
PHYSICAL REVIEW C 101, 044307 (2020)
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Background: The chart of the nuclides is limited by particle drip lines beyond which nuclear stability to
proton or neutron emission is lost. Predicting the range of particle-bound isotopes poses an appreciable
challenge for nuclear theory as it involves extreme extrapolations of nuclear masses well beyond the regions
where experimental information is available. Still, quantified extrapolations are crucial for a wide variety of
applications, including the modeling of stellar nucleosynthesis.
Purpose: We use microscopic nuclear global mass models, current mass data, and Bayesian methodology to
provide quantified predictions of proton and neutron separation energies as well as Bayesian probabilities of
existence throughout the nuclear landscape all the way to the particle drip lines.
Methods: We apply nuclear density-functional theory with several energy density functionals. We also consider
two global mass models often used in astrophysical nucleosynthesis simulations. To account for uncertainties,
Bayesian Gaussian processes are trained on the separation-energy residuals for each individual model, and
the resulting predictions are combined via Bayesian model averaging. This framework allows to account for
systematic and statistical uncertainties and propagate them to extrapolative predictions.
Results: We establish and characterize the drip-line regions where the probability that the nucleus is particle
bound decreases from 1 to 0. In these regions, we provide quantified predictions for one- and two-nucleon
separation energies. According to our Bayesian model averaging analysis, 7759 nuclei with Z � 119 have a
probability of existence �0.5.
Conclusions: The extrapolation results obtained in this study will be put through stringent tests when new
experimental information on existence and masses of exotic nuclei becomes available. In this respect, the
quantified landscape of nuclear existence obtained in this study should be viewed as a dynamical prediction
that will be fine-tuned when new experimental information and improved global mass models become available.

DOI: 10.1103/PhysRevC.101.044307

I. INTRODUCTION

Of the several thousand atomic nuclei thought to exist, only
around 3000 have been experimentally observed, and only 286
are considered to be primordial nuclides (i.e., isotopes found
on Earth that have existed in their current form since before
Earth was formed). All nuclear species can be mapped on
the chart of nuclides, or nuclear landscape. The landscape’s
boundaries, the particle drip lines, mark the end of nuclear
binding. On the proton-rich side, the drip line has been
reached experimentally all the way up to 93Np [1]. On the
other hand, the neutron drip line has been delineated only for
light nuclei up to 10Ne [2] and for heavier elements it is based
on theoretical predictions.

Quantifying the limits of nuclear binding is important
for understanding the origin of elements in the universe. In
particular, the astrophysical rapid neutron capture (r-) process
responsible for the generation of many heavy elements is
believed to operate very closely to the neutron drip line;
hence, the structure of very exotic nuclei directly impacts

the way the elements are produced in stellar nucleosynthe-
sis [3]. A quantitative understanding of the r-process requires
knowledge of nuclear properties and reaction rates of ∼3000
very neutron-rich isotopes, many of which cannot be reached
experimentally. The missing nuclear data for astrophysical
simulations must be provided by massive extrapolations based
on nuclear models augmented by the most recent experimental
data. Here Bayesian machine learning, with its unified statis-
tical treatment of all uncertainties, is the tool of choice when
aiming at informed predictions including both a reduction of
extrapolation errors and quantified bounds.

The global modeling of all nuclei, including complex
exotic nuclei far from stability, is a challenging quest that
requires control of many aspects of the nuclear many-body
problem. For such a task, the microscopic tool of choice
is nuclear density-functional theory (DFT) rooted in the
mean-field approach [4]. During recent years, several global
DFT mass tables have been calculated using different en-
ergy density functionals (EDFs): Skyrme [5–7], Gogny [8,9],
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FIG. 1. The quantified landscape of nuclear existence obtained in our BMA calculations. For every nucleus with Z, N � 8 and Z � 119
the probability of existence pex (8), i.e., the probability that the nucleus is bound with respect to proton and neutron decay, is marked. The
domains of nuclei which have been experimentally observed and whose separation energies have been measured (and used for training) are
indicated. To provide a realistic estimate of the discovery potential with modern radioactive ion-beam facilities, the isotopes within FRIB’s
experimental reach are marked. The magic numbers are shown by straight (white) dashed lines, and the average line of β-stability defined as
in Ref. [51] is marked by a (black) dashed line. See text for details. This figure (without the FRIB range), in PDF format, can be downloaded
from Ref. [32].

and covariant [7,10–12]. Other well-calibrated mass mod-
els include the microscopic-macroscopic finite-range droplet
model (FRDM) [13] and Skyrme-HFB models based on the
Hartree-Fock-Bogoliubov (HFB) method [14]. The number
of predicted bound nuclides with atomic numbers between 2
and 120 shows significant model variations: For instance, it is
around 7000 in the Skyrme-DFT analysis [5] while it is over
9000 in the covariant DFT approach of Ref. [12].

The systematic uncertainty on masses has often been es-
timated by an analysis of intermodel dependencies through
comparing predictions of different DFT frameworks and dif-
ferent EDF parametrizations [5,7,15]. Statistical uncertainties
are best evaluated by means of Bayesian inference methods
involving full parameter estimation [16]. The uncertainties on
calculated masses impact nuclear astrophysical calculations
such as the r-process abundance predictions [3,17–19]. To
improve the quality of theoretical mass predictions and mini-
mize uncertainties, diverse machine learning techniques have
been applied [20–26] that combine theoretical modeling with
currently available experimental information.

In this study, we combine results of several global mass
models and information contained in experimental masses to
make a quantified assessment of proton and neutron separa-
tion energies and drip lines. To this end, we employ the tech-
nique of Bayesian model averaging (BMA) [27–29], which
has recently been adopted to provide quantified predictions for
both neutron-rich nuclei in the Ca region [30] and two-proton
emitters [31].

The paper is organized as follows. Section II describes
the nuclear mass models used and the statistical methodology
adopted in our work. The results obtained in this study are
discussed in Sec. III. Finally, Sec. IV contains a summary and
conclusions. The tables of separation energies (with uncer-
tainties) predicted in our BMA calculations are provided in
the Supplemental Material [32] together with downloadable

plots of the quantified landscape of nuclear existence (Fig. 1)
and the quantified separation energy landscape in the neutron
drip-line region (Fig. 2) in PDF format.

II. METHODS

A. Nuclear mass models

In our study, we consider eight models based on nuclear
DFT: the Skyrme energy density functionals SkM∗ [33],
SkP [34], SLy4 [35], SV-min [36], UNEDF0 [37], UN-
EDF1 [38], and UNEDF2 [39] as well as the Gogny func-
tional D1M [8] and the functional BCPM [40]. For each
model, the mass table of even-even nuclei was computed self-
consistently by solving the Hartree-Fock-Bogoliubov (HFB)
equations as described in Refs. [5,26,30,31]; masses of odd-
Z and odd-N systems were then extracted using computed
pairing gaps [30,41].

