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We investigate the influence of a monochromatic strong laser electromagnetic field on α clustering and emis-
sion, by analyzing the Fourier components of the time-dependent α-core realistic potential in the Henneberger
representation. It turns out that the resulting potential becomes deformed and the static component is by far
dominant beyond the nuclear surface where the α cluster is formed, while higher Fourier terms are important
in the internal region, where the α-particle probability is hindered by the Pauli principle. This fact, combined
with the observation that an α cluster lives much longer before its emission than the laser period, allows us the
use of the stationary coupled channels approach in the system of coordinates given by the laser beam direction.
We predict that the angular distribution of emitted α particles becomes anisotropic due to the deformation of the
α-core potential induced by the laser field, even for the spherical emitter 212Po.
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I. INTRODUCTION

Different microscopic models tried to explain the process
of the α-particle formation on the nuclear surface within the
R-matrix theory [1] or the fission-like approach [2]. The α

clustering plays an important role in the structure of light
nuclei [3], but at the same time it is an important tool to
investigate the structure of heavy and superheavy nuclei by
using α-decay half-lives [4]. Recent laser facilities subatomic
structures to be probed by strong electromagnetic fields [5–9].
Several papers investigated the role of laser pulses on the
Coulomb barrier governing the α-decay process [10–12]. In
Ref. [13], a semiclassical correction to the α-decay rate in
an oscillating electromagnetic field is obtained. The relative
change in the α-decay rate is calculated as a function of the
nuclear charge, Q value, and the laser-radiation intensity. In
Refs. [14,15], the discussion uses a quantum time-dependent
formalism to investigate the manner in which the α-decay
dynamics in a spherical nucleus is modified by a linearly
polarized ultraintense laser field. The wave-packet dynamics
was determined for various laser intensities for continuous
waves and for sequences of pulses, leading to an enhancement
of the tunneling probability.

The use of the “adiabatic” or “static” approaches requires
a special attention in analyzing the α-particle emission in
strong electromagnetic fields. On one hand, the α-particle
flight time is by several orders of magnitude smaller than
the period of the electromagnetic oscillation period and there-
fore the α tunneling has indeed an “adiabatic” nature. On the
other hand, the α-formation probability has a “quasistatic”
character, due to the fact that α emitters have a much longer
half-life in comparison to the electromagnetic wave period

and even with respect to the time length of the laser pulse.
Therefore, a preformed α cluster on the nuclear surfaces
detects an averaged surrounding Coulomb barrier.

In Ref. [16], we used the approximate Wentzel-Kramers-
Brillouin (WKB) method to estimate the α-decay half life
in the Henneberger representation [17] for a sharp Coulomb
barrier. The key point was the decoupling between radial and
angular variables, because the kinetic term has the standard
Laplacian form and the time-angular dependence is trans-
ferred to the potential term. Thus, due to a large Coulomb
barrier, the semiclassical penetrability through a deformed
potential is given by angular integration of each WKB radial
term, depending on the angle θ between the emitted particle
and laser field.

Following our aforementioned work, many authors have
exposed different parts [18–23]. Reference [18] gives an es-
timation of the WKB penetrability using a similar formalism
as in Ref. [16], but considering the atomic electron cloud
screening effects which is assumed to reduce by many orders
of magnitude the laser field acting on the nucleus. In Ref. [19],
the predicted penetrability enhancement is derived to be only
some factor below 10 (depending on the laser parameters).
The main cause for this is that only the spherical part of the
static component of the laser field is taken into account. As
will become abundantly clear in this paper, the paramount
effect is the angular anisotropy induced by the laser field, with
the spherical part playing only a small role.

Qi et al. [20] and Pálffy et al. [21] employ the adiabatic
WKB approach in order to study the effects of strong laser
fields on the α decay process. Their reason for using this
approximation is that the characteristic time of the decay
(the time needed for the α particle to cross the barrier) is
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much shorter than the characteristic time of the laser field (its
period). Treated rigorously, since quantum tunneling occurs
almost instantaneously, the adiabatic approximation would
lead to no effect on α decay since there is no time for the
laser to physically act on the barrier. This is the main reason
for the discrepancy between their results and ours. The use of
the Henneberger transformation is perfectly valid since it is a
unitary transformation. The issue at hand is the validity of the
Kramers approximation (i.e., replacing the time-dependent
potential by its static component), which is dealt with below.

