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Neutron pairing with medium polarization beyond the Landau approximation
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We reexamine the longstanding problem of the superfluid transition temperature Tc in dilute neutron matter. It
is well known that Tc is strongly affected by medium polarization effects (screening), which modify the pairing
interaction in the medium. We study these effects within the random-phase approximation (RPA). It turns out
that the widely used Landau approximation is sufficient only at densities below about 0.002 fm−3. At higher
densities, the full RPA leads to stronger screening than the Landau approximation.
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I. INTRODUCTION

Superfluidity in neutron stars is a longstanding prob-
lem that finds its inception in the attractive interaction be-
tween two nucleons that allows for the formation of Cooper
pairs [1–3]. Neutron stars, which are produced by a core-
collapse supernova, are extremely dense objects, made of
highly degenerate asymmetric nuclear matter. While the ex-
istence of a superfluid phase was theoretically predicted in
the early 1960s [4,5] and a value of ≈1 MeV was correctly
assigned to the pairing gap, a complete and systematic the-
oretical description is yet an open problem. The existence of
this phase is significant from the point of view of cooling [6,7]
and is necessary to explain the observed glitches, which are
sudden increases in the rotational frequency of the star, fol-
lowed by long relaxation times to the preglitch values [8–10].
The attractive interaction is provided by the nucleon-nucleon
interaction and therefore, by analyzing the two-body scat-
tering phase shifts, one can conclude that neutrons can pair
in the singlet, 1S0, channel at low densities, as they prevail
in the neutron-star crust [11], and in the triplet, 3P2-3F2,
channels [12–15] at higher densities as they are expected in
the neutron-star core. Protons pair up in the singlet channel
because their density never gets very high. However, proton
pairing is complicated by the interaction with the medium.
In fact, medium effects are very important for neutron
pairing as well.

Even when modeled as pure neutron matter, a correct
description of the superfluid state is ridden with uncer-
tainties. At low densities, in the singlet channel, the BCS
approximation gives almost model-independent values for
the transition temperature and gap, where by the BCS
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approximation, we refer to solving the BCS gap equation us-
ing free-space two-body interaction with a free single-particle
spectrum. Hence, at the BCS level, phase-shift equivalence of
the two-body interaction suffices to yield model-independent
results [16]. However, description of pairing in the triplet
channel, which typically occurs at higher densities becomes
challenging even at the BCS level, as the input free-space
two-body interactions are no longer phase shift equivalent and
hence the gaps turn out to be model dependent [12–15]. As
already noted, including the interaction of the neutrons with
the medium is very important and can lead to crucial medium
modifications such as screening of the free-space two-body
interaction. However, the gap and the transition temperature
are extremely sensitive to the approximation used to describe
medium effects.

In our previous work [17], the free-space interaction was
modified by including the effects of the diagrams (a) and (b)
shown in Fig. 1. There, we used the free-space renormalized
two-body interaction, Vlow k , for the bare pairing interaction
(that is, particle-particle vertex, without medium correction)
and for the 3p1h (three-particle-one-hole) and 1p3h interac-
tions, while the RPA (random-phase approximation) series
(see Fig. 2) used the particle-hole (ph) interaction within
the Landau approximation. The Fermi-liquid parameters were
obtained using phenomenological (Skyrme, Gogny) energy-
density functionals. The inclusion of diagram (b) shown in
Fig. 1 is important at higher densities since it reduces the
effect of diagram (a). In fact, it even results in the gap
being antiscreened for kF � 0.7 fm−1 (kF denotes the Fermi
momentum which is related to the density by ρ = k3

F /3π2

for pure neutron matter). While the result that the effect of
screening is reduced as compared to diagram (a) is consistent
with quantum Monte Carlo (QMC) calculations [18–20], it is
important to check the dependence of the contribution from
diagram (b) on the approximation used. To our knowledge,
all present calculations of medium-polarization effects that
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FIG. 1. Feynman diagrams representing the induced interaction.
The wiggly line in diagram (b) is meant to include the RPA bubble
summation (see Fig. 2).

include the RPA resummation, e.g., Refs. [21–24], rely on
the Landau approximation. As already noted in Ref. [17],
the Landau approximation is valid for momentum transfers
q � kF , which is clearly not the case in diagram (b) where
0 � q � 2 kF .