The above set of DFT models was augmented by two mass-
optimized mass models commonly used in nuclear astro-
physics studies: the microscopic-macroscopic model FRDM-
2012 [13] and the Skyrme-HFB model HFB-24 [14].

The above models were optimized using different strate-
gies and varied datasets involving global nuclear observables
and, sometimes, pseudodata such as nuclear matter param-
eters [4]. Consequently, the accuracy of these models with
respect to measured masses [measured in terms of the root-
mean-square (rms) deviation] varies between several MeV
(SkM∗) and ∼600 keV (FRDM-2012 and HFB-24) [3]. Still,
the rms mass deviations are reduced to similar values across
models following statistical treatment, as demonstrated in
Refs. [26,31].

B. Statistical methods

Our methodology follows closely our previous
work [26,30,31] in which we combined the current theoretical
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FRIB reach
observed

FIG. 2. The quantified separation energy landscape in the neutron drip-line region obtained with the BMA(n) model averaging. The color
marks the “probability of existence” pex of neutron-rich nuclei, i.e., the probability that these nuclei are bound with respect to neutron decay.
For each proton number, pex is shown along the isotopic chain versus the relative neutron number N − N0(Z ), where N0(Z ), listed in Table II,
is the neutron number of the heaviest isotope for which an experimental one- or two-neutron separation energy value is available. The domain
of nuclei that have been experimentally observed is marked by stars. To provide a realistic estimate of the discovery potential with modern
radioactive ion-beam facilities, the isotopes within FRIB’s experimental reach are delimited by the shadowed solid line. See text for details.
This figure (without the FRIB range), in PDF format, can be downloaded from Ref. [32].

and experimental information using Bayesian simulations to
arrive at informed predictions.

1. Gaussian processes

The Bayesian statistical model for separation-energy resid-
uals, i.e., differences yi = yexp(xi ) − yth(xi ) between experi-
mental data and theoretical predictions, can be written as:

yi = f (xi, θ ) + σεi, (1)

where the function f (x, θ ) represents the systematic deviation
and σε is the propagated statistical uncertainty.

Quantified extrapolations y∗ are obtained from the poste-
rior predictive distribution p(y∗|y) using a stationary Markov
chain. Similarly to our previous studies, we model indepen-
dently S1n, S2n, S1p, and S2p on the four subsets of nuclei
defined by the particle-number parities (even-even, even-odd,
etc.). By doing this we are ignoring some (slight) correlations
between systematic uncertainties.

For the function f we take a Gaussian process (GP) on
the two-dimensional nuclear domain indexed by x = (Z, N ),
characterized by its mean μ (taken here as a scalar parameter)
and covariance k:

f (x, θ ) ∼ GP (μ, kη,ρ (x, x′)). (2)

The “spatial” dependence between nearby nuclei is repre-
sented by an exponential quadratic covariance kernel:

kη,ρ (x, x′) := η2e
− (Z−Z′ )2

2ρ2
Z

− (N−N ′ )2

2ρ2
N , (3)

where the parameters η, ρZ , and ρN represent, respectively, the
scale and characteristic correlation ranges in the proton and
neutron directions. Consequently, our statistical model has
four parameters θ := (μ, η, ρZ , ρN ). We have found in a pre-
vious study [26] that Gaussian processes overall outperform
Bayesian neural networks, achieving similar rms deviations
with a more faithful uncertainty quantification and consider-
ably fewer parameters. We have also demonstrated [30,31]
that the parameters θ are well constrained and fairly uncor-
related. It is worth noting that a nonzero value of the GP
mean prediction μ allows to reproduce more consistently
the extrapolative data. This GP extension to nonzero μ [31]
significantly improves results.

2. Datasets

Our dataset combines all experimental masses from
Atomic Mass Evaluations (AME) AME2003 [42] and
AME2016 [43] augmented by the recently measured masses
from Refs. [44–50]. For nuclei where experiments have been
repeated, we take the most recent value. For testing purposes
we split this dataset into a training set (AME2003) and a
testing set (AME16-03: all masses in AME2016+ that are not
in AME2003),

For prediction purposes, we use the full mass dataset
for training—the performance of the statistical model was
assessed in previous work [26,30,31]—and carry out calcu-
lations based on a large set of nuclei for which raw theo-
retical separation energies are not too negative; this includes
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TABLE I. Model posterior weights obtained in the variants BMA(n) (4) and BMA(p) (5) of our BMA calculations. For compactness, the
following abbreviations are used: UNEn = UNEDFn (n = 0,1,2) and FRDM = FRDM-2012.

BMA variant SkM* SkP SLy4 SV-min UNE0 UNE1 UNE2 BCPM D1M FRDM HFB-24

BMA(n) 0.10 0.10 0.06 0.11 0.12 0.10 0.09 0.06 0.04 0.12 0.09
BMA(p) 0.00 0.03 0.08 0.05 0.04 0.14 0.12 0.04 0.16 0.17 0.17

all proton-bound nuclei. Nuclei with negative experimental
separation energies, e.g., narrow ground-state proton reso-
nances, have not been used for training.

3. Computations

Samples from posterior distributions were obtained from
50 000 iterations of Monte Carlo Markov chains, after the
stationary state was reached (with 50 000 samples previously
burnt-in), which were used in turn to generate 10 000 mass
tables.

4. Bayesian model averaging

Based on general considerations [52], it is expected that
BMA should on average outperform individual models. Sim-
ilarly as in Refs. [30,31], also dealing with model-based
extrapolations, in this study we employ the BMA framework
to select the models with the best predictive power and avoid
overfitting. This brings us to the BMA variants developed in
our previous studies where the weight of each model Mk is
based on its capacity to account for known experimental data
at the exterior of the training dataset.

We use two families of weights based on the data from
the neutron-rich and proton-rich nuclear domains. On the
neutron-rich side, we follow Ref. [30] and use the weights

wk (n) :∝ p[S1n/2n(x) > 0|Mk for x ∈ Dn], (4)

where Dn is the set of 254 experimentally observed neutron-
rich nuclei with 20 � Z � 50 for which no experimental
neutron separation energy is available (such as 60Ca [53]). On
the proton-rich side, the experimental reach goes beyond the
proton drip line, as separation energies have been established
experimentally for many one- and two-proton emitters. To this
end, in this region we follow Ref. [31] and use the weights
given by

wk (p) :∝ p[Q2p(x) > 0, S1p(x) > 0|Mk for x ∈ X2p], (5)

where X2p is the set of five long-lived two-proton emitters
19Mg, 45Fe, 48Ni, 54Zn, and 67Kr (see Ref. [31] for more
discussion). In the following, we refer to these variants as
BMA(n) (4) and BMA(p) (5). To assess the whole landscape,
we apply a local model averaging variant called BMA(n + p),
with local weights

wk (Z, N ) = wk (n)H[N � Nβ (Z )]

+wk (p)H[N < Nβ (Z )], (6)

where H (x) is the Heaviside step function and Nβ (Z ) is
the neutron number corresponding to the average line of β

stability defined as in Ref. [51].

