfactory description for
all the giant resonances studied here. Second, for different
Skyrme functionals, the correlation between the excitation
energy calculated by RPA and nuclear matter properties still
holds for the excitation energy calculated by PVC.

V. SUMMARY

In this work we have developed the self-consistent particle-
vibration model without the diagonal approximation. The
interaction between the two particle-holes inside the doorway
states has been taken into account, and it is shown that it
can be derived from the equation-of-motion method similarly
to the one in SRPA [54]. Analytical comparison of this
correlation with the one in TBA [28,50,51] is also given.
The framework has been used to study the isoscalar giant
monopole, dipole, and quadrupole resonances of 16O using
Skyrme functionals. The results are compared with the second
RPA [21,66] and (relativistic) time-blocking approximation
[50,51,65].

The importance of including self-consistently the full in-
teraction in the PVC vertex has been shown, by considering
the strength distributions and sum rules. Among the different
terms of the Skyrme interaction other than the central term, the
spin-orbit term, which has been ignored in most previous PVC
studies, plays a significant role in our current study, especially
in the case of the ISGQR.

The diagonal approximation has also much influence on
the strength distribution of the ISGQR in 16O. Without diag-
onal approximation, the strength distribution of the ISGQR
is more fragmented and wider, in better agreement with the
experimental data. A new peak near E = 15 MeV appears
in the PVC calculation without diagonal approximation (also
present at lower energies in the experimental data). Such peak
has been used as an example to show the difference induced
by the diagonal approximation for the eigenenergies. For the
case of ISGMR and ISGDR, the strength distributions in 16O
are less influenced by the diagonal approximation; and in
all cases, the sum rules are not influenced by the diagonal
approximation.

Another important drawback of the diagonal approxima-
tion is that one implicitly neglects the possibility of coupling
between neutron and proton 1p-1h excitations included in the
doorway states, that is instead recovered in the PVC calcula-
tion without diagonal approximation. This difference is more
prominent in situations where two phonons are dominated,
respectively, by either a neutron or a proton 1p-1h excitation,
as the interaction between 1p-1h excitations with different
charge in the diagonal approximation is set to zero. When
the phonon is already composed of mixed neutron and proton
1p-1h excitations, removing the diagonal approximation may
not be significant.

The subtraction method, which has been developed to
renormalize the effective interaction beyond RPA, has also
been investigated within the framework of PVC calculations
without diagonal approximation. It solves, to some extent, the
problem that the centroid of strength distributions is slightly
too low compared with experimental data.

As can be seen from the formulas of the full spreading term
in Eqs. (C12), the present PVC calculation without diagonal
approximation is very time consuming, especially for heavy
nuclei where more p-h configurations are to be considered. In
the future we will make the calculation parallelized and apply
it to study heavier systems.
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Although we have shown that removing the diagonal ap-
proximation is a step to be done, there is still room to improve
the PVC models. We plan to perform further investigation
on the proper treatment of phonons in the doorway states. A
recent investigation within the time-blocking approximation
[30] might provide some interesting insight in this respect,
as the authors propose a way to choose the most relevant
phonons and achieve convergence with respect to the model
space. The works [34,50,51] are also of particular interest as
a guidance for future development. One can first take into
account the ground-state correlation and include the RPA
phonon coupling among the doorway states (see the discus-
sion in Appendix B). Further developments to compare with
the equation-of-motion diagrams in [34] and to go beyond
2p-2h level can also be achieved. At the same time, the
diagonal approximation should be tested in more nuclei and,
even more importantly, in the case of other types of resonances
such as spin-isospin resonances. This may impact on the
problem of the Gamow-Teller quenching or on the β-decay
processes of astrophysical interest.
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APPENDIX A: EFFECTIVE HAMILTONIAN
IN Q1 SUBSPACE

The subspaces P, Q1, and Q2 have the following properties:

P2 = P, Q2
1 = Q1, Q2

2 = Q2,

PQ1 = PQ2 = Q1Q2 = 0, (A1)

P + Q1 + Q2 = 1. (A2)