In this paper, we once again revisit the issue of medium po-
larization in pure neutron matter. We continue to use the Vlow k

interaction for the bare pairing interaction and for the 3p1h
and 1p3h vertices. But now, we evaluate the RPA series in dia-
gram (b) exactly, i.e., beyond the Landau approximation. This
is possible since we use ph interactions of the Skyrme type.
We repeat our calculations with different Skyrme parametriza-
tions (SLy4 and SLy5 from the Saclay-Lyon family [25] and
BSk19, BSk20, and BSk21 from the recent Brussels-Montreal
family [26]) so that we can assess the dependence of the result
on the choice of the parametrization.

This paper is organized as follows. In Sec. II, we revisit
the setup of diagrams (a) and (b), followed by the calcula-
tion of RPA diagrams using Skyrme interactions in Sec. III.
We discuss in detail the choice of the cutoff for the Vlow k
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FIG. 2. Diagrammatic representation of the RPA, Eq. (12).

interaction and also the parameters used for the Skyrme
interaction in Sec. IV. In Sec. V, we present the main results of
the paper. We study the dependence of the screened interaction
on the Skyrme parametrization as well as compare our results
to those obtained in Ref. [17]. We also revisit the effect of
preformed pairs on the density dependence of the transition
temperature. Finally, in Sec. VI, we present our concluding
remarks. Some details of the calculations have been moved to
Appendixes.

II. PAIRING WITH MEDIUM POLARIZATION

In general, to obtain the 1S0 pairing gap � or the critical
temperature Tc, one considers the gap equation

�k = − 2

π

∫ ∞

0
dk′ k′ 2V (k, k′)

�k′ tanh
(Ek′

2T

)
2Ek′

, (1)

where V (k, k′) = 〈k|V1S0
|k′〉 denotes the matrix element of the

nn interaction in the 1S0 partial wave for in- and outgoing
momenta k′ and k, Ek =

√
(εk − μ)2 + �2

k is the quasiparticle
energy with εk = k2/2m∗, m∗ is the neutron effective mass,
μ is the effective chemical potential including the mean-field
energy shift, and T is the temperature. Including medium
polarization effects in a way analogous to Debye screening
of the Coulomb interaction [27], the interaction V (k, k′) can
be written as

V (k, k′) = V 0(k, k′) + V (a)(k, k′) + V (b)(k, k′) , (2)

where V 0 is the contribution of the bare nn interaction, V (a)

is the contribution of a single ph bubble exchange, and V (b)

represents the RPA resummation of the series of two and
more bubbles, see Fig. 1. To evaluate V (a), we proceed as in
Ref. [17] and construct the bare interaction from Vlow k [28],
given in partial waves, as

〈k1σ1, k2σ2|V 0|k′
1σ

′
1, k′

2σ
′
2〉

=
∑

s,ms,m′
s

∑
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j

Csms
1
2 σ1

1
2 σ2
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1
2 σ ′
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2
C
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C

jmj

l ′m′
l sm′

s

× (4π )2il ′−lY ∗
lml

(�Q)Yl ′m′
l
(�Q′ )〈Q|V 0

sll ′ j |Q′〉 , (3)

with m′
l = ml + ms − m′

s, mj = ml + ms, Q = (k1 − k2)/2,
and Q′ = (k′

1 − k′
2)/2. For the Clebsch-Gordan coefficients,

we follow the notation of Varshalovich [29]. The antisym-
metrized interaction is defined by

〈1, 2|Ṽ 0|1′, 2′〉 = 〈1, 2|V 0|1′, 2′〉 − 〈1, 2|V 0|2′, 1′〉, (4)

where the shorthand notation 1 stands for k1σ1 etc.
The expression corresponding to Fig. 1(a) reads

V (a)(k, k′) = −1

4π
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(5)
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where q = k − k′ and
∑

p stands for
∫

d3 p/(2π )3. The
occupation numbers np can be safely approximated by
step functions, np = θ (kF − p), because the temperature T

and the pairing gap � are much smaller than the Fermi
energy εF .