III. RESULTS

The analysis of individual nuclear models’ residuals in the
context of theory developments has been discussed in, e.g.,
Ref. [26]. In this manuscript, we rather focus on quantified
predictions of separation energies and drip lines, aiming to
highlight the regions of the nuclear chart where the next-
generation rare-isotope facilities may have the largest impact
on theoretical modeling. The second goal is to provide predic-
tions for drip lines with reliable uncertainties.

A. Model mixing

The model weights obtained in both BMA variants are
listed in Table I. We can see that BMA(n) is well balanced
between the models, while the BMA(p) is more selective.
As discussed in Ref. [31], BMA(p) heavily penalizes large
deviations at single locations.

By design, BMA(n + p) retains the best of other two
variants; it constitutes an innovative attempt for a princi-
pled local model averaging, which we called for in previous
works [31,52]. Indeed, a model is arguably designed to repro-
duce a particular phenomenon of interest, and while the idea
of universality is appealing, a dogmatic extension of a model
to a wider domain can dangerously amount to overfitting.
Local model averaging is particularly suited for situations
where desired accuracy is high, and high-resolution effects
must be taken into account to explain observations, in contrast
to more qualitative descriptions.

In practice, all three BMA variants achieve a similar rms
deviation (S1n ≈ 302 keV, S2n ≈ 453 keV, S1p ≈ 410 keV,
S2p ≈ 438 keV), using AME16-03 as an independent (extrap-
olative) testing dataset (see Ref. [31] for methodology details).

While the theoretical statistical foundations of a general
local averaging framework are yet to be set, in our simplified
setup it corresponds to the hypothesis that neutron and proton
separation energies are given by independent statistical mod-
els, which also matches our GP modeling assumption.

The BMA weights can be used to assess the relative pre-
dictive power of the individual models corrected with the GP:
UNEDF0, FRDM-2012, and SV-min reach highest evidence
on the neutron-rich side, and FRDM-2012, HFB-24, and D1M
perform the best on the proton-rich side. Nevertheless, the
relatively broad distribution of the weights suggests that no
single model dominates.

B. Landscape of nuclear existence

Following Refs. [30,31] we compute the probability pex

that a given isotope is particle-bound, i.e., that S2p > 0 for
even-Z nuclei, S2n > 0 for even-N nuclei, S1p > 0 for odd-Z
nuclei, and S1n > 0 for odd-N nuclei. Formally, this quantity
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TABLE II. Table of the reference neutron numbers for even-Z nuclei (used in Fig. 2).

Even-Z
Z: 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
N0: 29 30 37 35 40 42 45 52 54 57 61 64 67 69 73 77 83 85 88 92 93 93 100

Z: 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104
N0: 102 102 103 104 108 114 117 120 124 128 133 138 143 146 147 148 152 155 156 157 155 154

Odd-Z
Z: 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
N0: 29 34 36 38 41 44 50 52 54 58 65 66 69 72 76 78 83 87 89 93 94 96

Z: 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103
N0: 99 100 99 104 107 112 115 118 122 124 132 135 139 146 147 147 149 151 154 156 157 153

can be defined as:

pex := p(S∗
1p/2p/1n/2n > 0|S1p/2p/1n/2n). (7)

Since the proton and neutron drip lines are well separated, one
can write:

pex = p(S∗
1p/2p > 0|S1p/2p)p(S∗

1n/2n > 0|S1n/2n), (8)

where p(S∗
1p/2p > 0|S1p/2p) was obtained with BMA(p) and

p(S∗
1n/2n > 0|S1n/2n)—with BMA(n).
The drip line corresponds to pex = 0.5. Figure 1 shows

the posterior probability of existence pex for all nuclei in the
nuclear landscape. The ranges of nuclear mass measurements
and known nuclei are marked. To provide a representative
example of discovery potential of next-generation radioactive
ion beam facilities, the figure also shows the isotopes that will
be accessible at the future Facility for Rare Isotope Beams
(FRIB) [54,55].

The FRIB production rates have been estimated with the
LISE++code [56]. Production cross-sections for projectile
fragmentation and fission reactions were obtained by us-
ing the EPAX2.15 cross-section systematics [57] and the
LISE++3EER Abrasion-Fission model [58,59]. FRIB rates
and details of their calculations are available online [60].
In our estimates, we assumed the experimental limit for the
confirmation of existence of an isotope to be 1 event/2.5 days.

For neutron-rich nuclei, FRIB will approach the neutron
drip line in the regions of neutron magic numbers. The magic
nuclei are important for the r-process as they serve as major
bottlenecks in the synthesis of heavier elements. In the region
of proton-rich nuclei, due to the presence of the Coulomb
barrier, relatively long-lived, proton-unstable nuclei can exist
beyond the proton drip line [31,61]. As seen in Fig. 1, FRIB
will reach the uncharted territory of many heavy proton-
unstable nuclei.

To accompany Fig. 1, we tabulate in Ref. [32] the calcu-
lated posterior predictions for particle separation energies for
all drip-line nuclei with 0.1 < pex < 0.9.

C. Neutron-rich nuclei

The quantified separation energy landscape for neutron
rich nuclei, predicted in BMA(n), is displayed in Fig. 2. To
facilitate the presentation, the information for each isotope
is given relative to the neutron number N0 of the heaviest

neutron-bound isotope for which an experimental one- or
two-neutron separation energy value is available. The refer-
ence values of N0(Z ) are listed in Table II. (For a similar
diagram for proton-rich nuclei, see Ref. [31].) To illustrate
how to read Fig. 2, we consider the Ni isotopic chain. The
heaviest Ni isotope, for which mass has been measured is
73Ni [62]; hence, N0(28) = 45. The stars at Z = 28 indicate
the isotopes 74−82Ni, which have been detected experimen-
tally [63]. The nucleus 87Ni is expected to have pex < 50%,
i.e., it is predicted to lie outside the one-neutron drip line.
Because of pairing correlations, the two-neutron drip line for
the Ni chain is shifted all the way to N ≈ 66: The extremely
neutron-rich isotope 92Ni is predicted to be the last bound
isotope.

