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A new model, based on the BCS approach, is especially designed to describe nuclear phenomena (A, Z ) →
(A, Z ± 2) of double-charge exchange (DCE). Although it was proposed and applied in the particle-hole limit,
by one of the authors [Krmpotić, Fizika B 14, 139 (2005)], it has not yet been applied within the BCS mean-field
framework, nor has its ability to describe DCE processes been thoroughly explored. It is a natural extension of
the pn-QRPA model, developed by Halbleib and Sorensen [Nucl. Phys. A 98, 542 (1967)] to describe the single
β decays (A, Z ) → (A, Z ± 1), to the DCE processes. As such, it exhibits several advantages over the pn-QRPA
model when used in the evaluation of the double beta decay (DBD) rates. For instance, (i) the extreme sensitivity
of the nuclear matrix elements (NMEs) on the model parametrization does not occur; (ii) it allows us to study
the NMEs, not only for the ground state in daughter nuclei, as the pn-QRPA model does, but also for all final 0+

and 2+ states, accounting at the same time for their excitation energies and the corresponding DBD Q values;
(iii) together with the DBD-NMEs it also provides the energy spectra of Fermi and Gamow-Teller DCE transition
strengths, as well as the locations of the corresponding resonances and their sum rules; (iv) the latter are relevant
for both the DBD and the DCE reactions, since the underlying nuclear structure is the same; this correlation
does not exist within the pn-QRPA model. As an example, detailed numerical calculations are presented for the
(A, Z ) → (A, Z + 2) process in 48Ca → 48Ti and the (A, Z ) → (A, Z − 2) process in 96Ru → 96Mo, involving
all final 0+ states and 2+ states.

DOI: 10.1103/PhysRevC.101.044314

I. INTRODUCTION

The double-charge-exchange (DCE) processes relate the
(A, Z ) nuclei with the (A, Z + 2) and (A, Z − 2) nuclei and
will be labeled as {+2} and {−2} processes respectively.

The most studied DCE process is the double beta decay
(DBD). It is the slowest physical process observed so far,
and can be used to learn about neutrino physics, provided we
know how to deal with the nuclear structure. According to the
number and type of leptons we may have the following DBD
modes: (i) double-electron decay (2β−), (ii) double-positron
decay, (iii) electron capture-positron emitting decay (eβ+),
and (iv) double electron capture decay (ee). Each one of
these decays occurs either with the emission of two neutrinos
(2ν decay) or they are neutrinoless (0ν decay). To simplify
the notation and avoid confusion, we will designate the first
process as DBD− and the remaining three as DBD+.

The 0ν-decay rates depend on several unknown parame-
ters such as neutrino mass, Majoron coupling, the coupling
constants of the right-handed components of the weak Hamil-
tonian, etc., and the only way to put these in evidence is by
having sufficient command over the nuclear structure. It is
precisely at this point that the 2ν2β∓, 2νeβ+, and 2νee decay
modes are important. A comparison between experiment and
theory for them provides a measure of the confidence that one

*Corresponding author: arsamana@uesc.br

may have in the nuclear wave functions employed for extract-
ing the unknown parameters from 0ν-lifetime measurements.

The number of possible candidates for 2β− decay is quite
large: there are 35 nuclei. In addition, 34 nuclei can undergo
2e-electron capture, while 22 and 6 nuclei can undergo eβ+
and 2β+ decays respectively [1]. The discovery of the mas-
siveness of the neutrino, through the observation of oscilla-
tions, boosted the importance of the 0ν DBD, since they are
the only observables capable of providing the magnitude of
the effective neutrino mass.

It is well known that the involved nuclear structure in 2ν

and 0ν DBD is the same one that describes the DCE reactions.
This fact reignited recently the interest in the measurements
of heavy-ion-induced DCE reactions, such as the NUMEN
project [2–4] involving the 40Ca(18O, 18Ne) 40Ar process.
Simultaneously, the interest in the theoretical study of the
DCE reactions has been renewed [5,6]. Moreover, Shimizu,
Menéndez, and Yako [7] have also noted recently a correlation
between the DCE and 0ν2β− decay. In all the theoretical
studies mentioned, the calculations were made within the
framework of the shell model (SM).

The neutrinoless DBDs occur in medium-mass nuclei that
are often far from closed shells and, as a consequence, the
calculations are mostly made in the proton-neutron quasipar-
ticle random phase approximation (pn-QRPA), since this tool
is computationally much simpler than the SM. As discussed
in Ref. [8], the kind of correlations that these two methods
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FIG. 1. Graphical representation of the numerators in the 2β−

NME, where the black points indicate the single β decays. They
are (a) 〈0+

f ||O+
J ||J+

α 〉〈J+
α |J+

α′ 〉〈J+
α′ ||O−

J |0+
i 〉 in the pn-QRPA model,

where the overlap between the initial and final QRPA solutions for
the intermediate nucleus, 〈J+

α |J+
α′ 〉, is represented by a thick line,

and (b) 〈J +
f ||O−

J ||J+
α 〉〈J+

α ||O−
J |0+

i 〉 in the (pn, 2p2n)-QTDA model,
which appears in Eqs. (2.9) and (2.15), and indicates that the first
β− decay is switched on in the initial state and the second in
the intermediate state. The 2β+NMEs are represented in the same
way after making the substitution O∓

J ↔ O±
J . The pn and nn + pp

nuclear interactions between protons and neutrons are indicated by
red and blue dashed lines, respectively. The five vertices of the
diagram (b) correspond to five of six angular momentum coupling in
the symbol 9 j in Eq. (2.47). The sixth coupling (JJ )J corresponds
to the three unconnected lines in this figure.

include are not the same. The pn-QRPA deals with a large
fraction of nucleons in a large single-particle space, but within
a modest configuration space. The SM, by contrast, deals with
a small fraction of nucleons in a limited single-particle space,
but allows them to correlate in arbitrary ways within a large
configuration space.

There is another important difference. The standard pn-
QRPA only allows us to calculate the double-charge-exchange
transitions from the ground state of the decaying (A, Z ) nu-
cleus to the ground state in the final (A, Z ± 2) nuclei. In fact,
to evaluate the transitions going to the excited states, a second
(pp + nn)-QRPA must be performed [9,10], which introduces
additional free parameters and it is limited to one and two
quadrupole phonon states.

To deal with the DCE processes we will resort here
to a Tamm-Dancoff approximation (TDA), which has been
suggested and discussed on its ph limit (where ph means
particle-hole)1 for 48Ca more than a decade ago in Ref. [11].
In this model it is assumed that the initial, intermediate, and
final nuclei are the BCS vacuum, pn excitations, and 2p2n
excitations respectively. The resulting model will be labeled
as (pn, 2p2n)-QTDA. The main differences with the standard
pn-QRPA model are illustrated in Fig. 1.

The present model is a natural extension to double-charge-
exchange processes of the pn-QRPA model, originally pro-
posed by Halbleib and Sorensen (HS) in 1967 to describe

1We consider particle-hole notation, e.g., “ph,” as abbreviations and
set them in roman font, while we treat “p” and “n” (denoting proton
and neutron, respectively) as particles and set them in italic font.

single β decays [12]. As such, it permits the evaluation of
the NMEs, not only for the ground states but also for all
final 0+ and 2+ states, as well as the Q values for the 2β−
decay (Q2β− ), and for the 2e capture (Q2e). It yields as well
the DCE energy strength spectra and their sum rules, which
are relevant for associated reaction processes and resonances.
Detailed numerical calculations are performed in the present
work for the 48Ca → 48Ti and 96Ru → 96Mo processes,
involving their final 0+ and 2+ states.

II. FORMALISM

A. Nuclear matrix elements and
double-charge-exchange excitations

Independently of the nuclear model used, and when only
the allowed transitions, i.e., the Gamow-Teller (GT) and
Fermi (F) transitions are considered, the NMEs for the 2ν2β±
decay, from the ground state 0+

i in the initial nucleus (A, Z ) to
one of the states 0+

f in the final nuclei (A, Z ∓ 2), reads2

M2ν±
(0+

f ) = M2ν±
F (0+

f ) + M2ν±
GT (0+

f )

≡
∑

J=0,1

(−)Jg2
J

∑
α

[ 〈0+
f ||O±

J ||J+
α 〉〈J+

α ||O±
J ||0+

i 〉
D2ν±

Jα,0 f

]
,

(2.1)

where g0 ≡ gV and g1 ≡ gA are the vector and axial-vector
weak coupling constants respectively, and the summation
goes over all intermediate virtual states | J+

α 〉 in the nuclei
(A, Z ∓ 1).