Reference [22] applies exactly the same formalism we
used in Ref. [16] but using photon energies satisfying the
condition h̄ω � Qα , where Qα is the Q value of α decay.
This fundamentally eliminates the issues regarding the use
of the static approach to the tunneling phenomenon and
retrieves qualitatively our previous results. We also mention
here Ref. [23], which deals with strong electromagnetic fields
acting on the α-decaying nucleus but this time the fields
themselves are static and the theoretical treatment is clear.

We also mention that the results in this paper together
with the ones in our previous work [16] rely on a critical
assumption: The laser field is continuous. At present, there
is no high intensity, continuous laser field and the existing
devices work in pulses that greatly affect our predictions.
Namely, if one defines τp as the duration of one pulse, np

as the number of pulses in one cycle, and τc as the duration
of a cycle, the “beam efficiency” ξ = npτp/τc is of the order
of 10−6. This is the ratio between the time interval in which
the nucleus is actually subject to the laser field and the total
operating time of the apparatus. Hence, it is natural that no
effect has been yet observed and technological advancements
in the field of continuous lasers are critical in order to study
the effects mentioned in this work.

We will analyze in this paper the validity of the static
Kramers-Henneberger approach by using the exact coupled-
channels method to solve the penetrations problem. At the
same time, we will describe the α formation on the nuclear
surface in a realistic manner, consistent with available experi-
mental data. The paper is organized according to the following
plan. In Section II, we will shortly give theoretical details
concerning the realistic α-daughter potential and the coupled-
channels approach for a deformed interaction; in Sec. III, we
will estimate the angular distribution of the emitted α particle;
and in the last section, we will draw conclusions.

II. THEORETICAL BACKGROUND

A. Particle emission in an electromagnetic field

The time-dependent Schrödinger equation describing the
relative motion of an α particle inside the Coulomb barrier is
given by

ih̄
∂�(R, t )

∂t
=

{
1

2Mα

[
P − eeff

c
A(t )

]2
− V (R)

}
�(R, t ) ,

(2.1)
where A(t ) is the time-dependent magnetic vector poten-
tial, eeff = eZeff = e(2A − 4Z )/(A + 4) the effective charge
[14] and V (r) the Coulomb potential. By using the unitary

Henneberger transformation [17],

	 = exp

[
i

h̄

∫ t

−∞
Hint (τ )dτ

]
, (2.2)

with

Hint (t ) = − eeff

Mαc
AP + e2

eff

2Mαc2
A2 (2.3)

being the perturbation Hamiltonian, the new wave function

 = 	� satisfies the following equation:

ih̄
∂
(R, t )

∂t
=

[
1

2Mα

P2 − V (R − S(t ))
]

(R, t ) , (2.4)

where we introduced the classical trajectory

S(t ) = eeff

Mαc

∫ t

−∞
A(τ )dτ . (2.5)

We will consider in our analysis a linearly polarized laser
beam

S(ωt ) = ezS0 sin ωt . (2.6)

By using the relation connecting the intensity of the beam and
the electric field magnitude [24], the amplitude of the incident
beam can be written

S0 = Zeff

√
4π h̄αI

Mαω2
∼ 8

√
I

1020

(
100

h̄ω

)2

(fm), (2.7)

in terms of the fine-structure constant α, beam intensity I
given in W/cm2, and h̄ω in eV. It is useful to define the
dimensionless parameter

D ≡ S0/RN ∼
√

I/ω2, (2.8)

where RN = 1.2A1/3 is the nuclear geometrical radius depend-
ing on the mass number A (which in the case of 208Pb is
≈7.1 fm).

The time-dependent potential in the new representation
becomes axially deformed and it can be expanded in a Fourier
basis as follows [11]:

V (R − S(t )) =
∞∑

n=−∞
Vn(R)einωt , (2.9)

where ω = 2π
T and R ≡ (R, θ ). Here, θ is the angle between

the emitted α particle and the polarization direction z of the
laser beam.

B. Coupled-channels formalism

It is widely accepted that the α particle is born on the
nuclear surface, where the nuclear density has a smaller value
[25], with some probability called the spectroscopic factor [2].
Starting from this region, it moves in the resulting nuclear plus
Coulomb field of the daughter nucleus. The analysis of the α-
daughter interaction is a central issue of this field. One of the
most popular methods is that of the double-folding procedure,
presented in Refs. [26–28]. The double-folding potential that
describes the elastic scattering of α particles was extended to
nuclei of medium mass number A ≈ 50–120 nuclei at energies
from ≈13 to 50 MeV in Ref. [29].
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The double-folding procedure to estimate the α-core po-
tential is given by the following integral [30–32]:

V (R) =
∫

drD

∫
drαρD(rD)ρα (rα )v(R + rD − rα ),

(2.10)

where v denotes the nucleon-nucleon force and ρX is the
nuclear densities of the daughter nucleus (X = D) and α par-
ticle (X = α). This method found much use in computing the
potential between heavy ions having a Woods-Saxon shape for
their densities. In our case, the density of the daughter nucleus
is given by the aforementioned distribution, while the one of
the α particle is a Gaussian with standard parameters [27]. The
widely used potential v is given by the M3Y nucleon-nucleon
interaction with Reid soft core parametrization [30–32] (see
Ref. [2] for computational details).