Similarly, the expression for Fig. 1(b) can be written as
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Here, V denotes the ph interaction including the resummation
of bubble diagrams. It is different from the particle-particle
(pp) interaction V 0 and we therefore use a different notation.
Like the effective mass m∗, the ph interaction will not be
derived from the free-space interaction V 0, but from a phe-
nomenological Skyrme energy functional. Previous studies of
screening used the simplest approximation to V , namely the
lowest-order Landau approximation

Vp2− q
2 σ ′

2,p2+ q
2 σ2;p1+ q

2 σ1,p1− q
2 σ ′

1

≈ f0 δσ ′
1σ1δσ2σ

′
2

1 − f0
0(q)
+ g0 σσ ′

1σ1 ·σσ2σ
′
2

1 − g0
0(q)
, (7)

where f0 and g0 are the L = 0 Landau parameters in the den-
sity and spin channel, respectively, σ are the Pauli matrices,
and 
0(q) is the Lindhard function in the static limit (see
Appendix B). Inserting Eq. (7) into Eq. (6) and renaming
k, k′, q, pi → q, q′, k, pi − k/2, one recovers the expression
given in our previous work [17]. The aim of the present study
is to go beyond this approximation and to include the RPA
calculated with the full Skyrme ph interaction.

III. RPA WITH SKYRME INTERACTION

The RPA with Skyrme interactions has been extensively
studied, see the review [30]. However, in most calculations,
one is interested in the response function and not in the vertex
V , which we need here. The RPA vertex function for Skyrme-
like interactions was, e.g., considered in Ref. [31].

The residual ph interaction is derived from the Skyrme
energy functional E as [31]

V0
p2− q

2 σ ′
2,p2+ q

2 σ2;p1+ q
2 σ1,p1− q

2 σ ′
1

= δ2E

δρp2− q
2 σ ′

2,p2+ q
2 σ2

δρp1+ q
2 σ1,p1− q

2 σ ′
1

, (8)

where ρp σ,p′,σ ′ denotes the density matrix with the momentum
and spin indices as defined in Fig. 2. Let us introduce the
shorthand notation

V0
21 = V0

p2− q
2 σ ′

2,p2+ q
2 σ2;p1+ q

2 σ1,p1− q
2 σ ′

1
, (9)

σ1 = σσ ′
1σ1 , (10)

etc., where 1 stands for the quantum numbers p1, σ1, σ
′
1 and

similarly for 2. If no spin operator σ1 is written, the corre-
sponding term is assumed to be proportional to δσ ′

1σ1 . Using

this notation, the interaction derived from a standard Skyrme
functional has the form

V0
21 = v0

1 (q) + v0
2 (p1 − p2)2

+ [
v0

4 (q) + v0
5 (p1 − p2)2

]
σ1 ·σ2

+ v0
8 iq · (p1 − p2)×(σ1 + σ2) . (11)

The v0
i can be density dependent and their expressions in

terms of the parameters of the Skyrme force are given in
Appendix A. Notice that, as a consequence of its derivation
via Eq. (8), V0

21 contains already both the direct and the
exchange term.

The RPA vertex V is obtained from the ph interaction V0

by solving the Bethe-Salpeter-like equation (see Fig. 2)

V21 = V0
21 −

∑
3

V0
23G0

ph(p3, q)V31 , (12)

where the minus sign comes from the closed fermion loop,∑
3 is a shorthand notation for

∑
σ3σ

′
3

∫
d3 p3/(2π )3, and

G0
ph(p, q) = np− q

2
− np+ q

2

εp+ q
2
− εp− q

2

(13)

is the ph propagator in the static limit, i.e., for ω → 0, where
ω is the total energy of the ph pair. While Eq. (12) is in general
quite difficult to solve, it is very simple in the case of a Skyrme
interaction.