Figure 2 also marks the reach of the FRIB facility, again
as an example of what perhaps will be achievable exper-
imentally. According to our analysis, FRIB will reach the
one-neutron drip line up to Z = 42 (Mo) and will approach it
again in the Sm-Gd region. For the Ni chain, the current phase
of FRIB is expected to produce meaningful data on 86−87Ni.
The use of fragmentation reactions will allow to study the
existence of nuclides in the region of Z = 16–24, where the
crucial check for theoretical models is provided by studying
the neutron stability of 61Ca [30].

As seen in Fig. 2, of particular importance for constraining
theory are the existence data for Z = 28–30, Z = 42–48, and
Z = 64–66. In all these cases, the one-neutron drip line is
within experimental reach and theoretical uncertainties on the
position of drip line are appreciable. The extension of mass
measurements to more neutron-rich nuclei in the Ca-Ni and
Cd-Sn regions will be of great value. Those can be carried
out via the variety of methods, especially the time-of-flight
technique [64] that can be applied to short-lived nuclides with
1–100 ms lifetimes.

D. Number of particle-bound nuclei

To estimate how many particle-bound nuclei exist in the
nuclear landscape, we calculate the posterior distribution of
the number of isotopes with positive one- and two-nucleon
separation energies. We first produce such samples for each
individual model, which are then resampled into BMA
posterior distributions. These posterior distributions are
shown in Fig. 3.
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Number of particle-bound nuclei
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BMA(n+p)BMA(p)BMA(n)

FIG. 3. Posterior distributions of the number of particle-bound nuclei. The histograms show the posterior densities for each model: the
peaks correspond successively to HFB-24, FRDM-2012, D1M, BCPM, SLy4, SkP, SV-min and UNEDF2, UNEDF0, UNEDF1, and SkM∗.
The lines shows the BMA posterior densities (multiplied by a constant factor 6.3 to facilitate presentation).

The number of nuclei with Z, N � 8 and Z � 119 pre-
dicted to be particle-bound by the individual models range
from 6600 (HFB-24) to 8600 (SkM∗). This difference comes
from the neutron-rich heavy nuclei for which the extrapolation
uncertainty is very significant. The BMA(n) distribution has
its average at 7765 (±590 standard deviation), with median at
8032 and centered 95% credibility interval [6669, 8516]. The
BMA(p) distribution has its average at 7504 (±602 standard
deviation), with median at 7445 and centered 95% credibility
interval [6661, 8425].

BMA(n + p) amounts here to summing the number of
neutron-rich nuclei obtained from the BMA(n) posterior dis-
tribution and the number of proton-rich nuclei obtained from
the BMA(p) posterior distribution—hence the BMA(n + p)
distribution is a convolution of BMA(n) and BMA(p), which
explains the smoothing effect seen in Fig. 3.

Accordingly, the values obtained from BMA(n + p) lie
in between with an average at 7708 (±534 standard devia-
tion) median at 7785 and centered 95% credibility interval
[6688, 8440]. It is noticed that these bounds are tighter than
those obtained with either BMA(n) or BMA(p).

Thus we can state without taking much risk that there
should be between 6500 and 8500 stable nuclei based on
the available mass data and models considered. While this
result is consistent with the outcome of the earlier work [5]
employing uniform model mixing, the present study provides
for the first time the detailed posterior distribution of the
number of nuclei bound for each model. This represents a
significant refinement of previous work that has been allowed
by our Bayesian statistical approach.

Figure 3 suggests that models can be clustered into
three groups, where the more phenomenological ones yield
the lowest number of particle-bound nuclei. Also, it is
worth noting that the models with similar and high weights
(such as UNEDF0 and FRDM-2012) predict rather differ-
ent numbers of particle bound-nuclei. This is not too sur-
prising: models tend to agree better in the domain of ex-
perimental data than at the location of the neutron drip
line for the heaviest nuclei, where the available data allow
only limited discrimination. It is expected that the future

mass data on neutron-rich nuclei will provide more model
selectivity.

IV. CONCLUSIONS

By considering several global models and the most re-
cent data on nuclear existence and masses, we applied novel
Bayesian model averaging techniques to quantify the limits of
the nuclear landscape. We hope the drip-line estimates as well
as the specific predictions of one- and two-nucleon separation
energies presented in this work will guide experimental re-
search at next-generation rare isotope facilities. For instance,
the posterior predictions of particle separation energies of
drip-line nuclei tabulated in Ref. [32] can be useful when
planning experiments aiming at establishing the existence of
exotic isotopes. The related theoretical errors can guide the
uncertainty analysis for the r-process abundance studies.

As we emphasized in previous studies [30,31], one
should not expect that machine learning alone, however
advanced, will somehow compensate for unknown systematic
model deficiencies when extrapolating far away from the
experimentally-established domain. Indeed, since the range
of our extrapolations is 2 to 3 times larger than the fitted range
of the correlation effects, we can expect the GP correction to
the predictions, apart for the shift μ, to be relatively limited.
Consequently, in the unknown regions, far extrapolations
must rely on quality nuclear modeling. Therein, the honest
evaluation of posterior predictive distributions is the key,
i.e., the correction to the mean value is of less importance
compared to credibility intervals. In this respect, the GP
extension to nonzero μ as done in this work is perhaps more
valuable than speculating about a more elaborate GP tail
model, which—if not substantiated by physics—would not
offer any obvious advantages.

In our BMA calculations, we applied three model-mixing
techniques. Two of them, the local models BMA(n) and
BMA(p), have been informed by the specific data on extreme
nuclei pertaining to very different domains. Namely, for
BMA(n) it is the existence of neutron-rich isotopes with un-
known masses; for BMA(p) these are 2p separation energies
of five true 2p emitters. The third global method BMA(n+p)
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retains locally each of these two variants on the part of the
nuclear chart where it is, by design, expected to perform best.

According to our BMA(n + p) analysis, the number of
particle-bound nuclei with Z, N � 8 and Z � 119 is 7708 ±
534. The results of the individual models shown in Fig. 3
show considerable spread, primarily due to the extrapolation
uncertainty in the heavy neutron-rich region. This result un-
derlines the fact that one should be very careful when trusting
extrapolative predictions of any given model.

The extrapolations obtained in this study are timestamped.
With the influx of new experimental data on existence and
masses of exotic nuclei, and with new global mass models of
high fidelity, the quantified landscape of nuclear existence will
gradually evolve.

ACKNOWLEDGMENTS

Useful comments from Alexandra Gade are grate-
fully acknowledged. Computational resources for statisti-
cal simulations were provided to L.N. by the Institute
for Cyber-Enabled Research at Michigan State University
as well as Research Credits awarded by Google Cloud
Platform. This material is based on work supported by
the U.S. Department of Energy, Office of Science, Of-
fice of Nuclear Physics under Awards No. DE-SC0013365
(Michigan State University), No. DE-SC0018083 (NU-
CLEI SciDAC-4 collaboration), and No. DOE-NA0003885
(NNSA, the Stewardship Science Academic Alliances
program).