The one-body operators are

O−
J = Ĵ−1

∑
pn

〈p||OJ ||n〉(c†pcn̄)J ,

O+
J = Ĵ−1

∑
pn

〈n||OJ ||p〉(c†ncp̄)J , (2.2)

with O0 = 1, and O1 = σ for F and GT transitions, re-
spectively, c†k ≡ c†jk ,mk

and ck̄ ≡ (−) jk−mk c jk ,−mk are the

single-particle creation and annihilation operators, and Ĵ =√
2J + 1.
The energy denominator in Eq. (2.1) is3

D2ν±
Jα,J f

= E {∓1}
Jα

−
E {0}

0+ + E {∓2}
J f

2

= E {∓1}
Jα

− E {0}
0+ +

E {0}
0+ − E {∓2}

J f

2
, (2.3)

2For the first-forbidden NME see Ref. [13].
3The last term in the denominator (2.3) is based on the assumption

that the lepton energies can be replaced by e + ν ∼= (E {0}
0+ − E {∓2}

J f
)/2,

whose validity for the mixed mode was questioned by Hirsch
et al. [14]. Following their idea on equal sharing of the liberated
energy among the emitted leptons, Suhonen [9] has derived formulas
for the three different DBD+, and has used them in the evaluation
of the decay 96Ru → 96Mo. Unfortunately, the author has omitted
a factor of 2 in his Eq. (13), which makes the numerical result of
mode 2β+ incorrect. The same error was propagated in subsequent
works [15,16]. Here we will continue using the estimate (2.3).
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where E {0}
0+ , E {±1}

Jα
, and E {±2}

J f
are the energies of the decaying

(A, Z ) nucleus in its ground state, the intermediate (A, Z ± 1)
nuclei in the state J+

α , and final (A, Z ± 2) nuclei in the state
J +

f , respectively.
The matrix elements 〈J+

α ||O±
J ||0+

i 〉 can be expressed as

〈J+
α ||O±

J ||0+
i 〉 =

∑
pn

ρ±(
pnJπ

α

)
OJ (pn), (2.4)

i.e., as a product of model dependent one-body densities,

ρ−(pnJα ) = Ĵ−1〈Jα||(c†pcn̄)J ||0+
i 〉,

ρ+(pnJα ) = Ĵ−1〈Jα||(c†ncp̄)J ||0+
i 〉, (2.5)

and the single-particle NME,

OJ (pn) ≡ 〈p||OJ ||n〉

= δlpln

√
2Ĵ ĵn ĵp(−) jp+lp+J+1/2

{
jp jn J
1
2

1
2 ln

}
, (2.6)

which is a purely geometric (angular) factor, with the property
OJ (np) = (−) jn− jpOJ (pn).4

Similarly,

〈J +
f ||O±

J ||J+
α 〉 =

∑
np

ρ±(pnJα,J +
f )OJ (pn), (2.7)

where

ρ+(pnJα,J +
f ) = Ĵ−1〈J +

f ||(c†ncp̄)J ||Jα〉,
ρ−(pnJα,J +

f ) = Ĵ−1〈J +
f ||(c†pcn̄)J ||Jα〉, (2.8)

are the corresponding density matrices for transitions from the
intermediate states |Jα〉 to the final states |J +

f 〉, with J = 0, 2.
The corresponding matrix elements are

M2ν±
F (0+

f ) = g2
V

∑
α

〈0+
f ||O±

0 ||0+
α 〉〈0+

α ||O±
0 |0+

i 〉
D2ν±

0+
α ,0+

f

,

M2ν±
GT (J +

f ) = −g2
A√J + 1

∑
α

〈J +
f ||O±

1 ||1+
α 〉〈1+

α ||O±
1 |0+

i 〉(D2ν±
1+

α ,J +
f

)J+1 ,

(2.9)

where the GT-NMEs to 2+
f states have also been in-

cluded [17–19].
All the information about the nuclear structure is contained

in the one-body density matrices (2.4) and (2.8) or, more
precisely, in the two-body density matrices,

ρ±(pnp′n′; Jα,J +
f ) = ρ±(pn; Jα )ρ±(p′n′; Jα,J +

f ). (2.10)

The NME for the 0ν2β± decays to the 0+
f final states can

be easily evaluated from these densities. In fact, after making
the replacement in Ref. [[20], Eqs. (2.20)]

ρph(pnp′n′; Jα ) → ρ±(pnp′n′; Jα,J +
f ), (2.11)

4We use here the angular momentum coupling scheme |( 1
2 , l ) j〉.

we can express them as

M0ν±
(0+

f ) =
∑

X

M0ν±
X (0+

f ), (2.12)

where X = V, A, P, M stands for vector (V ), axial-vector (A),
pseudoscalar (P), and weak-magnetism (M) terms. With the
NME M0ν±

(2+
f ) we proceed in the same way.

It is well known that the single β-decay processes to the
states Jα in (A, Z + 1) and (A, Z − 1) nuclei are related to the
following single charge-exchange transition strengths:

S{±1}
J ≡

∑
α

B{±1}
Jα

= Ĵ−2
∑

α

|〈J+
α ||O∓

J ||0+
i 〉|2. (2.13)

When |J+
α 〉 is a complete set of excited states that can be

reached by operating with O±
J on the initial state |0+

i 〉, they
satisfy the single-charge exchange (SCE) or Ikeda sum rule,
for both the F and GT transitions,

S{1}
J ≡ S{+1}

J −S{−1}
J = (−)J Ĵ−2〈0+

i |[O−
J ,O+

J ]0|0+
i 〉= N − Z.

(2.14)

Similarly, both M2ν2β±
(J +

f ) and M0ν2β±
(J +

f ) are related
to the double-charge-exchange operators (O±

J O±
J )J and to

their spectral distributions in (A, Z ± 2) nuclei given by

S{±2}
JJ ≡

∑
f

B{±2}
JJ f

= Ĵ−2
∑

f

∣∣∣∣∣
∑

α

〈J +
f ||O∓

J ||J+
α 〉〈J+

α ||O∓
J |0+

i 〉
∣∣∣∣∣
2

.

(2.15)

When both |J+
α 〉 and |J +

f 〉 are a complete set of excited states
that can be reached by operating with O±

J , and (O±
J O±

J )J on
the initial state |0+

i 〉, their differences

S{2}
JJ = S{+2}

JJ − S{−2}
JJ

= Ĵ−2
∑

f

⎡
⎣

∣∣∣∣∣
∑

α

〈J +
f ||O−

J ||J+
α 〉〈J+

α ||O−
J |0+

i 〉
∣∣∣∣∣
2

−
∣∣∣∣∣
∑

α

〈J +
f ||O+

J ||J+
α 〉〈J+

α ||O+
J |0+

i 〉
∣∣∣∣∣
2
⎤
⎦ (2.16)

obey the double-charge-exchange sum rules (DCESRs),
which were evaluated in Refs. [5,6,21–23] with the following
results:

SDF ≡ S{2}
00 = 2(N − Z )(N − Z − 1), (2.17)

SDGT,0 ≡ S{2}
10

= 2(N − Z )
(
N − Z + 1 + 2S{−1}

1

) − 2
3C, (2.18)

SDGT,2 ≡ S{2}
12

= 10(N − Z )
(
N − Z − 2 + 2S{−1}

1

) + 5
3C, (2.19)

where C is a relatively small quantity given by [[22], Eq. (4)].
These equations agree with Eq. (8) in Ref. [6] except for a
factor of 3 and the omission of S{−1}

1 .
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Combining Eqs. (2.18) and (2.19), one obtains the sum rule
for the total GT strength,

SDGT = 12(N − Z )
(
N − Z − 3

2 + 2S{−1}
1

) + C, (2.20)

which is independent of the structure of the ground-state wave
function [22].

The relationship between the DBD and DCE reactions has
been discussed recently in Refs. [2,7].

B. (pn, 2p2n)-QTDA model

The pn-QRPA evaluations of the DBDs are generally lim-
ited to the ground state of the final nuclei, i.e., to the calcula-
tion of M2ν (0+

1 ) and M0ν (0+
1 ). Moreover, the SCESRs (2.14)

are fulfilled within this model, but it does not allow us to
evaluate the strengths S2β±

JJ given by (2.16) and to discuss the
corresponding DCESRs listed in Eqs. (2.17)–(2.20).

To describe the intermediate states J+
α in both pn-QRPA

and (pn, 2p2n)-QTDA models a nuclear Hamiltonian of the
type

H1 = H0 + Hpn (2.21)

is used, where

H0 =
∑

α

Eka†
k ak (2.22)

is the independent-quasiparticle Hamiltonian, with a†
α and

aᾱ being the single-quasiparticle creation and annihilation
operators, defined by the Bogoliubov transformation [[24],
Eqs. (13.10)]

a†
k = uac†k + vkck̄,

ak̄ = uack̄ − vac†k . (2.23)

The proton and neutron pairing interactions are contained in
the transformation coefficients ua and va, and in the quasipar-
ticle energy

Ek = [
(ek − λ)2 + 
2

k

]1/2
, (2.24)

where ek is the shell-model single-particle energy (spe), and
λ is the chemical potential or Fermi level. The energy gap
parameters 
k and the pairing coupling constants are de-
termined to reproduce the experimental odd-mass difference
for each nucleus. Finally, Hpn is the quasiproton-quasineutron
interaction.