The RPA vertex has a more general structure than the
Skyrme ph interaction in Eq. (11). Nevertheless, since all
terms in the Skyrme force are at most quadratic in p1 and
p2, only a finite number of terms are generated [31]. The
number of independent terms is further reduced because the
vertex is Hermitian, i.e., V21 = V∗

12, and the dependence on the
angles of p1 and p2 is at most L = 1. In the case of a standard
Skyrme interaction, it turns out that the following ansatz for
V is sufficient:

V21 = v1 + v2
(
p2

1 + p2
2

) + v3 p1 ·p2 + v4 σ1 ·σ2

+ v5 σ1 ·σ2
(
p2

1 + p2
2

) + v6 σ1 ·σ2 p1 ·p2

+ v7 σ1 ·q σ2 ·q
+ v8 iq · (p1×σ1 − p2×σ2) + v9 iq · (p1×σ2 − p2×σ1)

+ v10 p2
1 p2

2 + v11 p1 ·q p2 ·q + v12 σ1 ·σ2 p2
1 p2

2

+ v13 σ1 ·σ2 p1 ·q p2 ·q + v14 σ1 ·q σ2 ·q (
p2

1 + p2
2

)
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+ v15 σ1 ·q σ2 ·q p2
1 p2

2

+ v16 iq · (
p1×σ1 p2

2 − p2×σ2 p2
1

)

+ v17 iq ·(p1×σ2 p2
2 − p2×σ1 p2

1

)
+ v18 q ·p1×σ1 q ·p2×σ2 . (14)

The coefficients vi are functions of q and ρ, but we drop
the arguments for brevity. In order to determine the functions
vi, we insert Eqs. (11) and (14) into Eq. (12). The integrals
over p3 can be expressed in terms of the generalized Lindhard
functions


n(q) = −2
∫

d3 p

(2π )3
pnGph , (15)


2L(q) = −2
∫

d3 p

(2π )3
p2 cos2 θ Gph , (16)


2T (q) = −
∫

d3 p

(2π )3
p2 sin2 θ Gph = 
2 − 
2L

2
, (17)

θ being the angle between p and q. The explicit expressions
for these functions are given in Appendix B. Collecting the
coefficients of the different operators that appear in Eq. (14),
one obtains a linear system of equations for the vi of the form

vi = v0
i +

∑
j

Ai, jv j , (18)

where the matrix elements Ai, j are products of the different v0
i

and 
i. Solving this system of equations, one obtains analyti-
cal expressions for the vi, which are listed in Appendix C.

To get a qualitative idea about the difference between the
full RPA and the Landau approximation, let us consider the
static (ω → 0) density response (ph spin S = 0)



(0)
RPA = −

∑
1

G0
ph(p1, q) +

∑
1,2

G0
ph(p1, q)V12G0

ph(p2, q)

= 
0 + v1 
2
0 + 2v2 
0
2 + v10 
2

2 . (19)

Similarly, one obtains the spin response (S = 1) by including
Pauli matrices into the sums over 1 and 2. The result for
the transverse spin response (M = ±1, where M denotes the
projection of the ph spin on the direction of q) takes the form



(1,±1)
RPA = 
0 + v4 
2

0 + 2v5 
0
2 + v12 
2
2 , (20)

whereas additional terms appear in the case of the longitudinal
spin response (S = 1, M = 0):



(1,0)
RPA = 


(1,±1)
RPA + q2

(
v7 
2

0 + 2v14 
0
2 + v15 
2
2

)
. (21)

In the absence of tensor terms, which we have not considered
here because they do not appear in standard Skyrme interac-
tions, these expressions agree with Eqs. (53), (55), and (56) of
Ref. [30].