The parameters of the M3Y interaction used to estimate
the double-folding potential (2.10) were fixed by scattering
experiments [30,31]. The resulting α-core potential has a
Woods-Saxon attractive plus Coulomb repulsive shape, but an
α particle can exist only on the nuclear surface, due to the
strong Pauli suppression effects inside nucleus. A convenient
way to simulate this situation is to match an harmonic oscilla-
tor repulsive core to the external part of the nuclear interaction
procedure [33–35]. It makes use of the equality between the
external attractive potential and internal repulsion and their
first derivatives. This core fixes also the energy of the first
resonant state to the experimental Q value, Qα [33,36]. Notice
that the specific form of the repulsive core at small distances
is irrelevant, due to the fact that the wave function vanishes
here. Let us mention that the interval of the matched repulsion,
simulating Pauli principle and fixing the Q value, is given
until the second turning point, i.e., R ∈ [0, R2]. Therefore, the
barrier between the second R2 and third turning points R3 has
a realistic shape. As an example, for 212Po → 208Pb +α, R2 ≈
8.9 fm and R3 ≈ 29.5 fm.

As we already mentioned, this interaction becomes axially
deformed in the Henneberger system even for a spherical
emitter. Therefore, the wave function of the α-daughter sys-
tem can be written as a multipole expansion,

�M (R) =
∑

L=0,2,4,...

fL(R)

R
YLM (θ ), (2.11)

where the radial function fL(R) describes the α-daughter
radial motion. The α-daughter dynamics is described by the
stationary Schrödinger equation

H�M (R) = Qα�M (R), (2.12)

where Qα is relative energy of the emitted α particle, called
the Q value of the decay process. Because all measured decay
widths are by many orders of magnitude smaller than the
corresponding Q values, the stationarity approximation is a
very good assumption. The Hamiltonian

H = − h̄2

2μ
∇2

R + V (R) (2.13)

is given by the kinetic operator, depending on the reduced
mass μ = mN 4AD/(4 + AD), plus the α-core interaction,

which we split into spherical and axially deformed parts

V (R) = V0(R) + Vd (R)

≡ V0(R) +
∑

λ=2,4,...

Vλ(R)Yλ0(θ ) . (2.14)

By using the orthonormality of the angular harmonics in
the superposition (2.11), one obtains in a standard way
the coupled system of differential equations for radial
components [2]

d2 fL(R)

dρ2
=

∑
L′

ALL′ (R) fL′ (R), (2.15)

where the coupling matrix is given by

ALL′ (R) =
[

L(L + 1)

ρ2
+ V0(R)

Qα

− 1

]
δLL′

+ 〈YL0|Vd (R)|YL′0〉
Qα

, (2.16)

in terms of the reduced radius

ρ = κR, κ =
√

2μQα

h̄2 . (2.17)

The matrix element of the interaction is given in terms of
Clebsh-Gordan coefficients as follows:

〈YL0|Vd (R)|YL′0〉

=
∑

λ=2,4,...

Vλ(R)

√
(2L + 1)(2L′ + 1)

4π (2λ + 1)
〈L0; L′0|λ0〉2 . (2.18)

Let us mention that at large distances, where the field becomes
spherical (Vd → 0) and purely Coulombian, the system of
equations has a simple form:[

− d2

dρ2
+ L(L + 1)

ρ2
+ χ

ρ
− 1

]
fL(χ, ρ) = 0 . (2.19)

The solution in each channel L has the following asymptotic
expression:

fL(χ, ρ)
R→∞−→ NLH (+)

L (χ, ρ), (2.20)

in terms of the outgoing Coulomb-Hankel spherical wave,
depending on the Coulomb-Sommerfeld parameter

χ = 2ZDZα

h̄v
∼ 2ZDZα√

Qα

, (2.21)

and reduced radius (2.17). Thus, a state which decays by
α emission is identified with a narrow resonant solution of
the system of equations (2.15) that contains only outgoing
components.