Within the pn-QRPA, the states |Jα〉 with excitation en-
ergy ωJα

are created from the correlated initial and final 0+
ground states by proton-neutron phonon creation operators
QJα

, which are defined as a linear superposition of creation
and annihilation proton-neutron quasiparticle pair operators

A†(pnJ ) ≡ A†(pnJM ) = [a†
pa†

n]JM,

A(pnJ̄ ) = (−)J−MA(pnJ,−M ). (2.25)

That is,

|Jα〉 = Q†
Jα

|0+〉 ≡
∑

pn

[
X α

pnJA†(pnJ ) − Y α
pnJA(pnJ̄ )

]|0+〉,

(2.26)

and

QJα
|0+〉 = 0, H1|Jα〉 = ωJα

|Jα〉. (2.27)

Frequently, this is done for both initial |0+
I 〉 and final |0+

F 〉
ground states, obtaining in this way two different sets of
intermediate states Jα and Jα′ in the (N − 1, Z + 1) nucleus.
Therefore, in the evaluation of the 2β-NME, it is necessary
to consider their overlap, which is indicated in Fig. 1, and
corresponds to the substitution∑

Jα

ρph(pnp′n′; Jα ) → 〈0+
I |0+

F 〉

×
∑

Jπ αα′
ρ+(p′n′; Jα′ )〈Jα′ |Jα〉ρ−(pn; Jα ). (2.28)

The ground state defined in Eq. (2.27) is more accu-
rate than the BCS ground state (ak|BCS〉 = 0) since it con-
tains terms with 0, 4, 8, . . . quasiparticles [8]. Nevertheless,
in the present model we approximate the initial ground
state in the (A, Z ) nucleus by the BCS vacuum and the states
|Jα〉 in the intermediate (A, Z ∓ 1) nuclei as

|Jα〉 =
∑

pn

XpnJα
A†(pnJ )|BCS〉,

H1|Jα〉 = ωJα
|Jα〉. (2.29)

This disadvantage of the present model is counteracted by the
description that we make of the final states in the (A, Z ∓ 2)
nuclei; that is, instead of the correlated |0+

F 〉 state defined in
Eq. (2.26), we have

|J +
f 〉 =

∑
p1 p2n1n2JnJp

Xp1 p2Jp,n1n2Jn;J +
f
|p1 p2Jp, n1n2Jn;J +〉A,

(2.30)

where J + = 0+, 2+ and

|p1 p2Jp, n1n2Jn;J +〉A = [A†(p1 p2Jp)A†(n1n2Jn)]J
+|BCS〉,

(2.31)

are antisymmetrized and normalized two-proton-two-neutron
quasiparticle states, where

A†(abJ ) = N (ab)A†(abJ ), N (ab) = 1√
1 + δab

(2.32)

are normalized two-quasiparticle states.
The amplitudes Xp1 p2J12,n1n2J ′

12;J +
f

are obtained by diagonal-
izing the Hamiltonian [25,26]

H2 = H0 + Hpn + Hnn + Hpp,

H2|J +
f 〉 = ωJ +

f
|J +

f 〉, (2.33)

in the basis (2.31) where Hnn and Hpp are neutron-neutron and
proton-proton interactions. Details on the evaluation of matrix
elements of H2 can be found in Refs. [25,26]. However, our
final results are different.

The matrix element of Hpn for the odd-odd nucleus reads

〈BCS|A(npJ )HpnA†(n′ p′J )|BCS〉
= G(npn′ p′J )(upunup′un′ + vpvnvp′vn′ )

+ F (npn′ p′J )(upvnup′vn′ + vpunvp′un′ ), (2.34)
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where the functions G and F are defined in the standard
way [25,26]. They differ from those of Baranger [27] by a
factor of −2, as can be seen, for example, from the compar-
ison of [[27], Eq. (20)] with [[28], Eq. (4)] (or with [[29],

Eq. (3.2)]). Our G and F functions are also different from
those of Suhonen [24].

The matrix elements of Hpn in the basis (2.31) are derived
by employing the relation (1A-25) from [30]. We get

〈BCS|[A†(n1n2Jn)A†(p1 p2Jp)]J†Hpn[A†(n′
1n′

2J ′
n)A†(p′

1 p′
2J ′

p)]J |BCS〉
= ĴnĴpĴ ′

nĴ ′
pN (n1n2)N (n′

1n′
2)N (p1 p2)N (p′

1 p′
2)P̄(n1n2Jn)P̄(p1 p2Jp)

× P̄(n′
1n′

2J ′
n)P̄(p′

1 p′
2J ′

p)
∑
J1J2

Ĵ2
1 Ĵ2

2

⎧⎨
⎩

n1 n2 Jn

p1 p2 Jp

J1 J2 J

⎫⎬
⎭

⎧⎨
⎩

n′
1 n′

2 J ′
n

p′
1 p′

2 J ′
p

J1 J2 J

⎫⎬
⎭

×〈BCS|A(n1 p1J1)HpnA†(n′
1 p′

1J1)|BCS〉δp2 p′
2
δn2n′

2
, (2.35)

where the operator

P̄(p1 p2J ) = 1 + (−)p1−p2+JP(p1 ↔ p2), (2.36)

exchanges the particles p1 and p2.
Finally, the matrix element of the neutron-neutron Hamiltonian Hnn in the same basis is

〈BCS|[A†(n1n2Jn)A†(p1 p2Jp)]J†Hnn[A†(n′
1n′

2J ′
n)A†(p′

1 p′
2J ′

p)]J |BCS〉
= δJpJ ′

p
δJnJ ′

n
δp1 p′

1
δp2 p′

2
〈BCS|A(n1n2Jn)HnnA†(n′

1n′
2Jn)|BCS〉

= δJpJ ′
p
δJnJ ′

n
δp1 p′

1
δp2 p′

2
N (n1n2)N (n′

1n′
2)

[(
un1 un2 un′

1
un′

2
+ vn1vn2vn′

1
vn′

2

)
G(n1n2n′

1n′
2Jn)

+ (
un1vn2 un′

1
vn′

2
+ vn1 un2vn′

1
un′

2

)
F (n1n2n′

1n′
2Jn) − (−1)n1+n2−Jn

(
un1vn2vn′

1
un′

2
+ vn1 un2 un′

1
vn′

2

)
F (n2n1n′

1n′
2Jn)

]
, (2.37)

and analogously for the proton-proton Hamiltonian Hpp.
The energies in the denominator D2ν±

Jα,J f
, defined by (2.3),

are

E {±1}
Jα

− E {0}
0+ = ωJα

± λp ∓ λn,

E {±2}
J f

− E {0}
0+ = ωJ f ± 2λp ∓ 2λn, (2.38)

where λp and λn are the proton and neutron chemical poten-
tials. Therefore, for both 2β+ and 2β− decays we have

D2ν±
Jα,J f

≡ D2ν
Jα,J f

= ωJα
− ωJ f

2
. (2.39)

The lowest energies E {±2}
0+

f
are directly related with the Q

values for the 2β− decay (Q2β− ) and for the 2e capture (Q2e),
defined as5

Q2β− = M(Z, A) − M(Z + 2, A),

Q2e = M(Z, A) − M(Z − 2, A), (2.40)

where the M’s are the atomic masses. Namely,

Q2β− = E {0}
0+ − E {+2}

0+
1

= −ω0+
1

− 2(λp − λn),

Q2e = E {0}
0+ − E {−2}

0+
1

= −ω0+
1

+ 2(λp − λn). (2.41)

5The 2β+ and β+e Q values are

Q2β+ = M(Z, A) − M(Z − 2, A) − 4me,

Qβ+e = M(Z, A) − M(Z − 2, A) − 2me.

Note that Q2e−Q2β− =4(λp − λn) and Q2e+Q2β− =−2ω0+
1
.

To evaluate the one-body densities (2.4) and (2.8) we make
use of [[24], Eqs. (15.4)] to get

(c†pcn̄)J → upvnA†(pnJ ),

(c†ncp̄)J → unvpA†(npJ ), (2.42)

which, from (2.2) and (2.5), immediately yields

ρ±(pnJα ) = XpnJα

{
unvp

upvn

}
(2.43)

and

〈J+
α ||O±

J ||0+
i 〉 =

∑
pn

XpnJα
O±

J (pn), (2.44)

with

O±
J (pn) = OJ (pn)

{
unvp

upvn

}
. (2.45)

The derivation of 〈J +
f ||O±

J ||J+
α 〉 is more involved and one

gets

〈J +
f ||O±

J ||J+
α 〉

= ĴĴ f

∑
pnp′n′JpJn

(−)Jp+Jn ĴpĴn

× N (nn′)N (pp′)Xpp′Jp,nn′Jn;J +
f

P̄(nn′Jn)P̄(pp′Jp)

×
⎧⎨
⎩

p p′ Jp

n n′ Jn

J J J

⎫⎬
⎭Xp′n′Jα

O±
J (pn). (2.46)

044314-5



V. DOS S. FERREIRA et al. PHYSICAL REVIEW C 101, 044314 (2020)

The densities ρ±(pn; Jπ
α ,J +

f ) result immediately (2.7)
and (2.46).

Making use of orthogonality and completeness of both
basis |Jα〉 and A†(pnJ )|BCS〉 in Eq. (2.29), the relation (2.15)
can be expressed in a more compact form, namely as

B{±2}
JJ = Ĵ 2

∣∣∣∣∣∣
∑

pp′nn′JpJn

(−)Jp+Jn ĴpĴnN (nn′)N (pp′)

× Xpp′Jp,nn′Jn;J +
f

P̄(nn′Jn)P̄(pp′Jp)

×
⎧⎨
⎩

p p′ Jp

n n′ Jn

J J J

⎫⎬
⎭O∓

J (p′n′)O∓
J (pn)

∣∣∣∣∣∣
2

. (2.47)

In this way, the transition strength turns out to be independent
of the intermediate states.

It is important to emphasize that the permutation op-
erators in the last two equations only act on the right
side. The physical meaning of these permutations can be
inferred from Fig. 1(b), where the DCE matrix element∑

α〈J +
f ||O−

J ||J+
α 〉〈J+

α ||O−
J |0+

i 〉 is represented graphically.
This quantity is used in the evaluation of both the DBD
NME (2.9) and the DCE transition strengths (2.15), but the
Eq. (2.47) is applicable only in the latter case.