For comparison, in Landau approximation, one replaces
V0

21 by its value at q = 0 and p1 = p2 = kF , which gives
the Landau parameters f0 = v0

1 (q = 0) + 2v0
2k2

F and g0 =
v0

4 (q = 0) + 2v0
5k2

F . In this approximation, the expressions
for the RPA vertex reduce to v1 = f0/(1 − f0
0), v4 =

0

1
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FIG. 3. Density response (S = 0, left column) and longitudinal
(M = 0) and transverse (M = ±1) spin responses (S = 1, right col-
umn) in units of the density of states N0 = m∗kF /π 2 as functions
of q/kF , for two different densities: ρ = 0.01 fm−3 (kF = 0.67 fm−1,
top row) and 0.08 fm−3 (kF = 1.33 fm−1, bottom row), obtained with
the SLy5 interaction. Results of the full RPA (red solid line and long
purple dashes) are compared with those of the Landau approximation
(short blue dashes) and with the Lindhard function −
0 (black
dotted line).

g0/(1 − g0
0), and all other vi = 0, and therefore



(S=0)
Landau = 
0

1 − f0
0
, 


(S=1)
Landau = 
0

1 − g0
0
. (22)

The full RPA responses and the responses in Landau ap-
proximation are shown in Fig. 3 for two different densities.
At low density (ρ = 0.01 fm−3, top panels), the Landau ap-
proximation reproduces quite well the full RPA result. This is
because the integration region of the internal loop momenta p
as well as the relevant range of external momenta q scale with
kF , so that the momentum dependent terms of the full Skyrme
interaction V0 are small at low density. Nevertheless, one
can see that with increasing momentum the RPA responses
are closer to the Hartree-Fock response (Lindhard function

0) than the Landau approximation. This reflects the fact
that, roughly speaking, V0 becomes smaller with increasing
momentum, as one would expect for a finite-range interac-
tion, which is simulated by the momentum dependence of
the Skyrme force. At higher density (ρ = 0.08 fm−3, bottom
panels of Fig. 3), the momentum dependence of the interaction
is so strong that it even changes sign. As a consequence,
the density response (left panel) falls below 
0 at large
q/kF , while the spin response (right panel) becomes enhanced
compared to 
0. It is not clear whether this is realistic or just
an artifact of the limitation of the Skyrme force to terms up to
second order in the momenta.

It would be interesting to compare these results with those
obtained with a true finite-range interaction such as the Gogny
force. However, in that case the solution of the RPA is very
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difficult and this is beyond the scope of the present study.
QMC calculations [32] seem to indicate that the static density
response of neutron matter should approach the free one (i.e.,

0 but computed without effective mass; note that in general
m∗ is momentum dependent) at large q.

IV. CHOICE OF INTERACTIONS AND PARAMETERS

Before presenting numerical results, let us specify the
choice of the interaction V 0 in the pp channel, which is also
used in the 3p1h and 1p3h vertices in Figs. 1(a) and 1(b), and
of the parameterizations of the Skyrme interaction V0 used in
the calculation of the effective mass m∗ and in the ph channel
for the RPA.

As bare interaction V 0, we use the low-momentum in-
teraction Vlow k derived from the AV18 interaction by a
renormalization-group evolution [28]. The partial waves [cf.
Eq. (3)] are summed up to jmax = 3, which for our purposes
is sufficient to reach converged results [17].

The Vlow k interaction has an additional parameter, namely
the momentum cutoff �. Although, by construction, Vlow k

gives cutoff-independent results in the two-body sector (at
sufficiently low energies), this is not the case if it is used
in a many-body calculation, where the dependence on the
cutoff indicates missing medium and higher-body corrections.
Actually, the purpose of using Vlow k instead of AV18 is to make
the interaction more perturbative and thus more suitable for
approximations used in the many-body problem. A common
choice is a cutoff � = 2 fm−1, which we will also use here,
especially at densities with kF � 0.8 fm−1.