[1] Z. Y. Zhang et al., New Isotope 220Np: Probing the Robustness
of the N = 126 Shell Closure in Neptunium, Phys. Rev. Lett.
122, 192503 (2019).

[2] D. S. Ahn et al., Location of the Neutron Dripline at Fluorine
and Neon, Phys. Rev. Lett. 123, 212501 (2019).

[3] C. J. Horowitz et al., r-process nucleosynthesis: Connecting
rare-isotope beam facilities with the cosmos, J. Phys. G 46,
083001 (2019).

[4] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Self-consistent
mean-field models for nuclear structure, Rev. Mod. Phys. 75,
121 (2003).

[5] J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A.
Perhac, and M. Stoitsov, The limits of the nuclear landscape,
Nature 486, 509 (2012).

[6] J. Erler, C. J. Horowitz, W. Nazarewicz, M. Rafalski, and
P.-G. Reinhard, Energy density functional for nuclei and neu-
tron stars, Phys. Rev. C 87, 044320 (2013).

[7] R. Wang and L.-W. Chen, Positioning the neutron drip line and
the r-process paths in the nuclear landscape, Phys. Rev. C 92,
031303(R) (2015).

[8] S. Goriely, S. Hilaire, M. Girod, and S. Péru, First Gogny-
Hartree-Fock-Bogoliubov Nuclear Mass Model, Phys. Rev.
Lett. 102, 242501 (2009).

[9] J. P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S.
Péru, N. Pillet, and G. F. Bertsch, Structure of even-even nuclei
using a mapped collective Hamiltonian and the D1S Gogny
interaction, Phys. Rev. C 81, 014303 (2010).

[10] A. Afanasjev, S. Agbemava, D. Ray, and P. Ring, Nuclear
landscape in covariant density functional theory, Phys. Lett. B
726, 680 (2013).

[11] S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring,
Global performance of covariant energy density functionals:
Ground state observables of even-even nuclei and the esti-
mate of theoretical uncertainties, Phys. Rev. C 89, 054320
(2014).

[12] X. Xia, Y. Lim, P. Zhao, H. Liang, X. Qu, Y. Chen, H. Liu,
L. Zhang, S. Zhang, Y. Kim, and J. Meng, The limits of
the nuclear landscape explored by the relativistic continuum
Hartree–Bogoliubov theory, At. Data Nucl. Data Tables 121-
122, 1 (2018).

[13] P. Möller, A. Sierk, T. Ichikawa, and H. Sagawa, Nuclear
ground-state masses and deformations: FRDM(2012), At. Data
Nucl. Data Tables 109-110, 1 (2016).

[14] S. Goriely, N. Chamel, and J. M. Pearson, Further explorations
of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The

2012 atomic mass evaluation and the symmetry coefficient,
Phys. Rev. C 88, 024308 (2013).

[15] A. V. Afanasjev, S. E. Agbemava, D. Ray, and P. Ring, Neutron
drip line: Single-particle degrees of freedom and pairing prop-
erties as sources of theoretical uncertainties, Phys. Rev. C 91,
014324 (2015).

[16] J. D. McDonnell, N. Schunck, D. Higdon, J. Sarich, S. M. Wild,
and W. Nazarewicz, Uncertainty Quantification for Nuclear
Density Functional Theory and Information Content of New
Measurements, Phys. Rev. Lett. 114, 122501 (2015).

[17] D. Martin, A. Arcones, W. Nazarewicz, and E. Olsen, Impact of
Nuclear Mass Uncertainties on the r Process, Phys. Rev. Lett.
116, 121101 (2016).

[18] M. Mumpower, R. Surman, G. McLaughlin, and A. Apra-
hamian, The impact of individual nuclear properties on r-
process nucleosynthesis, Progr. Part. Nucl. Phys. 86, 86
(2016).

[19] T. M. Sprouse, R. N. Perez, R. Surman, M. R. Mumpower,
G. C. McLaughlin, and N. Schunck, Propagation of statisti-
cal uncertainties of Skyrme mass models to simulations of
r-process nucleosynthesis, arXiv:1901.10337 [Phys. Rev. C
(to be published)].

[20] S. Athanassopoulos, E. Mavrommatis, K. Gernoth, and J. Clark,
Nuclear mass systematics using neural networks, Nucl. Phys. A
743, 222 (2004).

[21] R. Utama, J. Piekarewicz, and H. B. Prosper, Nuclear mass
predictions for the crustal composition of neutron stars: A
Bayesian neural network approach, Phys. Rev. C 93, 014311
(2016).

[22] R. Utama and J. Piekarewicz, Refining mass formulas for as-
trophysical applications: A Bayesian neural network approach,
Phys. Rev. C 96, 044308 (2017).

[23] R. Utama and J. Piekarewicz, Validating neural-network re-
finements of nuclear mass models, Phys. Rev. C 97, 014306
(2018).

[24] H. F. Zhang, L. H. Wang, J. P. Yin, P. H. Chen, and H. F. Zhang,
Performance of the Levenberg-Marquardt neural network ap-
proach in nuclear mass prediction, J. Phys. G 44, 045110
(2017).

[25] Z. Niu and H. Liang, Nuclear mass predictions based on
Bayesian neural network approach with pairing and shell ef-
fects, Phys. Lett. B 778, 48 (2018).

[26] L. Neufcourt, Y. Cao, W. Nazarewicz, and F. Viens, Bayesian
approach to model-based extrapolation of nuclear observables,
Phys. Rev. C 98, 034318 (2018).