(a) The first step required in order to solve this system of
equations is to define the internal and external fundamental
solutions which satisfy the boundary conditions

RLK (R)
R→0−→ δLKεc,

H(+)
LK (R) ≡ GLK (R) + iFLK (R)

R→∞−→ δLK H (+)
L (κR)

≡ δLK [GL(κR) + iFL(κR)], (2.22)
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where εc are arbitrary small numbers. Here FL(χ, ρ) and
GL(χ, ρ) are the standard regular and irregular spherical
Coulomb functions. The index L labels the component while
K indexes the solution.

(b) The second step is to build each component of the
final solution as a superposition of N fundamental solutions.
Imposing the matching conditions at a radius Rm inside the
barrier, one obtains

fL(Rm) =
∑

K

RLK (Rm)MK =
∑

K

H(+)
LK (Rm)NK ,

dfL(Rm)

dR
=

∑
K

dRcn(Rm)

dR
MK =

∑
K

dH(+)
LK (Rm)

dR
NK , (2.23)

where the quantities NK , multiplying Coulomb outgoing
waves, are called scattering amplitudes.

(c) The third step is to find outgoing resonant states in
this potential. Thus, the roots of the above homogeneous
system of equations are given by the corresponding secular
equation. They do not depend upon the matching radius Rm,
because both internal and external solutions satisfy the same
Schrödinger equation. The lowest root corresponds to the Q
value of the α decay between ground states. To obtain the
unknown coefficients Mn and Nn, it is required to normalize
the wave function in the internal region∑

L

∫
| fL(R)|2dR = 1 . (2.24)

The angular distribution of emitted α particles is given by the
ratio

�(θ )/�(0) = lim
R→∞

|�0(R, θ )/�0(R, 0)|2, (2.25)

while the total decay width (integrated over the α-emission
angle θ ) is the sum of partial components

� = h̄v
∑

L

N2
L ≡

∑
L

�l , v =
√

κ/μ . (2.26)

III. NUMERICAL APPLICATION

In this section, we will analyze some important issues
connected to the validity of the Kramers-Henneberger static
approximation used in Ref. [16]: (1) which is the realistic
α-core interaction reproducing the measured half-lives in the
absence of the laser field, instead of a simple sharp Coulomb
barrier; (2) which is the influence of the time dependence
induced by the standard Henneberger transformation on this
interaction; and (3) which is the exact angular distribution of
the emitted α particles through a well-deformed realistic bar-
rier, estimated within the exact coupled-channels procedure,
instead of the simple WKB procedure.

We analyzed the α clustering and emission from 212Po in
a linearly polarized laser field, in order to answer the above
listed three issues.

(1) As we already mentioned, the α particle is born only
at low nuclear densities, below 20% the equilibrium value
(the so-called Mott α-transition point), corresponding to the
nuclear surface [25]. The realistic α-core interaction repro-
ducing this feature is given by the double-folding external

FIG. 1. Radial components of the Fourier transform (2.9) for
D = S0/RN = 0.3 corresponding to the decay process 212Po →
208Pb +α for the real part at θ = 0o (a) and θ = 90◦ (b). The solid
curve in all panels corresponds to the initial unperturbed potential.
By a vertical line we indicated the maximum of the initial barrier.

Coulomb + nuclear parts [31], matched to an internal har-
monic oscillator (ho) potential centered on the nuclear surface,
simulating the Pauli suppression of the cluster inside nucleus.
In Ref. [35], we have shown that such pocket-like interaction
(Fig. 1 of this reference) is able to reproduce the experimental
α-decay half lives, by using a rather narrow interval of the ho
length parameter b ∈ [0.6, 0.8] fm (Fig. 2 of this reference).
Notice that in Ref. [25] this potential shape was confirmed
by microscopic calculations for the binary system 208Pb +α.
Therefore, we investigated the influence of a monochromatic
linearly polarized laser beam in the θ = 0 direction (2.6) on
this realistic interaction in the Henneberger representation.
We will keep unchanged the Qα value, as the first resonant
state in the α-daughter potential, because the laser frequency
is by several orders of magnitude less than the experimental Q
value.