Together with the NMEs M2ν±
(J +

f ) given by (2.1)

and (2.9) with M2ν±
(2+

f ) ≡ M2ν±
GT (2+

f ), we will also evaluate
the half-lives τα

2ν (J +
f ) for different α(=2β−, 2β+, eβ+, 2e).

This is done from[
τα

2ν (J +
f )

]−1 = g4
A|M2ν±

(J +
f )|2Gα

2ν (J +
f ), (2.48)

where the NMEs are given in natural units (h̄ = me = c = 1),
and the leptonic kinematics factors, Gα

2ν (J +
f ), are in yr−1.

These factors can be found in Ref. [[31], Table II] for several
nuclei of interest. (For the most recent computations of phase
space factors see Refs. [32,33].)

The excitation energies in the final nuclei are calculated
from

E f = E {+2}
0+

f
− E {+2}

0+
1

. (2.49)

It should be noted that, just as the pn-QRPA model predicts
identical excitation energies for the (Z, A ± 1) nuclei, the
current model yields the same the excitation energies in the
(Z, A ± 2) nuclei.

Finally, the centroid energies of the DCE transition
strengths are defined as

Ē {±2}
JJ =

∑
f EJ +

f
B{±2}

JJ f

S{±2}
JJ

. (2.50)

III. NUMERICAL RESULTS AND DISCUSSION

The residual interaction is described by the δ force (in units
of MeV fm3)

V = −4π (vsPs + vt Pt )δ(r), (3.1)

where vs and vt are the spin-singlet and spin-triplet parame-
ters.

TABLE I. Results for the BCS coupling constants and Fermi
levels. All notation is explained in the text. The λ’s are given in units
of MeV, and the couplings vpair

s is in units of MeV fm3.

Nuclei spe vpair
s (n) vpair

s (p) λn λp

48Ca eexpt
j 31.45 34.77 −6.587 −13.000
e j 25.20 28.35 −7.091 −12.702

96Ru 33.20 38.91 −8.412 −5.663

A. Mean field

The mean field is defined by the unperturbed Hamiltonian
H0 and the spe that are specified below. As usual, the pairing
strengths for protons and neutrons, v

pair
s (p) and v

pair
s (n), are

obtained from the fitting of the experimental pairing gaps.
The DBD− 48Ca → 48Ti is a rather unique case, since

48Ca is a double closed nuclei, and we can make use of
the experimental spe, labeled as eexpt

j , which comprises the
energies of both the single-particle and single-hole states. All
of them were taken from the binding and excitation energies,
weighted with spectroscopic factors, of odd-mass neighboring
nuclei: 47Ca and 49Ca for neutrons, and 47K and 49Sc for
protons. They are listed in Fig. 2 and are those from [[34],
Table II], except for the proton f5/2 spe, which is estimated
from the proton f5/2- f7/2 splitting given in Ref. [35]. We
need this level to saturate both the SCE and DCE sum rules.
Once this has been done, the spe eexpt

j have been used in two
different ways:

(1) The following steps are done in handling the BCS
equations [13,36,37]:

(a) The BCS energies relative to the Fermi level λ,

E (±)
j = ±Ej + λ, (3.2)

are introduced, where the positive (negative) sign is
adopted if the corresponding single-particle state is a
particle (hole) state.

(b) It is assumed that neutron and proton Fermi
levels λn and λp lay between jn = 2p3/2-1 f7/2 and
jp = 1 f7/2-1d3/2 states respectively, and that all states
above λ are pure quasiparticle excitations E (+)

j and all

states below λ are pure quasihole excitations E (−)
j .

(c) Starting from a set of harmonic oscillator ener-
gies eHO

j , the energies E (±)
j are adjusted to the exper-

imental spectra eexpt
j by means of a χ2 search varying

the strengths v
pair
s and the bare spe e j which that appear

in the BCS gap equations (2.24). All energies involved
in this procedure are illustrated in Fig. 2.

(2) For the sake of completeness, the pairing parameters
v

pair
s (p) and v

pair
s (n) were fixed in the standard man-

ner [29]. That is, by fitting the experimental pairing
gaps to the calculated pairing gaps 
 j , given by [[30],
Eq. (2.96)], with j = 1 f7/2 for neutrons and j = 2s1/2

for protons.

The most relevant difference between the spe eexpt
j and e j

is the disappearance of the energy gap between the holes and
the particles in the last case. The resulting parameters v

pair
s ,
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FIG. 2. Mean field energies (in units of MeV) for neutrons (left panel) and for protons (right panel). In both cases we show (i) harmonic
oscillator energies eHO

j , (ii) adjusted single-particle energies e j , (iii) BCS energies relative to the Fermi level (E (±)
j ), and (iv) experimental

energies (eexpt
j ).

and λ are given in the Table I for the two sets of spe e j and
eexpt

j . The quasiparticle energies E (±)
j with eexpt

j are obviously
slightly different from those shown in Fig. 2.

In the 96Ru nucleus, the neutron and proton shells are
open and its energy spectrum is clearly rotational. This fact
gives rise to a strong interplay between collective and single-
particle degrees of freedom in the low energy spectra of the
neighboring odd-mass nuclei 95Ru, 97Ru, 95Tc, and 97Rh. For
instance, it is very likely that the ground state 5/2+ in 95Ru is a
consequence of the j − 1 anomaly in the three neutron cluster
(1g7/2)3 [38,39]. Such a complex nuclear structure makes it to
difficult determine the appropriate spe spectra and the pairing
interaction strengths from experimental energy spectra, as it
was done in the case of 48Ca.

Instead, we used the spe provided by Paar [40], which were
calculated in the relativistic Hartree-Bogoliubov model, as
outlined in Ref. [41]. They are shown in Table II, together with
the resulting quasiparticle energies (3.3), which were obtained
following procedure 2 in the case of 48Ca. This suggests fitting

TABLE II. Neutron and proton spe for 96Ru, which were ob-
tained in the manner explained in the text, together with the resulting
quasiparticle energies (3.3). All notation is explained in the text. The
energies are given in units of MeV.

Neutrons Protons

Level e j E (±)
j e j E (±)

j

3s1/2 −5.396 −5.182 4.916 5.006
2d3/2 −5.236 −4.983 4.792 4.897
1g7/2 −6.878 −6.527 2.308 2.502
2d5/2 −7.401 −10.051 2.493 2.627
1g9/2 −14.401 −14.500 −5.424 −7.448
2p1/2 −17.802 −17.913 −7.718 −8.478
2p3/2 −19.389 −19.484 −9.295 −9.773

the calculated pairing gaps 
 j , with j = 1g7/2 for neutrons
and j = 1g9/2 for protons, to the experimental ones. The
similarity between the spe e j and the quasiparticle energies
E (±)

j is remarkable. The corresponding pairing parameters

v
pair
s and chemical potentials λ are listed in Table I.

It is important to note that in 48Ca it is λn > λp while in
76Ru this difference is λn < λp. We will soon see that this
fact is decisive with respect to the Q values of DBD. More
precisely, this will explain why DBD− occurs in 48Ca and
DBD+ occurs in 96Ru.

Our method of calculation is similar in several aspects to
that used in the SM framework in Refs. [5,6]. In fact, the
illustration of their calculations, made in Fig. 1 of the last
reference, is also valid in our case. The biggest difference
between the two models, in addition to the residual interac-
tions that were used, arises from the size of the configuration
spaces of the final states J +

f . We have 664 0+ states and
2.470 2+ states, while Auerbach and Bui Minh Loc [6] have,
in their evaluation of double-charge-exchange GT strength
48Ca → 48Ti, the quantity of 14.177 and 61.953 final states
in the f p space, respectively. In the case of the 96Ru → 96Mo
decay, we also have 664 0+ states, but 2.583 2+ states.6

B. Residual interaction

The same coupling constants v
pp
s , v

pp
t , v

ph
s , and v

ph
t were

used in the numerical evaluations of the matrix elements of the
Hamiltonians Hpn, Hpp, Hnn, given by Eqs. (2.34) and (2.37).

That is, we assume that the residual interaction is the same
for identical and nonidentical particles, which is a very strong
constraint on the model parameters.

6See also our Fig. 1, where the difference between our model
with the standard pn-QRPA calculation of the NME is illustrated
graphically.
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In all our previous works within the pn-QRPA model
[20,28,42–47] the values of the interaction coupling constants,
both in ph and pp channels, were set from the partial restora-
tion of the spin-isospin SU(4) symmetry (PSU4SR) induced
by the residual interaction. The corresponding physical mo-
tivations for this, and the procedure are discussed in those
references in detail. However, to make the present paper self-
contained, it might be appropriate to use some paragraphs to
explain the philosophy of the PSU4SR approach. In doing
this, we necessarily have to partially repeat what has been said
previously, in particular in Ref. [47].

(1) Particle-hole channel. The SU(4) symmetry is dynam-
ically broken by the spin-orbit coupling and the su-
permultiplet destroying residual interactions, but these
two effects have a tendency to cancel each other.
Indeed, it is an experimental fact that the energy dif-
ference between the GT resonance and the isobaric
analog state (IAS) behaves as

EGT − EIAS = 26A−1/3 − 18.5(N − Z )/A, (3.3)

where the first and second terms are interpreted as
arising from the mean spin-orbit splitting and the
difference in the corresponding residual interactions,
when described within the TDA [48–50], respectively.
Moreover, for the residual interaction (3.1), the last
term in Eq. (3.3) implies that

v
ph
t − vph

s = 37 MeV fm3, (3.4)

and we say that the PSU4SR takes place within the ph
channel when this condition is met.