However, as explained in detail in Ref. [17], to repro-
duce the correct low-density limit of the screening correc-
tion (Gor’kov-Melik-Barkhudarov (GMB) result [33]), it is
important that the 3p1h and 1p3h vertices approach the nn
scattering length, while in Figs. 1(a) and 1(b) these vertices
contain the interaction only to leading order (Born term). We
remind the reader that in the limit of small cutoffs � and small
momenta k and k′, the interaction V 0(k, k′), the cutoff �, and
the scattering length a are roughly related by

V 0 ≈
(m

a
− 2m�

π

)−1
. (23)

Hence, by lowering the cutoff as much as possible, we can
achieve V 0 ≈ a/m. Obviously, the cutoff must remain larger
than kF if one wants to describe Cooper pairing. In practice,
when solving the gap equation with V 0 alone, one can de-
crease the cutoff to � = 2.5 kF (with a regulator of the form
e−(k2/�2 )5

) without affecting the critical temperature. As in
Ref. [17], we will use this as an alternative choice, especially
for low densities with kF � 0.8 fm−1.

The reason why we do not use the density-dependent cutoff
at higher values of kF is the following. As kF increases, the
variable cutoff grows and as a result will include the coupling
between the low- and high-momentum physics, making the in-
teraction less useful in perturbation theory. The BCS transition
temperatures and gaps in the singlet channel are unaffected
by the coupling between low- and high-momentum modes,
as they depend on the correct reproduction of the two-body
scattering data. But the perturbativeness of the interaction

becomes important in the 3p1h and 1p3h vertices, and also
in the Nozières-Schmitt-Rink (NSR) approach (see next sec-
tion), where one has to compensate for the double counting
of the single-particle energy shift (see Ref. [34]), which in
our case is done within the Hartree-Fock approximation.
Therefore, it is crucial to soften the interaction. Hence we use
a variable cutoff of 2.5 kF until kF ≈ 0.8 fm−1 and a constant
cutoff of 2 fm−1 for higher densities.

Concerning the ph interaction, there are hundreds of differ-
ent parameterizations of the Skyrme interaction on the market,
which were fitted in different ways and for different purposes.
Fortunately, the number of interactions suitable for neutron
matter is much smaller. The first interactions that were fitted
to reproduce not only finite nuclei but also infinite neutron
matter were those of the Saclay-Lyon (SLy...) family. We will
use the parametrizations SLy4 and SLy5 [25]. More recent
Skyrme interactions developed specifically for astrophysi-
cal applications are those of the Brussels-Montreal (BSk...)
family. Out of this family, we will use the parametrizations
BSk19, BSk20, and BSk21 [26].1 To use several different
parametrizations can be useful to get an idea how strongly the
results depend on this choice.

The Fermi-liquid parameters corresponding to these inter-
actions are shown in Fig. 4. In terms of the Skyrme-force
parameters (see Appendix A), they are given by

1

m∗ = 1

m
+ 2ρCτ , (24)

f0 = (ρ2Cρ )′′ + [
3
5ρ(ρCτ )′′ + 2(ρCτ )′

]
k2

F , (25)

g0 = 2Cs + 2CsT k2
F , (26)

where X ′ = dX/dρ (cf. Eqs. (B3), (B1a), and (B1c) of
Ref. [26]). The dimensionless Landau parameters F0 and G0

shown in Fig. 4 are defined as F0 = N0 f0 and G0 = N0g0,
where N0 = m∗kF /π2 is the density of states. In our preceding
work [17], we computed the Fermi-liquid parameters from the
SLy4 parametrization, but using ηJ = 1 in the calculation of
G0, although the SLy4 functional was fitted without the J 2

terms, i.e., with ηJ = 0 (following the notations of Ref. [36]).
This was somewhat inconsistent (although quite common in
the literature). Here, by using the SLy5 parameterization,
which was fitted with ηJ = 1, we avoid this inconsistency
and we still find Fermi liquid parameters (blue short dashes)
very close to those shown in our preceding work (Fig. 3 of
Ref. [17]). On the contrary, the SLy4 results shown here (red
solid lines) are now obtained with ηJ = 0, which explains why
the G0 Landau parameter is much more repulsive than with
SLy5.