The eigenequation

H� = ω� (A3)

becomes

H (P + Q1 + Q2)� = ω(P + Q1 + Q2)�. (A4)

Multiplying P, Q1, Q2 to both sides of Eq. (A4) and using
the properties of (A2), one can obtain a set of equations

(ω − HPP )P� = HPQ1 Q1� + HPQ2 Q2�, (A5a)

(ω − HQ1Q1 )Q1� = HQ1PP� + HQ1Q2 Q2�, (A5b)

(ω − HQ2Q2 )Q2� = HQ2PP� + HQ2Q1 Q1�, (A5c)

where the subscript of the Hamiltonian represents, e.g.,
HPQ1 = PHQ1. From Eqs. (A5a) and (A5c), one has

P� = 1

ω − HPP
HPQ1 Q1� + 1

ω − HPP
HPQ2 Q2�, (A6a)

Q2� = 1

ω − HQ2Q2

HQ2PP� + 1

ω − HQ2Q2

HQ2Q1 Q1�.

(A6b)

A small quantity iε should be added in the denominator but
has not been written out explicitly. Substituting back into
Eq. (A5b), one obtains [47]

(ω − HQ1Q1 )Q1� = [W ↑(ω) + W ↓(ω) + · · · ]Q1�,

(A7)

where the expressions of W ↑(ω) and W ↑(ω) have been given
in Eq. (14). Truncating the expansion to the leading order, one
has Eqs. (13) and (14).

APPENDIX B: COMPARING WITH RTBA

In this part we compare our formalism without diagonal
approximation to the formalism of phonon correlation in the
RTBA [50,51], in which the one with diagonal approximation
is labeled as RQTBA (Q for quasiparticle) and the one with
phonon correlation as RQTBA2. The spreading term W ↓ (23)
in the current framework corresponds to the so-called dynamic
part of the interaction amplitude � in RQTBA [50,51], and
they will be the objects we are comparing. To be concise
but without losing generality, we focus only on the first
one of the spreading terms W ↓ [see Figs. 18(e) and 18(a)
in Appendix C, for results with and for without diagonal
approximation]. They are to be compared with the first terms
of � (with diagonal approximation) and �̄ (without diagonal
approximation) in Fig. 3 of [51]. After adapting some of the
notations to current paper, the dynamic parts of the interaction
amplitude in RQTBA and RQTBA2 are

�k1k4,k2k3 (1; ω) = δk2k4

∑
k5n

γn,k1k5

1

ω − ωn − ek5k2

γn,k5k3 ,

(B1)

�̄k1k4,k2k3 (1; ω)

= 1

2

∑
k5k′

5,nn′
γn,k1k5Rn′,k5k2

1

ω − ωn − ωn′
Rn′,k′

5k4γn,k5k3 ,

(B2)

where γn,k1k5 is the interaction between two quasiparticles
(k1, k5) and a phonon (n); Rn′,k5k2 is the phonon transition den-
sity. The 1/2 factor in the second equation is due to symme-
try considerations [28]. The positive- and negative-frequency
indeces of the relativistic Hartree-Bogoliubov equation in
[50,51] are not explicitly written out for simplicity. The ex-
pressions for γ and R are given as [50,51]

γn,k1k2 =
∑
k3k4

Vk1k4,k2k3Rμ,k3k4 , (B3)

Rn,k1k2 = 1

ωn − ek1k2

∑
k3k4

Vk1k4,k2k3Rn,k3k4 , (B4)
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(a) (b) (c) (d) (a) (f) (g) (h)

FIG. 18. (a)–(d) Diagrammatic show of the four terms W ↓J
p′h′,ph(k; ω) without diagonal approximation in Eq. (C12); (e)–(h) with diagonal

approximation in Eq. (C16). Straight lines are for fermions (with up arrow a particle and down arrow a hole) and wavy lines are for phonon
states. Solid circles are for phonon vertices (33) and empty circles are for TDA phonon transition densities (see Appendix B).