044307-7

https://doi.org/10.1103/PhysRevLett.122.192503
https://doi.org/10.1103/PhysRevLett.122.192503
https://doi.org/10.1103/PhysRevLett.122.192503
https://doi.org/10.1103/PhysRevLett.122.192503
https://doi.org/10.1103/PhysRevLett.123.212501
https://doi.org/10.1103/PhysRevLett.123.212501
https://doi.org/10.1103/PhysRevLett.123.212501
https://doi.org/10.1103/PhysRevLett.123.212501
https://doi.org/10.1088/1361-6471/ab0849
https://doi.org/10.1088/1361-6471/ab0849
https://doi.org/10.1088/1361-6471/ab0849
https://doi.org/10.1088/1361-6471/ab0849
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1038/nature11188
https://doi.org/10.1038/nature11188
https://doi.org/10.1038/nature11188
https://doi.org/10.1038/nature11188
https://doi.org/10.1103/PhysRevC.87.044320
https://doi.org/10.1103/PhysRevC.87.044320
https://doi.org/10.1103/PhysRevC.87.044320
https://doi.org/10.1103/PhysRevC.87.044320
https://doi.org/10.1103/PhysRevC.92.031303
https://doi.org/10.1103/PhysRevC.92.031303
https://doi.org/10.1103/PhysRevC.92.031303
https://doi.org/10.1103/PhysRevC.92.031303
https://doi.org/10.1103/PhysRevLett.102.242501
https://doi.org/10.1103/PhysRevLett.102.242501
https://doi.org/10.1103/PhysRevLett.102.242501
https://doi.org/10.1103/PhysRevLett.102.242501
https://doi.org/10.1103/PhysRevC.81.014303
https://doi.org/10.1103/PhysRevC.81.014303
https://doi.org/10.1103/PhysRevC.81.014303
https://doi.org/10.1103/PhysRevC.81.014303
https://doi.org/10.1016/j.physletb.2013.09.017
https://doi.org/10.1016/j.physletb.2013.09.017
https://doi.org/10.1016/j.physletb.2013.09.017
https://doi.org/10.1016/j.physletb.2013.09.017
https://doi.org/10.1103/PhysRevC.89.054320
https://doi.org/10.1103/PhysRevC.89.054320
https://doi.org/10.1103/PhysRevC.89.054320
https://doi.org/10.1103/PhysRevC.89.054320
https://doi.org/10.1016/j.adt.2017.09.001
https://doi.org/10.1016/j.adt.2017.09.001
https://doi.org/10.1016/j.adt.2017.09.001
https://doi.org/10.1016/j.adt.2017.09.001
https://doi.org/10.1016/j.adt.2015.10.002
https://doi.org/10.1016/j.adt.2015.10.002
https://doi.org/10.1016/j.adt.2015.10.002
https://doi.org/10.1016/j.adt.2015.10.002
https://doi.org/10.1103/PhysRevC.88.024308
https://doi.org/10.1103/PhysRevC.88.024308
https://doi.org/10.1103/PhysRevC.88.024308
https://doi.org/10.1103/PhysRevC.88.024308
https://doi.org/10.1103/PhysRevC.91.014324
https://doi.org/10.1103/PhysRevC.91.014324
https://doi.org/10.1103/PhysRevC.91.014324
https://doi.org/10.1103/PhysRevC.91.014324
https://doi.org/10.1103/PhysRevLett.114.122501
https://doi.org/10.1103/PhysRevLett.114.122501
https://doi.org/10.1103/PhysRevLett.114.122501
https://doi.org/10.1103/PhysRevLett.114.122501
https://doi.org/10.1103/PhysRevLett.116.121101
https://doi.org/10.1103/PhysRevLett.116.121101
https://doi.org/10.1103/PhysRevLett.116.121101
https://doi.org/10.1103/PhysRevLett.116.121101
https://doi.org/10.1016/j.ppnp.2015.09.001
https://doi.org/10.1016/j.ppnp.2015.09.001
https://doi.org/10.1016/j.ppnp.2015.09.001
https://doi.org/10.1016/j.ppnp.2015.09.001
http://arxiv.org/abs/arXiv:1901.10337
https://doi.org/10.1016/j.nuclphysa.2004.08.006
https://doi.org/10.1016/j.nuclphysa.2004.08.006
https://doi.org/10.1016/j.nuclphysa.2004.08.006
https://doi.org/10.1016/j.nuclphysa.2004.08.006
https://doi.org/10.1103/PhysRevC.93.014311
https://doi.org/10.1103/PhysRevC.93.014311
https://doi.org/10.1103/PhysRevC.93.014311
https://doi.org/10.1103/PhysRevC.93.014311
https://doi.org/10.1103/PhysRevC.96.044308
https://doi.org/10.1103/PhysRevC.96.044308
https://doi.org/10.1103/PhysRevC.96.044308
https://doi.org/10.1103/PhysRevC.96.044308
https://doi.org/10.1103/PhysRevC.97.014306
https://doi.org/10.1103/PhysRevC.97.014306
https://doi.org/10.1103/PhysRevC.97.014306
https://doi.org/10.1103/PhysRevC.97.014306
https://doi.org/10.1088/1361-6471/aa5d78
https://doi.org/10.1088/1361-6471/aa5d78
https://doi.org/10.1088/1361-6471/aa5d78
https://doi.org/10.1088/1361-6471/aa5d78
https://doi.org/10.1016/j.physletb.2018.01.002
https://doi.org/10.1016/j.physletb.2018.01.002
https://doi.org/10.1016/j.physletb.2018.01.002
https://doi.org/10.1016/j.physletb.2018.01.002
https://doi.org/10.1103/PhysRevC.98.034318
https://doi.org/10.1103/PhysRevC.98.034318
https://doi.org/10.1103/PhysRevC.98.034318
https://doi.org/10.1103/PhysRevC.98.034318


LÉO NEUFCOURT et al. PHYSICAL REVIEW C 101, 044307 (2020)

[27] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky,
Bayesian model averaging: a tutorial (with comments by M.
Clyde, David Draper and E. I. George, and a rejoinder by the
authors), Stat. Sci. 14, 382 (1999).

[28] L. Wasserman, Bayesian model selection and model averaging,
J. Math. Psych. 44, 92 (2000).

[29] J. M. Bernardo and A. F. M. Smith, Reference analysis, in
Bayesian Theory (Wiley, New York, 1994).

[30] L. Neufcourt, Y. Cao, W. Nazarewicz, E. Olsen, and F. Viens,
Neutron Drip Line in the Ca Region from Bayesian Model
Averaging, Phys. Rev. Lett. 122, 062502 (2019).

[31] L. Neufcourt, Y. Cao, S. Giuliani, W. Nazarewicz, E. Olsen, and
O. B. Tarasov, Beyond the proton drip line: Bayesian analysis
of proton-emitting nuclei, Phys. Rev. C 101, 014319 (2020).

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevC.101.044307 for downloadable pdf versions
of Figs. 1 and 2, and a table of posterior predictions of the
separation energies of nuclei at the one-and two-particle drip
lines.

[33] J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B.
Håkansson, Towards a better parametrisation of Skyrme-like
effective forces: A critical study of the SkM force, Nucl. Phys.
A 386, 79 (1982).

[34] J. Dobaczewski, H. Flocard, and J. Treiner, Hartree-Fock-
Bogolyubov description of nuclei near the neutron-drip line,
Nucl. Phys. A 422, 103 (1984).

[35] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer,
New Skyrme effective forces for supernovae and neutron rich
nuclei, Phys. Scr. 1995, 231 (1995).