(2) Particle-particle channel. For a system with N �= Z ,
the isospin and spin-isospin symmetries are violated
in the mean field approximation, since the neutron
excess automatically yields isovector mean fields, i.e.,
different Hartree-Fock (HF) potentials for protons and
neutrons. This occurs even if the nuclear Hamiltonian
commutes with the corresponding excitation operators
O±

J .

However, it was very early realized that when a nondy-
namical violation occurs in the HF solution, the RPA-induced
ground state correlations (GSCs) can be invoked to restore
the symmetry [51–54]. These correlations are not explicitly
evidenced, but only implicitly through their effects on the
matrix elements and the corresponding decay rates [see, for
instance, Eqs. (3.7) and (3.8) below].

Here it is convenient to define the ratios

s = v
pp
s

vpair
s

, and t = v
pp
t

vpair
s

, (3.5)

where vpair
s = [vpair

s (p) + v
pair
s (n)]/2. In the pp channel the F

(GT) excitations depend only on s(t ).
For the F excitations, and when the isospin nonconserving

forces are absent, a self-consistent inclusion of the GSCs
(s = 1) leads to the following: (i) the β− strength S+

IAS ≡ S{+1}
0

is fully concentrated in the IAS, (ii) the β+ strength S{−1}
0 ,

which in pn-QRPA can be viewed as an extension of the
β− spectrum to negative energies, is totally quenched, and

(iii) the NME M2ν−
F (0+

1 ) is null for all practical purposes. All
this can be seen, for instance, from [[20], Figs. 1(b) and 1(c)],
and [[47], Fig. 1]. The extent to which the above conditions
are fulfilled at s = ssym = 1 may be taken as a measure of the
isospin symmetry restoration.

For GT excitations, the GSCs lead to the following: (i) the
β− strength S{+1}

1 is largely concentrated on the GT resonance,
(ii) the β+ strength S{−1}

1 exhibits a pronounced minimum at
t ∼= 1.2, similar to that of S{−1}

0 at s = 1, which is accordingly
denominated tsym (see [[20], Figs. 1(c) and 1(c′)]).

Thus, in pn-QRPA model the SU(4) symmetry is partially
restored within the pp channel at minima of the strengths
S{+1}

0 , and S{+1}
1 . For the residual interaction (3.1), this occurs

at

s = ssym = 1, and t = tsym
∼= 1.2. (3.6)

Briefly, the spin-isospin symmetry is partially restored
within the pn-QRPA when the conditions (3.4) and (3.6) are
met, and this restoration is the prerequisite for a physically
adequate evaluation of the observables.

It has also been shown that in the vicinity of the place
where the restoration is performed, the F and GT NMEs
behave á la Padé [20,44–47], i.e.,

M2ν−
F (s) = M2ν−

F (s = 0)
1 − s

1 − s1
, (3.7)

with s1 > 1 being the value of s where the pn-QRPA collapses
for J = 0, and

M2ν−
GT (t ) = M2ν−

GT (t = 0)
1 − t/t0
1 − t/t1

, (3.8)

with t1 > t0, where t0 and t1 denote the zero and pole of this
NME, respectively. In fact, for J = 1 the pn-QRPA collapses
at t = t1. Such behaviors can be visualized, for instance, from
[[20], Figs. 1(b) and 1(b′)].

As noted before [47], in the pn-TDA, where the GSCs are
neglected, the results for the observables are quite different,
even if the self-consistence s = 1 is imposed. In fact, in this
case, (i) the S{+1}

0 strength is always fragmented, (ii) the
perturbed S{−1}

0 , and S{−1}
1 strengths remain equal to their

unperturbed (BCS) values, and therefore have no minimums,
and (iii) the NMEs are very large [M2ν−

F (0+
1 ) = −0.107,

and M2ν−
GT (0+

1 ) = −0.663] in comparison with those given
in Ref. [[20], Table II], which are M2ν−

F (0+
1 ) = −0.004, and

M2ν−
GT (0+

1 ) = 0.022.
From the previous discussion it is clear that for the model

developed here, we can use only the ph part (3.4) of the
PSU4SR, namely (i) v

ph
s = 27 and v

ph
t = 64 for 48Ca, and (ii)

v
ph
s = 55 and v

ph
t = 92 for 96Ru.

With respect to the pp parameters, we observe that the
first relationship in Eq. (3.6) is always valid (both in the
QRPA and QTDA models), since it is a consequence of
the self-consistency between the pairing interaction vpair

s ,
and the isovector pp interaction v

pp
s . On the other hand,

in the (pn, 2p2n)-QTDA there is no physical restriction on the
isoscalar pp interaction v

pp
t , therefore we will basically use
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TABLE III. Calculated and measured NME (in natural units
×103) for 2ν-DBDs of 48Ca [M2ν (J +

f ) ≡ M2ν−
(J +

f )] and 96Ru

[M2ν (J +
f ) ≡ M2ν+

(J +
f )] to ground state 0+

1 , and first excited 0+
2 and

2+
1 states in the final nuclei 48Ti and 96Mo, respectively. Results from

Refs. [18,58] for 48Ca and from Refs. [9,14,59–61] for 96Ru, as well
as the experimental value for 48Ca [1], are also shown in same units.
Suhonen’s results [9] correspond to those listed in his Table II for the
channel α = 2e.

48Ca

Par M2ν
F (0+

1 ) M2ν
GT(0+

1 ) |M2ν (0+
1 )| |M2ν (0+

2 )| |M2ν (2+
1 )|

e j

T 1 13 −53 40 13 0.64
T 2 15 −62 47 16 0.69
T 3 17 −75 58 20 0.75
eexpt

j

T 1 18 −83 64 10 0.33
T 2 21 −110 89 34 0.34
T 3 24 −152 128 80 0.35
[18] 22 120
[58] 28 26 1.62
[1] 38 ± 3

96Ru

T 1 0.13 −17 16 10 0.51
T 2 0.15 −17 17 11 0.61
T 3 0.17 −18 18 12 0.75
[9] 415–1437 492–1554 0.1–8.4
[14] 251
[59] 101
[60] 54

s = 1, while the value of t , given in Eq. (3.6), will be taken
only as a guide.

Moreover, instead of using the bare value gA = 1.27 for the
axial-vector coupling constant [55], we use an effective value
gA = 1.0.7 Still smaller values for gA have been used in the
literature [57].

C. Nuclear matrix elements

We calculate simultaneously the NMEs M2ν
F (0+

f ),
M2ν

GT(0+
f ), M2ν (0+

f ), and M2ν
GT(2+

f ) for all above mentioned
J +

f final states with the following three sets of pp parameters:

T 1 : s = 1.00, t = 0.80,

T 2 : s = 1.00, t = 1.00, (3.9)

T 3 : s = 1.00, t = 1.20.

In the upper part of Table III are shown the results for
the decays 48Ca → 48Ti (0+

1 , 0+
2 , 2+

1 ), evaluated with the two

7This quenching is frequently attributed to the 
-hole polarization
effect on the axial-vector coupling constant [49]. Recently an expla-
nation of the quenching of gA within the context of effective field
theories [56] has been presented.

sets of spe drawn in Fig. 2. The results obtained by other
authors [18,58], as well as the experimental value [1] of the
NMEs, are shown below. The agreement between the calcu-
lated and measured results for M2ν (0+

1 ) can be considered
satisfactory (in particular with spe e j), taking into account that
all nuclear parameters in the pp and ph channels are basically
fixed, both for identical particles in Hnn and Hpp, and for
nonidentical particles in Hpn. We hope that in the near future
the NMEs M2ν (0+

2 ) and M2ν
GT(2+

1 ) will also be measured.
Our results are consistent with the previous ones for all

three decays. The NME M2ν (0+
1 ) has been calculated many

times, but there are only a very few theoretical studies of
M2ν (0+

2 ) and M2ν
GT(2+

1 ). As far as we know, the first one of
these has been evaluated only in Ref. [58], and the second one
in Refs. [18,58] (see also Ref. [62]).

Table III shows that our F NMEs are not null, which is
understandable since the current model does not consider the
GSCs. To make them null, one has to go from (pn, 2p2n)-
QTDA to (pn, 2p2n)-QRPA. This is a formidable task that
we are planning to do next. Certainly, GSCs will also affect
the results for other observables, whose scope is difficult to
estimate at this time.

The present F NMEs are relatively small for both 0+ levels,
when compared with the corresponding GT ones, but in no
way are they negligible. As seen in Eq. (2.1), these two NMEs
always interfere destructively. It should be pointed out that the
contributions of M2ν

F (0+
f =1,2) have not been considered in the

just mentioned studies [18,58], therefore, strictly speaking,
their results for |M2ν (0+

f =1,2)| should be compared with ours
|M2ν

GT(0+
f =1,2)|.

It is interesting to note that the F NMEs are often omitted
in the calculations, simply invoking isospin conservation. But,
as explained above, this is a necessary but not sufficient
condition for these NMEs to be null (see also the work of
Satula et al. [63]).

An exception is the work of Šimkovic, Rodin, and
Faessler [64], where partial restoration of isospin symmetry is
achieved in the pn-QRPA, which leads to the disappearance of
M2ν

F . This is accomplished by separating the renormalization
parameter gpp into isovector and isoscalar parts. The isovector
parameter gT =1

pp is chosen to be essentially equal to the pairing
constant gpair, which is equivalent to our condition for self-
consistency s = 1 [see also the Eq. (3.7)].