The corresponding terms of Eqs. (B1) and (B2) in our frame-
work are

W ↓dia
p′h′,ph(1; ω) = δh′h

∑
p1n

Vn,p′ p1

1

ω − ωn − ep1h
Vn,p1 p, (B5)

W ↓
p′h′,ph(1; ω)

=
∑

p′
1 p1,n

Vn,p′ p′
1

1

ω − ωn − ep1hδp′
1h′,p1h − V̄p′

1hh′ p1

Vn,p1 p.

(B6)

The similarity between Eqs. (B5) and (B1) is easily seen, as
both γ in Eq. (B3) and V in Eq. (33) are the interactions be-
tween two (quasi)particles and a phonon. In the following we
will show the similarity between Eqs. (B6) and (B2). Again,
notice that the term with the denominator in Eq. (B6) is the
matrix element of the inverse of operators. The denominator
in Eq. (B6) can be expressed in the RPA matrix (6) as

ω − ωn − ep1hδp′
1h′,p1h − V̄p′

1hh′ p1 = ω − ωn − Ap′
1h′,p1h.

(B7)

In our framework, the matrix elements of Bp1h1n1,p2h2n2 in
Eq. (29) are evaluated as zero. When ground-state correlations

are taken into account, these matrix elements can be nonzero
and they are evaluated as Bp1h1n1,p2h2n2 = δn1n2Vp1 p2h1h2 . Then
Eq. (B7) is extended to include the RPA B matrix as

ω − ωn −
(

A B
−B∗ −A∗

)
p′

1h′,p1h

. (B8)

We Define the following notation:

R =
(

1 0
0 −1

)
, X =

(
X Y ∗
Y X ∗

)
,

I =
(

A B
B∗ A∗

)
, 	 =

(
ωn 0
0 −ωn

)
. (B9)

Then Eq. (B8) becomes

ω − ωn − RI. (B10)

The RPA equation can be written as

RIX = X	. (B11)

The orthonormalization condition is

X†RX = R, XRX† = R. (B12)

One can then derive

(ω − ωn − RI)−1 = Xn1RX†
n1
R[Xn′RX†

n′R(ω − ωn) − Xn′	n′RX†
n′R]−1Xn2RX†

n2
R

= Xn1R{X†
n2
R[Xn′RX†

n′R(ω − ωn) − Xn′	n′RX†
n′R]Xn1R}−1X†

n2
R

= Xn1R{δn1n′δn2n′[(ω − ωn) − R	n′R]}−1X†
n2
R, (B13)

where n1, n2, n′ are summation indices. After summing over n1 and n2, the above equation can be written explicitly as

(ω − ωn − RI)−1 =
∑

n′
Xn′,p′

1h′R(ω − ωn − ωn′ )−1Xn′,p1hR. (B14)

Therefore the spreading term (B6) becomes

W ↓
p′h′,ph(1; ω) =

∑
p′

1 p1,nn′
Vn,p′ p′

1
Xn′,p′

1h′R
1

ω − ωn − ωn′
Xn′,p1hRVn,p1 p. (B15)

This is similar to the expression (B2) in RQTBA2, where R in Eq. (B4) and X in Eq. (B9) are both phonon transition densities.
But notice that in our approach, similarly to SRPA, the matrix elements of Bp1h1n1,p2h2n2 in Eq. (29) are evaluated as zero. As a
consequence, only the RPA A matrix (or TDA matrix) appears in the denominator of Eq. (B6). Therefore, similarly to RQTBA2,
the correlation between two 1p-1h of the doorway states is by an additional phonon coupling while, in the current framework
without considering ground-state correlation, it is a TDA phonon instead of an RPA phonon in RQTBA2.
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MATRIX ELEMENTS OF THE SPREADING TERM

Following the equation-of-motion method [59], the PVC equation is derived in a way similar to the SRPA in Ref. [54]. With
Eqs. (24), (25), and (30)–(32), the full spreading term (23) reads