[36] P. Klüpfel, P.-G. Reinhard, T. J. Bürvenich, and J. A. Maruhn,
Variations on a theme by Skyrme: A systematic study of
adjustments of model parameters, Phys. Rev. C 79, 034310
(2009).

[37] M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich,
N. Schunck, M. V. Stoitsov, and S. Wild, Nuclear energy
density optimization, Phys. Rev. C 82, 024313 (2010).

[38] M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard,
J. Sarich, N. Schunck, M. V. Stoitsov, and S. M. Wild, Nuclear
energy density optimization: Large deformations, Phys. Rev. C
85, 024304 (2012).

[39] M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P.-G.
Reinhard, J. Sarich, N. Schunck, S. M. Wild, D. Davesne, J.
Erler, and A. Pastore, Nuclear energy density optimization:
Shell structure, Phys. Rev. C 89, 054314 (2014).

[40] M. Baldo, L. M. Robledo, P. Schuck, and X. Viñas, New
Kohn-Sham density functional based on microscopic nuclear
and neutron matter equations of state, Phys. Rev. C 87, 064305
(2013).

[41] Mass Explorer, http://massexplorer.frib.msu.edu/.
[42] G. Audi, A. Wapstra, and C. Thibault, The AME2003 atomic

mass evaluation: II. Tables, graphs and references, Nucl. Phys.
A 729, 337 (2003).

[43] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X.
Xu, The AME2016 atomic mass evaluation. II. Tables, graphs
and references, Chin. Phys. C 41, 030003 (2017).

[44] A. de Roubin et al., Nuclear deformation in the A ≈ 100 region:
Comparison between new masses and mean-field predictions,
Phys. Rev. C 96, 014310 (2017).

[45] A. Welker et al., Binding Energy of 79Cu: Probing the Structure
of the Doubly Magic 78Ni from Only One Proton Away, Phys.
Rev. Lett. 119, 192502 (2017).

[46] M. Vilen et al., Precision Mass Measurements on Neutron-Rich
Rare-Earth Isotopes at JYFLTRAP: Reduced Neutron Pairing
and Implications for r-Process Calculations, Phys. Rev. Lett.
120, 262701 (2018).

[47] E. Leistenschneider et al., Dawning of the N = 32 Shell
Closure Seen Through Precision Mass Measurements of
Neutron-Rich Titanium Isotopes, Phys. Rev. Lett. 120, 062503
(2018).

[48] S. Michimasa et al., Magic Nature of Neutrons in 54Ca: First
Mass Measurements of 55−57Ca, Phys. Rev. Lett. 121, 022506
(2018).

[49] R. Orford et al., Precision Mass Seasurements of Neutron-
Rich Neodymium and Samarium Isotopes and Their Role in
Understanding Rare-Earth Peak Formation, Phys. Rev. Lett.
120, 262702 (2018).

[50] Y. Ito et al., First Direct Mass Measurements of Nuclides
Around Z = 100 with a Multireflection Time-of-Flight Mass
Spectrograph, Phys. Rev. Lett. 120, 152501 (2018).

[51] T. Kodama, β-stability line and liquid-drop mass formulas,
Prog. Theor. Phys. 45, 1112 (1971).

[52] V. Kejzlar, L. Neufcourt, T. Maiti, and F. Viens, Bayesian
averaging of computer models with domain discrepancies: A
nuclear physics perspective, arXiv:1904.04793.

[53] O. B. Tarasov et al., Discovery of 60Ca and Implications for the
Stability of 70Ca, Phys. Rev. Lett 121, 022501 (2018).

[54] T. Glasmacher, B. Sherrill, W. Nazarewicz, A. Gade, P. Mantica,
J. Wei, G. Bollen, and B. Bull, Facility for rare isotope beams
update for nuclear physics news, Nucl. Phys. News 27, 28
(2017).

[55] B. M. Sherrill, Future opportunities at the facility for rare
isotope beams, EPJ Web Conf. 178, 01001 (2018).

[56] O. B. Tarasov and D. Bazin, Lise++: Radioactive beam produc-
tion with in-flight separators, NIM B 266, 4657 (2008).

[57] K. Sümmerer and B. Blank, Modified empirical parametriza-
tion of fragmentation cross sections, Phys. Rev. C 61, 034607
(2000).

[58] O. B. Tarasov, LISE++ development: Abrasion-Fission, Eur.
Phys. J. A 25, 751 (2005).

[59] O. B. Tarasov, LISE++ development: Abrasion-Fission, Tech.
Rep. MSUCL1300 (2005), http://lise.nscl.msu.edu/7_5/lise+
+_7_5.pdf.

[60] FRIB Estimated Rates, https://groups.nscl.msu.edu/frib/rates/
fribrates.html.

[61] M. Pfützner, M. Karny, L. V. Grigorenko, and K. Riisager,
Radioactive decays at limits of nuclear stability, Rev. Mod.
Phys. 84, 567 (2012).

[62] S. Rahaman et al., Masses of neutron-rich Ni and Cu isotopes
and the shell closure at Z = 28, N = 40, Eur. Phys. J. A 34, 5
(2007).

[63] T. Sumikama, S. Nishimura, H. Baba, F. Browne, P. Doornen-
bal, N. Fukuda, S. Franchoo, G. Gey, N. Inabe, T. Isobe, P. R.
John, H. S. Jung, D. Kameda, T. Kubo, Z. Li, G. Lorusso, I.
Matea, K. Matsui, P. Morfouace, D. Mengoni, D. R. Napoli,
M. Niikura, H. Nishibata, A. Odahara, E. Sahin, H. Sakurai,
P. A. Soderstrom, G. I. Stefan, D. Suzuki, H. Suzuki, H. Takeda,
R. Taniuchi, J. Taprogge, Z. Vajta, H. Watanabe, V. Werner, J.
Wu, Z. Y. Xu, A. Yagi, and K. Yoshinaga, Observation of new
neutron-rich Mn, Fe, Co, Ni, and Cu isotopes in the vicinity of
78Ni, Phys. Rev. C 95, 051601(R) (2017).

[64] M. A. Famiano, Nuclear mass measurements with radioactive
ion beams, Int. J. Mod. Phys. E 28, 1930005 (2019).