In Ref. [37], it was pointed out that the G0 parameter of
SLy5 is probably too small, which can lead to ferromagnetic
instabilities at higher densities. It was therefore suggested that

1Notice that Ref. [26] uses, in addition to the Skyrme force in
the ph channel, contact pairing interactions with density-dependent
coupling constants, which reproduce, if used in BCS approximation,
the screened pairing gaps of Ref. [22]; see also Ref. [35].
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FIG. 4. Fermi-liquid parameters m∗, F0, and G0 as functions of
the Fermi momentum kF for five different Skyrme parametrizations
SLy4, SLy5, BSk19, BSk20, and BSk21.

one should rather use SLy4 (with ηJ = 0) or more recent
parameterizations such as BSk19-21, which were fitted (again
with ηJ = 0) to give a reasonable G0 at saturation density.
But even the latter parametrizations lead to instabilities in
the spin channel for neutron matter above saturation density
0.16 fm−3 [38].

V. NUMERICAL RESULTS

Let us now proceed as in Ref. [17] to compute the effect of
the exchange of RPA excitations on pairing. We first compute
the modified pairing interaction [Eqs. (2), (5), and (6)]. The
summations and integrations in Eqs. (5) and (6) are all done
numerically. The resulting matrix elements V (k, k′) are then
used in the gap equation (1) to compute the critical tempera-
ture or the gap. Here, we will discuss Tc, from which the gap
can be obtained to very good precision from �kF (T = 0) ≈
1.76 Tc [27].

In our preceding work [17], using the Landau approxima-
tion, we found that there are strong cancellations between the
attractive exchange of density fluctuations (S = 0) and the
repulsive exchange of spin fluctuations (S = 1). While at low
density, the repulsive effect was dominant, it turned out that
at higher densities, the S = 0 contribution became dominant
due to its enhancement by the negative Landau parameter f0

and the suppression of the S = 1 contribution by the positive
Landau parameter g0.

 0

 0.5
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T
c 
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)
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bare Vlow-k

SLy5 Landau
SLy5 RPA
SLy4 Landau
SLy4 RPA

FIG. 5. Critical temperature Tc as a function of kF , obtained with
the bare Vlow k (cutoff � = min(2.5kF , 2 fm−1), m∗ computed with
SLy5) and with medium polarization calculated either within the
Landau approximation or within the full RPA, with two different
parameterizations of the Skyrme interaction (SLy4 and SLy5).

Let us see how this picture is modified when one includes
the full Skyrme RPA instead of the Landau approximation. In
Fig. 5, we display a comparison of the critical temperatures
obtained with different levels of approximation. The black
dotted curve represents the result without medium polariza-
tion. The long green dashes include the medium polarization
computed within the Landau approximation using the SLy5
interaction. One clearly sees the suppression of Tc at low
density due to screening, gradually turning into an enhance-
ment due to antiscreening at kF � 0.7 fm−1. This curve is very
similar to the result we obtained in our previous work [17],
while the one obtained with SLy4 (purple dashed-dotted
curve) shows even stronger antiscreening at high density
because of the larger value of the G0 Landau parameter (see
discussion in Sec. IV). The short blue dashed (SLy5) and the
red solid (SLy4) lines are the corresponding results obtained
within the full RPA instead of the Landau approximation.
We see that for kF � 0.4 fm−1, the full RPA and the Landau
approximation agree very well. But at higher densities, the
critical temperature within full RPA is always lower than
within the Landau approximation. In the case of SLy5, the
full RPA never gives antiscreening (i.e., enhancement of Tc

compared to the bare Vlow k interaction) and in the case of
SLy4, antiscreening survives only in some range of densities
around kF ≈ 1 fm−1 and it is much weaker than within the
Landau approximation.