W ↓
p′h′,ph =

∑
p′

1h′
1 p1h1n

(
Ap′h′,p′

1h′
1n 0

0 −A∗
p′h′,p′

1h′
1n

)⎛
⎝ 1

ω−Ap′1h′
1n,p1h1n+iε 0

0 1
ω+A∗

p′1h′
1n,p1h1n

+iε

⎞
⎠(

Ap1h1n,ph 0

0 −A∗
p1h1n,ph

)
. (C1)

This is a two-by-two matrix with dimension corresponding to the RPA matrix in Eq. (5). Without causing confusion we can write
it as

W ↓ →
(

W ↓
p′h′,ph(ω) 0

0 −W ↓∗
p′h′,ph(−ω)

)
, (C2)

with W ↓
p′h′,ph(ω) given in Eq. (34). When the PVC equation is solved in the RPA phonon basis, one can transform this matrix to

the phonon representation by

W ↓
n′n =

∑
p′h′,ph

[
W ↓

p′h′,ph(ω)X (n′ )
p′h′ X

(n)
ph + W ↓∗

p′h′,ph(−ω)Y (n′ )
p′h′ Y

(n)
ph

]
. (C3)

For spherical nuclei, the particle-hole j j-coupled matrix element can be used, which is defined as

〈12|V̄ |34〉J =
∑

m1m2m3m4

(−1) j3−m3CJM
j1m1 j3−m3

(−1) j2−m2CJM
j4m4 j2−m2

〈12|V̄ |34〉. (C4)

The RPA operator (8) in the coupled form is

Q†
nLM =

∑
ph

[
X nL

ph A†
ph(LM ) − Y nL

ph Aph(LM )
]
, (C5)

with

A†
ph(LM ) =

∑
mpmh

(−1) jh−mhCLM
jpmp jh−mh

a†
pmp

ahmh , (C6)

Aph(LM ) =
∑
mpmh

(−1)L+M+ jh−mhCL−M
jpmp jh−mh

a†
hmh

apmp . (C7)

From now on without specification, the quantum number will not include the magnetic one, for example, the summation in
Eq. (C5) does not include mp or mh. The RPA matrix (6) in the j j-coupled form (with coupled total angular momentum J)
simply becomes

AJ
p′h′,ph = δp′h′,ph(ep − eh) + V̄ J

p′hh′ p, BJ
p′h′,ph = V̄ J

p′ ph′h. (C8)

The j j-coupled form of the spreading term (34) is more complicated. We first give the j j-coupled form of Eq. (31), with coupled
total angular momentum λ,

Aλ
p1h1n1L1,p2h2n2L2

= δn1L1,n2L2

[
δp1h1,p2h2 (ωn1L1 + ep1h1 ) + V̄ λ

p1h2h1 p2

]
. (C9)

Let the inverse of matrix ω − Aλ
p1h1n1L1,p2h2n2L2

+ iε be labeled as D11(ω) and the inverse of matrix −ω − Aλ
p1h1n1L1,p2h2n2L2

+ iε
be labeled as D22(ω); they satisfy the follow equation (taking D11 as an example):∑

p1h1

[
δp′

1h′
1,p1h1 (ω + iε − ωnL − ep1h1 ) − V̄ λ

p′
1h1h′

1 p1

]〈p1h1|D11(ω)|p2h2〉λnL = δp′
1h′

1,p2h2 . (C10)

Since D22 can be obtained in the same equation (C10) by simply replacing ω with −ω, we will not distinguish these two matrices
explicitly and simply write 〈p1h1|D(ω)|p2h2〉λnL. In the end, the full spreading term (34) in the j j-coupled form can be written as

W ↓J
p′h′,ph(ω) =

4∑
k=1

W ↓J
p′h′,ph(k; ω), (C11)
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with

W ↓J
p′h′,ph(1; ω) =

∑
λp′

1
nLp1

F1λ̂
2L̂2

{
jp′

1
jh′ λ

J L jp′

}{
jp1 jh λ

J L jp

}
〈p′|V |p′

1, nL〉〈p′
1h′|D(ω)|p1h〉λnL〈nL, p1|V |p〉, (C12a)