(2) In Fig. 1, we plotted the Fourier amplitudes of the
time-dependent pocket-like potential (2.9) in the Henneberger
representation for D = S0/RN = 0.3 versus radius. The real
part of Vn(r) at θ = 0 is given in Fig. 1(a) and at θ = 90◦
in Fig. 1(b). Notice that the imaginary part of the Fourier
spectrum vanishes. By a solid curve, we plotted in all panels
the potential unperturbed by laser. Let us mention that the
static n = 0 component is by far dominant in the relevant
region of the α-particle penetration (barrier). The influence of
n > 1 components becomes important in the internal region,
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FIG. 2. Equivalent quadrupole deformation of the nuclear barrier
vs D = S0/RN (2.8) for the decay process 212Po → 208Pb +α.

where the α-cluster formation is suppressed by the Pauli
principle. The maximum for n > 0 components at θ = 0 on
the nuclear surface affects the α formation in the pocket region
of the potential. Intuitively, one can say the α-cluster lives
on the nuclear surface much longer than the period of the
laser beam and it mainly “feels” the averaged (static) barrier
before the penetration process. Notice that in atomic physics
the Henneberger-Kramers static approximation is used in a
different “adiabatic” context; namely, a particle moves in a
rapidly changing potential, which can be “seen” as averaged
during the process. In our case, the static component prac-
tically coincides with the initial external Coulomb barrier,
except its top.

The Henneberger transformation allows for shifting all
time dependence of the problem in the potential function.
This transformation is unitary and perfectly allowed while
allowing us to study the dynamics of the problem just from
the potential point of view. In Fig. 1, it is readily observed
that the outer barrier is affected only by the static component.
Hence, the use of the adiabatic approximation in this region
(as done in the Qi [20] and Pálffy papers [21]) is not justified.
Beneath the nuclear surface, the higher Fourier components
indeed do not vanish, but in this region the timescale is
well defined as the time the nucleus spends before decaying.
This interval can vary from a few μs to years, so the effec-
tive field can be averaged, canceling the oscillatory Fourier
terms.

(3) The resulting static component of the potential in
the Henneberger representation becomes deformed. Thus, in
Fig. 2 we represented the equivalent quadrupole deformation
of the nuclear surface corresponding to the barrier. We have
shown that deformed nuclei, oriented in a strong magnetic
field at very low temperatures, have a pronounced anisotropic
α emission toward the polar direction, where the Coulomb
barrier becomes shorter [37]. In order to investigate a similar
effect induced by a strong laser beam, shown in Fig. 1(a), we
used the stationary coupled-channels method to integrate the
Schrödinger equation. The α-decaying state, describing emis-
sion between ground states, is the lowest Gamow resonance
in the deformed potential with outgoing boundary conditions
at a given experimental Qα value [2], which is not affected by
the laser energy. In Fig. 3, we plotted the radial components
of the wave function for increasing values of the parameter D.

FIG. 3. Radial components of the wave function vs radius at
different values of the parameter D = S0/RN (2.8) for the decay
process 212Po → 208Pb +α.

One remarks that all considered components become compa-
rable by increasing D.

The occurrence of higher angular momentum components
in the wave function is a general feature of axially deformed
potentials. Since inside the nucleus the potential is strongly
deformed (Figs. 1 and 2), it is expected that the ground-state
wave function will also carry angular momenta higher than 0.

We then estimated the angular distribution according to
Eq. (2.25). In Fig. 4, we plotted this quantity for the same
values of the parameter D. As can be seen, the emission is
indeed preferential in the polar direction, i.e., the same as the
beam polarization, due to the small decrease of the barrier
at θ = 0 in Fig. 1(a). As a rule, it strongly increases by
increasing the parameter D, the ratio �(0)/�(90◦) reaching
about four orders of magnitude at D = 0.3.

FIG. 4. Ratio �(θ )/�(0) vs angle vs increasing values of the
parameter D = S0/RN (2.7) for the decay process 212Po → 208Pb +α.
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IV. CONCLUSIONS

Concluding, a strong laser field deforms the realistic α-
daughter pocket-like interaction in the Henneberger repre-
sentation and therefore the angular distribution of emitted
particles and total decay width can be described only within
the coupled-channels approach. Therefore, a spherical WKB
approach for a constant nuclear α-core attractive potential,
surrounded by a sharp Coulomb barrier as used by some
authors, is inadequate to describe α emission in a strong laser
field. Fourier analysis revealed that the static component is
the most relevant in the region of the α-particle formation
and penetration, while time-dependent components have large

values inside the nucleus, where α-cluster formation is hin-
dered by the Pauli principle. Let us mention that this treatment
is valid for an ideal monochromatic laser beam. In reality, the
ratio of the laser signal to the interval between pulses is less
than 10−6 and therefore the analyzed effect is hindered. The
predicted anisotropy is difficult to be evidenced by such short
laser pulses and devices generating longer pulses are required.
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