044307-8

https://doi.org/10.1214/ss/1009212519
https://doi.org/10.1214/ss/1009212519
https://doi.org/10.1214/ss/1009212519
https://doi.org/10.1214/ss/1009212519
https://doi.org/10.1006/jmps.1999.1278
https://doi.org/10.1006/jmps.1999.1278
https://doi.org/10.1006/jmps.1999.1278
https://doi.org/10.1006/jmps.1999.1278
https://doi.org/10.1103/PhysRevLett.122.062502
https://doi.org/10.1103/PhysRevLett.122.062502
https://doi.org/10.1103/PhysRevLett.122.062502
https://doi.org/10.1103/PhysRevLett.122.062502
https://doi.org/10.1103/PhysRevC.101.014319
https://doi.org/10.1103/PhysRevC.101.014319
https://doi.org/10.1103/PhysRevC.101.014319
https://doi.org/10.1103/PhysRevC.101.014319
http://link.aps.org/supplemental/10.1103/PhysRevC.101.044307
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1016/0375-9474(84)90433-0
https://doi.org/10.1016/0375-9474(84)90433-0
https://doi.org/10.1016/0375-9474(84)90433-0
https://doi.org/10.1016/0375-9474(84)90433-0
https://doi.org/10.1088/0031-8949/1995/T56/034
https://doi.org/10.1088/0031-8949/1995/T56/034
https://doi.org/10.1088/0031-8949/1995/T56/034
https://doi.org/10.1088/0031-8949/1995/T56/034
https://doi.org/10.1103/PhysRevC.79.034310
https://doi.org/10.1103/PhysRevC.79.034310
https://doi.org/10.1103/PhysRevC.79.034310
https://doi.org/10.1103/PhysRevC.79.034310
https://doi.org/10.1103/PhysRevC.82.024313
https://doi.org/10.1103/PhysRevC.82.024313
https://doi.org/10.1103/PhysRevC.82.024313
https://doi.org/10.1103/PhysRevC.82.024313
https://doi.org/10.1103/PhysRevC.85.024304
https://doi.org/10.1103/PhysRevC.85.024304
https://doi.org/10.1103/PhysRevC.85.024304
https://doi.org/10.1103/PhysRevC.85.024304
https://doi.org/10.1103/PhysRevC.89.054314
https://doi.org/10.1103/PhysRevC.89.054314
https://doi.org/10.1103/PhysRevC.89.054314
https://doi.org/10.1103/PhysRevC.89.054314
https://doi.org/10.1103/PhysRevC.87.064305
https://doi.org/10.1103/PhysRevC.87.064305
https://doi.org/10.1103/PhysRevC.87.064305
https://doi.org/10.1103/PhysRevC.87.064305
http://massexplorer.frib.msu.edu/
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1103/PhysRevC.96.014310
https://doi.org/10.1103/PhysRevC.96.014310
https://doi.org/10.1103/PhysRevC.96.014310
https://doi.org/10.1103/PhysRevC.96.014310
https://doi.org/10.1103/PhysRevLett.119.192502
https://doi.org/10.1103/PhysRevLett.119.192502
https://doi.org/10.1103/PhysRevLett.119.192502
https://doi.org/10.1103/PhysRevLett.119.192502
https://doi.org/10.1103/PhysRevLett.120.262701
https://doi.org/10.1103/PhysRevLett.120.262701
https://doi.org/10.1103/PhysRevLett.120.262701
https://doi.org/10.1103/PhysRevLett.120.262701
https://doi.org/10.1103/PhysRevLett.120.062503
https://doi.org/10.1103/PhysRevLett.120.062503
https://doi.org/10.1103/PhysRevLett.120.062503
https://doi.org/10.1103/PhysRevLett.120.062503
https://doi.org/10.1103/PhysRevLett.121.022506
https://doi.org/10.1103/PhysRevLett.121.022506
https://doi.org/10.1103/PhysRevLett.121.022506
https://doi.org/10.1103/PhysRevLett.121.022506
https://doi.org/10.1103/PhysRevLett.120.262702
https://doi.org/10.1103/PhysRevLett.120.262702
https://doi.org/10.1103/PhysRevLett.120.262702
https://doi.org/10.1103/PhysRevLett.120.262702
https://doi.org/10.1103/PhysRevLett.120.152501
https://doi.org/10.1103/PhysRevLett.120.152501
https://doi.org/10.1103/PhysRevLett.120.152501
https://doi.org/10.1103/PhysRevLett.120.152501
https://doi.org/10.1143/PTP.45.1112
https://doi.org/10.1143/PTP.45.1112
https://doi.org/10.1143/PTP.45.1112
https://doi.org/10.1143/PTP.45.1112
http://arxiv.org/abs/arXiv:1904.04793
https://doi.org/10.1103/PhysRevLett.121.022501
https://doi.org/10.1103/PhysRevLett.121.022501
https://doi.org/10.1103/PhysRevLett.121.022501
https://doi.org/10.1103/PhysRevLett.121.022501
https://doi.org/10.1080/10619127.2017.1317176
https://doi.org/10.1080/10619127.2017.1317176
https://doi.org/10.1080/10619127.2017.1317176
https://doi.org/10.1080/10619127.2017.1317176
https://doi.org/10.1051/epjconf/201817801001
https://doi.org/10.1051/epjconf/201817801001
https://doi.org/10.1051/epjconf/201817801001
https://doi.org/10.1051/epjconf/201817801001
https://doi.org/10.1016/j.nimb.2008.05.110
https://doi.org/10.1016/j.nimb.2008.05.110
https://doi.org/10.1016/j.nimb.2008.05.110
https://doi.org/10.1016/j.nimb.2008.05.110
https://doi.org/10.1103/PhysRevC.61.034607
https://doi.org/10.1103/PhysRevC.61.034607
https://doi.org/10.1103/PhysRevC.61.034607
https://doi.org/10.1103/PhysRevC.61.034607
https://doi.org/10.1140/epjad/i2005-06-079-y
https://doi.org/10.1140/epjad/i2005-06-079-y
https://doi.org/10.1140/epjad/i2005-06-079-y
https://doi.org/10.1140/epjad/i2005-06-079-y
http://lise.nscl.msu.edu/7_5/lise++_7_5.pdf
https://groups.nscl.msu.edu/frib/rates/fribrates.html
https://doi.org/10.1103/RevModPhys.84.567
https://doi.org/10.1103/RevModPhys.84.567
https://doi.org/10.1103/RevModPhys.84.567
https://doi.org/10.1103/RevModPhys.84.567
https://doi.org/10.1140/epja/i2007-10489-y
https://doi.org/10.1140/epja/i2007-10489-y
https://doi.org/10.1140/epja/i2007-10489-y
https://doi.org/10.1140/epja/i2007-10489-y
https://doi.org/10.1103/PhysRevC.95.051601
https://doi.org/10.1103/PhysRevC.95.051601
https://doi.org/10.1103/PhysRevC.95.051601
https://doi.org/10.1103/PhysRevC.95.051601
https://doi.org/10.1142/S0218301319300054
https://doi.org/10.1142/S0218301319300054
https://doi.org/10.1142/S0218301319300054
https://doi.org/10.1142/S0218301319300054