W ↓J
p′h′,ph(2; ω) =

∑
λh′

1
nLh1

F2λ̂
2L̂2

{
jh′

1
jp′ λ

J L jh′

}{
jh1 jp λ

J L jh

}
〈h′

1|V |h′, nL〉〈p′h′
1|D(ω)|ph1〉λnL〈nL, h|V |h1〉, (C12b)

W ↓J
p′h′,ph(3; ω) =

∑
λp′

1
nLh1

F3λ̂
2L̂2

{
jp′

1
jh′λ

J L jp′

}{
jh1 jp λ

J L jh

}
〈p′|V |p′

1, nL〉〈p′
1h′|D(ω)|ph1〉λnL〈nL, h|V |h1〉, (C12c)

W ↓J
p′h′,ph(4; ω) =

∑
λh′

1
nLp1

F4λ̂
2L̂2

{
jh′

1
jp′ λ

J L jh′

}{
jp1 jh λ

J L jp

}
〈h′

1|V |h′, nL〉〈p′h′
1|D(ω)|p1h〉λnL〈nL, p1|V |p〉. (C12d)

Schematic diagrams for these terms are shown in Figs. 18(a)–18(d), in which the meanings of the symbols are similar to those
in Fig. 1. Straight lines are for fermions (with up arrow a particle and down arrow a hole) and wavy lines are for phonons. Solid
circles are for phonon vertices 〈i|V | j, n〉 (33) and empty circles are for TDA phonon transition densities (see Appendix B).

In the above equation, λ̂ = √
2λ + 1, L̂ = √

2L + 1. The coupled matrix element 〈a|V |b, nL〉 is different from the general
expression in Eq. (33):

〈a|V |b, nL〉 =
∑

ph

[
X nL

ph V̄ L
ahbp + (−1)L+ jp− jhY nL

ph V̄ L
apbh

]
, (C13a)

〈nL, a|V |b〉 =
∑

ph

[
(−1)L+ jp− jh X nL

ph V̄ L
apbh + Y nL

ph V̄ L
ahbp

]
. (C13b)

The phases in the above equations are

F1 = (−1) jp′+ jh′ + jh+L+ jp1 , F2 = (−1) jp′+ jh′ + jp+L+ jh1 ,

F3 = −(−1)J+ jp′ + jh′ + jp+λ+ jh1 , F4 = −(−1)J+ jp′ + jh′ + jh+λ+ jp1 . (C14)

When the diagonal approximation is adopted, one has

〈p′
1h′

1|D(ω)|p1h1〉λnL = δp′
1h′

1,p1h1

1

ω − (ωnL + ep1h1 ) + iε
. (C15)

There is no longer λ dependence of matrix D, and the spreading terms in Eq. (C12) can be reduced to

W ↓J
p′h′,ph(1; ω) = δh′hδ jp′ jp

∑
nLp1

(−1)L+ jp− jp1
L̂2

ĵ2
p

〈p′|V |p1, nL〉〈nL, p1|V |p〉
ω − (ωnL + ep1h) + iε

, (C16a)

W ↓J
p′h′,ph(2; ω) = δp′ pδ jh′ jh

∑
nLh1

(−1)L+ jh− jh1
L̂2

ĵ2
h

〈h1|V |h′, nL〉〈nL, h|V |h1〉
ω − (ωnL + eph1 ) + iε

, (C16b)

W ↓J
p′h′,ph(3; ω) = −(−1)J+ jp+ jh

∑
nL

L̂2

{
jp L jp′

jh′ J jh

} 〈p′|V |p, nL〉〈nL, h|V |h′〉
ω − (ωnL + eph′ ) + iε

, (C16c)

W ↓J
p′h′,ph(4; ω) = −(−1)J+ jp+ jh

∑
nL

L̂2

{
jp L jp′

jh′ J jh

} 〈h|V |h′, nL〉〈nL, p′|V |p〉
ω − (ωnL + ep′h) + iε

. (C16d)

They are in agreement with previous studies [40]. Schematic diagrams for these terms are shown in Figs. 18(e)–18(h).
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