In the lower part of Table III the results for the 96Ru →
96Mo (0+

1 , 0+
2 , 2+

1 ) decays are shown. The outcomes of previ-
ous calculations [9,14,59–61] are also presented. It is notice-
able that the differences between our three calculations are
much smaller than the differences with all the other works.

The discrepancies between the results for the NMEs pre-
sented in Table III come from the use of different nuclear
models. For instance, in the study of the DBD+ in 96Ru, done
by Suhonen [9], was used the multiple-commutator model
(MCM), designed to connect states of the odd-odd nuclei to
excited states of the neighboring even-even final nuclei [65].
In this model, the states in the odd-odd nucleus, as well as the
final J +

f = 0+
1 state, are described in the standard way, i.e.,

by the pn-QRPA in the form (2.26), while excited states of
the even-even nuclei are generated by the charge-conserving
QRPA (cc-QRPA), described in detail in Ref. [24]. That is,
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FIG. 3. Calculated NME M2ν
F , M2ν

GT, and M2ν for the ground 0+ state (in natural units ×103), as a function of the pp parameters t and s
for 48Ti for (a) 48Ca with spe eexpt

j , (b) 48Ca with spe e j , and (c) 96Ru. The experimental value for 48Ti |M2ν (0+
1 )| = (38 ± 3) × 10−3 is also

indicated by the red line, whose width represents the experimental error.

the final states J +
f = 2+

1 , 0+
2 , 2+

3 , and 0+
3 are assumed to be

basic cc excitations (one-phonon cc-QRPA states), and the
J +

f = 0+
2 and 2+

2 states are considered as consisting of two 2+
1

cc-QRPA phonons. Therefore, there is no physical similarity
between the model used by Suhonen [9] and ours.

The strong dependence of the NME within the pn-QRPA
model with respect to the isoscalar pp parameter t is well
known and is often discussed, therefore, it could be interesting
to analyze that dependence in the current model. This is done
in Fig. 3 showing the NMEs M2ν

F , M2ν
GT, and M2ν for the

ground 0+ state in 48Ca and 96Ru, as a function of the pp
parameters t and s. The experimental value of |M2ν (0+

1 )| is
also drawn. It can be concluded that within the present model
such dependence is only moderate. The same statement is
valid also for all remaining 2ν NMEs.

It is also well known that the relatively small values of
the NME in the pn-QRPA model come from the destructive
interference between forward and backward going contri-
butions [20], that is, through the ground state correlations

TABLE IV. Calculated half-lives τ
2β−
2ν (J +

f = 0+
1 , 0+

2 , 2+
1 ) (in

units of yr) for the 2ν-DBD 48Ca → 48Ti. For the spe e j , all
three sets of the pp parameters, and with gA = 1, are shown, and
confronted with previous calculations and data. In Eq. (2.48) we
use the Gα

2ν (J +
f ) factors from Ref. [66] for the levels 0+

1 (=1.56 ×
10−17 yr−1) and 0+

2 (=3.63 × 10−22 yr−1), and from Ref. [67] for
2+

1 (=4.41 × 10−18 yr−1).

0+
1 0+

2 2+
1

T 1 4.01 × 1019 1.63 × 1025 5.54 × 1023

T 2 2.90 × 1019 1.08 × 1025 4.76 × 1023

T 3 1.91 × 1019 6.89 × 1024 4.03 × 1023

Ref. [18] 1.72 × 1024

Ref. [58] 3.3 × 1019 8.5 × 1023

Expt. [1] (4.4+0.6
−0.5) × 1019

(GSCs). The quenching mechanism is different in the cur-
rent model, and it is the consequence of the interplay be-
tween seniority-0 and seniority-4 configurations in the final
states. For example, in the case of 48Ca, within the space e j

and with force parameters T 1, the NME M2ν for the three
lowest 0+ states are −0.040,−0.013,−0.040. But, when
only the seniority-0 configurations are considered, one finds
−0.068,−0.016,−0.065, respectively, which confirms the
above statement.

D. Half-lives

Knowing the NMEs and the leptonic kinematic factors
Gα

2ν (J +
f ), the corresponding half-lives τα

2ν (J +
f ) are evaluated

trivially from (2.48). Despite this, we present some of them
only for the sake of completeness.

Our results for τ
2β−
2ν (J +

f = 0+
1 , 0+

2 , 2+
1 ) in 48Ca, evaluated

with spe e j and the three sets of the pp parameters are
compared with the previous calculations and with the data
in Table IV. For the state 0+

1 we agree both with the experi-
ment [1] and with the SM calculation [58]. On the other hand,
our half-life for the first 2+

1 is shorter by a factor of about
2 than the same evaluated with SM [58], and by a factor of
about 4 than the one obtained by Raduta et al. [18].

TABLE V. Calculated half-lives τα
2ν (J +

f = 0+
1 ) in units of yr

for the 2ν-DBD 96Ru → 96Mo, with the pp parameter set T 2
and gA = 1 are shown and confronted with previous calculations.
In Eq. (2.48) we use the Gα

2ν (J +
f ) factors from Ref. [17] for the

channels 2β+(=1.080 × 10−26 yr−1), eβ+(=0.454 × 10−21 yr−1),
and 2e(=2.740 × 10−21 yr−1).

α Present [14] [59] [60] [9]

2β+ 3.2 × 1029 5.8 × 1026 3.5 × 1028 1.0 × 1027

β+e 7.6 × 1024 1.2 × 1022 8.6 × 1022 9.1 × 1023 2.3 × 1023

ee 1.3 × 1024 2.1 × 1021 1.4 × 1022 1.6 × 1023 3.9 × 1021
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TABLE VI. Calculated Qββ and Q2e values (in units of MeV)
with the three sets of pp parameters T 1, T 2, and T 3 and for the DCE
processes: (a) 48Ca → 48Ti and 48Ca → 48Ar and (b) 96Ru → 96Mo
and 96Ru → 96Pd are confronted with experiments.

48Ca

Par Qββ Q2e

T 1 4.980 −20.673
eexpt

j T 2 5.300 −20.353
T 3 5.780 −19.872
T 1 6.611 −15.835

e j T 2 6.710 −15.736
T 3 6.820 −15.626

Expt. 4.268 −21.943
96Ru

T 1 −7.728 3.266
e j T 2 −7.722 3.272

T 3 −7.715 3.279
Expt. −9.896 2.714

In the case of 96Ru, our results for the half-lives τα
2ν (0+

1 ),
for different decay modes (α = 2β+, eβ+, 2e), are shown in
Table V. All of them are larger by one to three orders of
magnitude when compared with previous theoretical studies,
which are shown in the same table. The biggest discrepancies
are in the pn-QRPA calculation made in Ref. [14]. The origin
of what is difficult to elucidate given the difference between
the two models used.

The experimental limits for the 96Ru half-lives are
τ

2β+
2ν (0+

1 ) � 1.4 × 1020 yr and τ
eβ+
2ν (0+

1 ) � 0.8 × 1020 yr [68].
Thus, from Table V we see that our predictions are nine orders
of magnitude larger for the 2β+ mode, and four orders of
magnitude larger for the eβ+ mode. This, in turn, implies
that the accuracy of the measurements would have to be
significantly improved to observe these processes.

We have not evaluated the half-lives of the 96Ru final
states J +

f = 0+
2 , 2+

1 , since their kinematic factors Gα are not
available.

E. Q values and energy spectra

Before starting with the discussion of Q values, it is con-
venient to remember that a physical phenomenon is allowed
only when this quantity is positive.

In Table VI the experimental data are confronted with our
results for the Qββ and Q2e values in the DCE processes: (a)
48Ca → 48Ti and 48Ca → 48Ar, and (b) 96Ru → 96Mo and
96Ru → 96Pd. One sees that the model is capable of repro-
ducing fairly well not only the signs of the Q-values, but also
their magnitudes, without having to modify the parameters of
the model. This is very encouraging! In addition, it seems that
the model “knows” what type of DCE decay can occur in a
given nucleus.

The nature of Q value is predominantly determined by the
proton and neutron pairing mean fields, as seen from (2.41) or,
more precisely, from the relation Q2e − Q2β− = 4(λp − λn).
The dependence on the residual interaction is rather weak and
takes place through the ground state energy ω0+

1
in the residual

nuclei, as Q2e + Q2β− = −2ω0+
1
. More details on how the Q-

values depend on the pp coupling constants are shown in the
Fig. 4.

As we stated before, in the same way that the pn-QRPA
model [12] predicts identical energy spectra for odd-odd nu-
clei (A, Z ± 1), the present model predicts identical excitation
energies in even-even nuclei (A, Z ± 2). This is obviously not
realistic due to the large neutron excess.

It is pertinent to mention here that the use of particle-
number-projection can become very important when working
with the BCS mean-field [42]. Without a doubt, with this
method different energy spectra are obtained in nuclei with
the same mass number but different numbers of protons and
neutrons.

But, despite the above-mentioned disadvantage, the pre-
dicted 0+ and 2+ excitation energies in 48Ti and 48Ar are
consistent with the data, as shown in Fig. 5 for the spes eexpt

j ,
e j , and pp parametrization T 2.

Because of the size of the Q2β− value (= 4.268 MeV), the
2β− decays are energetically possible for all states, except for
the 0+

4 . We have evaluated the NMEs for all these states, but
we do not consider it necessary to present them here. We have

FIG. 4. Calculated Q2β− and Q2e values in 48Ca with spe eexpt
j (a), and with spe e j (b), and 96Ru (c), as a function of pp parameters t and s.

The experimental Q values are also shown.
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FIG. 5. (a) Experimental excitation energies of the final states J π = 0+ and 2+ are compared with calculations, performed with the pp
parametrization T 2, for (a) 48Ti and 48Ar and (b) 96Pd and 96Mo.

not found in the literature any detailed calculation of the low
energy 48Ti spectrum to compare with the ones obtained for
us and shown in Fig. 5.

The experimental energy spectra of 96Pd and 96Mo are
poorly explained by our calculations. However, for the sake
of completeness, the comparison between theory and data is
presented in Fig. 5(b). These two nuclei exhibit very different
spectra from each other, and most likely no nuclear model
explains their properties simultaneously, without dramatically
varying the parameters of the model, which we do not do
here. It is possible that GSCs significantly modify the energy
spectra of final even-even nuclei, that is, when switching from
(pn, 2p2n)-QTDA to (pn, 2p2n)-QRPA, as happens with the
spectra of odd-odd nuclei when changing from pn-QTDA to
pn-QRPA [24].

Excitation energies of 96Mo are not evaluated in the
MCM [9] as we do. What is done in the cc-QRPA model is
to adjust the theoretical energies to the experimental ones,
obtaining in this way the particle-hole channel parameters.
This is carried out for each one-phonon state [65].

F. Double-charge-exchange strengths and their sum rules

The results for the DCE transition strengths S{±2}
JJ given

by (2.15), both for Fermi (J = 0;J = 0) and Gamow-Teller
(J = 1;J = 0, 2) are displayed in Table VII. The corre-
sponding sum rules S{2}

JJ calculated from (2.16) are also

shown, and confronted with the predicted sum rules S{2}
JJ

given by (2.17)–(2.19). In addition, to know the locations
of the DCE resonances, we have evaluated the energy
centroid (2.50).

To obtain an idea of the magnitudes of the DBD, the
strengths B{+2}

JJ1
(B{−2}

JJ1
) going to the levels 0+

1 and 2+
1 in final

48Ti (96Mo) nucleus are explicitly given.

All calculations related to DCE transition strengths were
performed for the three sets of pp parameters (3.9), finding
that all produce identical results. We have also found that, at
least in the case of 48Ca, there is a certain dependence of the
results with respect to the used spe spaces.

The results derived for 48Ca within the SM for the p f
space8 by other authors are given in the last three bins of
the upper part of Table VII—specifically, by (i) Sagawa and
Uesaka [5] with GXFF1A interaction, and (ii) by Auerbach
and Minh Loc [6] and Shimizu, Menéndez, and Yako [7], both
with KB3G interaction. In fact, the values of strengths S{+2}

1J=0,2
attributed to the last authors [7] have been extracted from their
Fig. 1(b).

Several observations are in order regarding the results
shown in Table VII:

(1) The strengths S{−2}
JJ are always small in compari-

son with the strengths S{+2}
JJ and, as a consequence,

S{+2}
JJ ∼= S{2}

JJ . This is clearly due to the relatively
large neutron excess.

(2) Although small, the strengths S{−2}
JJ are significant in

relation to the DBD. They are proportionally higher
in 96Ru, which decays by 2β+, than in 48Ca, which
decays by 2β−.

(3) The F strengths S{2}
00 deviate quite significantly from

the sum rule strengths S{2}
00 —24% and 40%, respec-

tively, within the spe spaces eexpt
j and e j in 48Ca,

8Note that the present calculations were done in a single-particle
space consisting of the 2p-1 f -2s-1d shells for both protons and
neutrons.
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TABLE VII. Results with the pp parametrization T 2 for (i)
Fermi (J = 0;J = 0) and Gamow-Teller (J = 1;J = 0, 2) DCE
transition strengths S{±2}

JJ given by (2.15), (ii) the corresponding sum
rules S{2}

JJ calculated from (2.16), (iii) the predicted sum rules S{2}
JJ

given by (2.17)–(2.19), (iv) the energy centroid (2.50), and (v) the
transition strengths B{2}

JJ1
(≡ B{+2}

JJ1
) for 48Ca and B{2}

JJ1
(≡ B{−2}

JJ1
) for

96Ru going to the levels 0+
1 and 2+

1 . The SM results from previous
works [5–7] for 48Ca are also shown. The meaning of the inequalities
is explained in the text.

48Ca

Ref. JJ S{+2}
JJ S{−2}

JJ S{2}
JJ S{2}

JJ Ē {−2}
00 Ē {+2}

00 103B{2}
JJ1

00 140.1 0.94 139.1 112 21.7 17.61 177
eexpt

j 10 162.2 2.0 160.2 �175.9 13.0 17.60 1060
12 716.1 9.10 707.0 �639.6 14.4 17.88 86.1
00 157.2 2.4 154.8 112 22.0 22.6 95.6

e j 10 189.9 5.9 184.0 �198.6 14.3 17.5 389
12 859.3 26.0 833.3 �753.2 15.2 17.7 93.1

[5] 10 135.5 �144.0
12 501.2 �480.0

[6] 10 131.8 �144.0 21.9 24.0
[7] 10 126.3

12 511.0
96Ru

00 128.0 0.1 127.9 112 21.3 19.9 0.005
e j 10 221.1 12.0 209.1 �222.7 23.0 12.4 4.1

12 981.4 49.0 932.4 �873.5 23.2 11.8 11.1
[61] 00 0.000

10 1570

and 14% in 96Ru. A possible explanation for these
differences is given in the Appendix.9

(4) Terms proportional to C in the GT sum rules
Eqs. (2.18)–(2.20) are not included in the calcula-
tions, and this is the reason why the following con-
ditions must be fulfilled:

S{2}
10 � S{2}

10 ,

S{2}
12 � S{2}

12 . (3.10)

In fact, they are nicely satisfied in all numerical
calculations presented in Table VII.

(5) All S{±2}
JJ strengths depend quite significantly on the

spe, but very weakly on the residual interaction. This
is the reason why we only show the results for the
parametrization T 2.

(6) The same situation applies to the predicted sum rules
S{2}

1J , due to their dependence on the term S{−1}
1 [in

Eqs. (2.18)–(2.20)], which in turn depends on the spe
used in the calculations.

9In this case it could be interesting to analyze if the problem can be
solved by particle-number projection [42].

(7) The terms proportional to S{−1}
1 in Eqs. (2.18)

and (2.19) are omitted in Refs. [5,6], and this is the
reason why their predicted sum rules S{2}

1J are smaller
than ours.

(8) Since the values for S{+2}
1J are not explicitly given in

Shimizu et al. [7], we have derived them from their
Fig. 1(b). They are consistent with the values of S{2}

1J
presented in Refs. [5,6].

(9) Our GT strengths are always larger than those in the
SM calculations. Also, our average energies Ē {+2}

1J are
significantly smaller than those presented in Table II
in Ref. [6], and those shown in Fig. 1(b) by Shimizu
et al. [7]. It is difficult to discern whether this is due
to the deficiency of our model, or the difference in the
size of the single-particle spaces. We are inclined to
think that our results are correct, since, otherwise, it
would be very difficult to satisfy the second condition
in Eq. (3.10), when in Eq. (2.19) is considered the
strength S{−1}

1 .
(10) From the comparison of the transition strengths B{±2}

JJ1
,

corresponding to the states J +
1 = 0+

1 , and 2+
1 , with

total strengths S{±2}
JJ , we can get an idea of how small

the NMEs are.
(11) The correspondence between F and GT NMEs, de-

fined in Ref. [[61], Eq. (15)], and our B{+2}
J=0,1,0 densi-

ties is ∣∣M (2ν)
F

∣∣2 → B{+2}
0,0 ,∣∣M (2ν)

GT

∣∣2 → 3B{+2}
1,0 . (3.11)

G. Spectral distributions of double-charge-exchange strengths

The DCE strength distributions B{±2}
JJ f

, which are of interest
here, are drawn in Figs. 6–8 as a function of the excita-
tion energy E in the final nuclei. We have found that they
depend only moderately on the spe spaces, and even less
on the pp parameters. To simulate the experimental energy
resolution, they were smeared out with Lorentzians of 1 MeV
width. Moreover, these figures contain inserts which show the
corresponding strengths in the low-lying states of the final
nuclei.

The F distribution B{+2}
00 in 48Ti, shown in the upper panel

of Fig. 6, exhibits at around 22 MeV a fairly narrow reso-
nance, usually called a double isobaric analog state (DIAS).
In the middle and lower panels of this figure are shown the
GT distributions B{+2}

10 and B{+2}
12 , respectively, in the same

final nucleus, which also exhibit resonantlike structure. These
double GT giant resonances (DGTGRs) are much wider than
the DIAS and centered around 13 and 14 MeV, respectively.
In the KB3G SM calculations of Shimizu et al. [7], which
are also shown in Fig. 6, these resonances appear at around
20 MeV.

Analogous results for the B{+2}
JJ and B{−2}

JJ densities in
96Pd and 96Mo, respectively, are presented in Figs. 7 and 8.
Both results are shown because here we are interested in the
DBD+, where the low-energy behavior of B{−2}

JJ densities is
relevant.
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FIG. 6. DCE strength distributions B{+2}
JJ for the transition

48Ca → 48Ti with spe e j , and eexpt
j , and pp strengths T 2, as a function

of the excitation energy E in 48Ti. The B{+2}
JJ are dimensionless,

and the energies are in MeV. The SM results, obtained by Shimizu
et al. [7] with the KB3G interaction, are also shown.

As seen in Fig. 7, the DIAS in 96Pd is located at around 21
MeV, while both J = 0+ and J = 2+ DGTGRs are at about
23 MeV. These resonances are not directly related to the DBD
of 96Ru, but their locations in 96Pd can be searched through
heavy ion reactions.

The smallness of B{−2}
00 and its energy distribution, shown in

Fig. 8, are fully consistent with the small value of M2ν
F (0+

1 ) in
Table III and of B{−2}

001
in Table VII. Moreover, the distributions

of the B{−2}
1J=0,2 clearly indicate that the DBD+ of 96Ru will be

very slow.
The role played by the residual interaction in generating

DIAS is illustrated in Fig. 9, where a few results for the
F distribution B{+2}

00 in 48Ti are exhibited. Panel (a) shows
how the unperturbed (BCS) strength moves upwards in en-
ergy by about 15 MeV, due to the residual interaction in
the ph channel. In panel (b), the F distributions are shown
when the full residual interaction acts, with t = 1, and sev-
eral different values of s. The maximum concentration of
strength occurs for s = 1 at around 22 MeV, thus gener-
ating the double isobaric analogous state (DIAS). This, in
turn, clearly shows the importance of the self-consistency

FIG. 7. DCE strength distributions B{+2}
JJ for the transition

96Ru → 96Pd with pp strengths T 2 as a function of the excitation
energy E in 96Pd. The B{+2}

JJ are dimensionless, and the energies are
in MeV.

(s = 1) between the pairing force and the pp isovector
interaction.

But, as seen from the insert in the panel (b), not all the
double F strength is contained in a single state. If this would
happen after moving from the QTDA to the QRPA, and thus
completely reset the spin-isospin symmetry, it remains an
open question.

H. Comparison between ground state 2ν-DBD
NME and DCE strengths

In the so-called closure approximation is used the com-
pleteness character of the intermediate states |Jα〉 in Eqs. (2.1)
and (2.9), after replacing the energies E {∓1}

Jα
in Eq. (2.3) by

some average Ē {∓1}
J [67].

Thus, except for the constant energy denominator, the
ground state DCE densities B{±2}

J01
are the closure approxima-

tions of the squares of the NMEs. In view of this, to know how
reasonable the closure approximation is, it may be interesting
to compare the behaviors of these two quantities as a function
of the pp parameters.

As an example, in Fig. 10 we compare |M2ν
F (0+

1 )|2 and
|M2ν

GT(0+
1 )|2 with B{+2}

001
and B{+2}

101
, respectively, evaluated in
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FIG. 8. DCE strength distributions B{−2}
JJ for the transition

96Ru → 96Mo. with pp strengths T 2 as a function of the excitation
energy E in 96Mo. The B{−2}

JJ are dimensionless, and the energies are
in MeV.

48Ca with the spe e j . The squares of the NMEs are in
natural units, while the strengths are dimensionless. The
proportionality between these two observables suggests that

FIG. 9. DCE strength distributions B{+2}
00 for the transition

48Ca → 48Ti with spe eexpt
j , for several parametrizations of the

residual interaction. The inserted figure in (b) shows the splitting of
the double F strength within the DIAS. See text for details.

the closure approximation in the case of 48Ca is reasonable.
However, there is no guarantee that this result will be valid i
n general.

FIG. 10. Comparison of |M2ν
F (0+

1 )|2 and |M2ν
GT(0+

1 )|2 (both in natural units) with B{+2}
001

and B{+2}
101

(dimensionless), respectively, in 48Ca for
the spe e j .
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IV. FINAL REMARKS

We have developed a nuclear structure model that involves
(pn, 2p2n)-QTDA excitations on the BCS mean field, which
is capable of simultaneously describing the DBD and the DCE
transition strengths. So far, this has been done only in the
context of SM, where these two problems are generally treated
separately, although it is well known that they are intimately
related to each other. This is the case, for instance, of 48Ca,
where the DBD−s are described in Refs. [18,58], while the
transition strength distributions B{+2}

JJ and the corresponding

total strengths S{+2}
JJ were evaluated in Refs. [5–7].

The (pn, 2p2n)-QTDA model has additional advantages
over the standard pn-QRPA model, namely:

(1) Together with the NMEs of the ground state, the NMEs
of all the excited states 0+ and 2+ are calculated si-
multaneously. In order to do the same in the pn-QRPA
model, it is necessary to resort to supplementary cal-
culations through several charge-conserving QRPAs,
thus introducing several new model parameters.

(2) It allows the evaluation of the Q values for DBDs,
which play a very important role in these types of
processes.

The (pn, 2p2n)-QTDA aims to describe the DCE pro-
cesses and is the natural extension of pn-QRPA, developed
by Halbleib and Sorensen [12] to describe the SCE processes.
However, the first model, unlike the second, does not include
ground state correlations, which play a central role within the
pn-QRPA to reduce NMEs. To include this type of correlation
at the level of 2p2n excitations, it is necessary to go from
(pn, 2p2n)-QTDA to (pn, 2p2n)-QRPA.

It should be borne in mind that, in the same way as the
pn-QRPA put into play the seniority-4 configurations, the
(pn, 2p2n)-QRPA will induced the seniority-6 and -8 config-
urations, which could be relevant in the evaluation of NMEs,
such as are in the shell model calculations [69,70].

Our next aim is to evaluate and discuss the 0ν-NMEs (2.12)
making use of the replacement (2.11) in our previous
work [20]. One expects that the relationship between DCE
nuclear reactions and DBD will be more clearly visible at 0ν

decays than at 2ν decays, due to a lower dependence on the
NME of their energy denominators than in the first case.

During the development of the present study, Santopinto
et al. [71], based on a previous work of Bertulani [72], have
reported that, in the low-momentum-transfer limit, the heavy
ion 40Ca(18O, 18Ne) 40Ar cross section behaves as

dσ

d�
∼

∣∣∣∣MDGT
T →T ′MDGT

P→P′

ĒGT
P + ĒGT

T

+ MDF
T →T ′MDF

P→P′

ĒF
P + ĒF

T

∣∣∣∣
2

,

where P and T stand for projectile and target nuclei respec-
tively.

The correspondence with our notation is as follows:

(1) For the matrix elements10

MDGT
P→P′ → B{+2}

101
, MDF

P→P′ → B{+2}
001

,

MDGT
T →T ′ → B{−2}

101
, MDF

T →T ′ → B{+2}
001

.

(2) For the energies [see the denominator in Eq. (2.2)]

EGT
P → E {+1}

1α
− E {0}

0+ , EF
P → E {+1}

0α
− E {0}

0+ ,

EGT
T → E {−1}

1α
− E {0}

0+ , EF
T → E {−1}

0α
− E {0}

0+ .

Therefore, the present model possesses all the necessary
ingredients to evaluate the heavy-ion cross section in the
low-momentum-transfer limit. Of course, now it is necessary
to solve two eigenvalue problems, one for the target nucleus
40Ca, and one for the projectile nucleus 18O.

In summary, we have developed a new model, based on
the BCS approach, to describe the double-charge-exchange
nuclear phenomena (A, Z ) → (A, Z ± 2). It is a natural ex-
tension of the Halbleib and Sorensen [12] model, aimed
to describe the single-charge exchange processes (A, Z ) →
(A, Z ± 1). As an example, detailed numerical calculations
are presented for the (A, Z ) → (A, Z + 2) process in 48Ca →
48Ti and the (A, Z ) → (A, Z − 2) process in 96Ru → 96Mo,
involving several final 0+ and 2+ states. At the moment we
are extending this study in three directions:

(1) A thorough evaluation of all 2ν- DBD±, together
with the associated nuclear reaction strengths will be
performed.

(2) The 2ν- DBD± formalism developed here will be
extended to the 0ν- DBD±.

(3) The (pn, 2p2n)-QTDA model will be extended to the
(pn, 2p2n)-QRPA model.
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APPENDIX: TOY MODEL

In order to understand why F DCESR is not completely
satisfied in our model, we resort to a toy model corresponding
to the 14C nucleus and considering the levels 1s1/2, 1p1/2, and
1p3/2, of which the three are totally occupied by neutrons,

10Except for the coupling constants cGT and cGT in their Eqs. (11)
and (12).
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while only the first two are partially occupied by protons.
From (2.15) we have

S{−2}
00 =

∑
f

B{−2}
00 f

=
∑

f

∣∣∣∣∣
∑

α

〈0+
f ||O−

0 ||0+
α 〉〈0+

α ||O−
0 |0+

i 〉
∣∣∣∣∣
2

.

(A1)
In the BCS approximation, one obtains

B{−2}
001

= 4u4
1p1/2

, B{−2}
002

= 4u2
1s1/2

u2
1p1/2

,

B{−2}
003

= 12u2
1s1/2

u2
1p1/2

, B{−2}
004

= 4u4
1s1/2

,

and

S{−2}
00 ≡ S2β−

F = 4 + 8u2
1s1/2

u2
1p1/2

, (A2)

since u2
1s1/2

+ u2
1p1/2

= 1. For instance, with u2
1s1/2

= 0.95 and

u2
1p1/2

= 0.05, one gets S{−2}
00 = 4.382, instead of the predicted

value S{−2}
00 = 4. The result (A2) is also valid when the resid-

ual interaction is switched on. This means that the F DCESR is
fully satisfied only in the particle-hole limit, i.e., when one of
the protons’ 1s1/2, 1p1/2 levels is totally full or totally empty.
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