Qualitatively, this result can be understood by looking at
Fig. 3. One sees two effects acting in the same direction: First,
within the full RPA, the density response is less enhanced
than within the Landau approximation, and, second, the spin
response is less suppressed or even enhanced compared to
the free one. (Strictly speaking, because of the spin-orbit
interaction, the spin of the ph excitation is not a good quantum
number any more, but nevertheless the argument remains
qualitatively valid.)
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FIG. 6. Thin lines: critical temperature Tc as a function of the
Fermi momentum kF , obtained with the bare Vlow k [cutoff � =
min(2.5kF , 2 fm−1)] using the effective mass m∗ of the same Skyrme
parametrizations as in Fig. 4. Thick lines: corresponding results
including the medium polarization computed within full RPA.

The question arises whether this is a specific property
of the SLy interactions or whether similar results are ob-
tained with other Skyrme parameterizations. In Fig. 6, we
compare the critical temperatures obtained with the bare
Vlow k (thin lines) and with medium polarization within full
RPA (thick lines) for five different Skyrme parametrizations
(SLy4, SLy5, BSk19, BSk20, and BSk21). Looking at the
thin lines, one sees that already at the level of the bare
Vlow k , the SLy and BSk parametrizations give quite different
density dependence of Tc. This can easily be understood from
Fig. 4: the SLy parametrizations predict a lower effective
mass m∗ in neutron matter than the BSk ones. Since the
gap and Tc depend exponentially on the density of states
N0 = m∗kF /π2, this has a dramatic effect, especially in the
weak-coupling regime, i.e., at high density. Concerning the
results with medium polarization (thick lines), none of the
BSk forces gives antiscreening. At high densities, screening
is strongest with BSk19 and weakest with BSk21, while at
low densities, it is the opposite. There is a clear relationship
between screening and the G0 parameter: the more repul-
sive G0 is, the weaker is the screening. This general trend
is easily understood within the Landau approximation but
apparently it also survives in the full RPA. A quite surprising
result is that, at least if one compares these two families of
Skyrme parametrizations, the model dependence with screen-
ing is weaker than without screening. Of course, this may
be accidental.

In addition to the screening by the medium, there are
correlations between neutrons above Tc and such correlations
can be taken into account via the Nozières-Schmitt-Rink
(NSR) approach [39], wherein, for a given chemical potential
μ, the density of the interacting neutrons is enhanced by the
correlations calculated within the ladder approximation. As a
result, the total density, ρtot is written as

ρtot = ρ0 + ρcorr . (27)

The first term, ρ0, is the uncorrelated density,

ρ0 = 2
∑

p

f (ξp) , (28)

where f (ξp) = 1/(eξp/T + 1) is the Fermi-Dirac distribution
function, ξp = εp − μ, and the factor of 2 arises due to the
spin degeneracy. The second term, ρcorr, is the correlated
density and is given by

ρcorr = 2T
∑
p,ωn

[G0(p, ωn)]2[�(p, iωn) − �(p, ξp)] , (29)

where ωn are the fermionic Matsubara frequencies, G0 =
1/(iωn − ξp) is the uncorrelated single-particle Green’s func-
tion in the imaginary-time formalism [27], and �(p, iωn) is
the single-particle self-energy in ladder approximation. The
subtraction of the on-shell self-energy �(p, ξp) in Eq. (29),
which is absent in the original NSR approach [39], takes into
account that G0 includes already the in-medium quasiparticle
energy ξp, which therefore must not be shifted by the self-
energy [40,41]. As in Refs. [17,34], we approximate this
on-shell part �(p, ξp) by the first-order (Hartree-Fock) self-
energy. In this approximation, it is possible to express ρcorr

in a form that does not require the explicit calculation of the
self-energy, see Refs. [17,34].

The effect of ρcorr is important at low densities where Tc/μ

is not too small (strong coupling regime), as already seen
in Refs. [17,34]. Since Tc is computed according to the gap
equation (1) as a function of μ, but the relation between μ

and ρtot is changed, this implies that the dependence of Tc on
ρtot [or on kF,tot = (3π2ρtot )1/3] is changed, too. Notice that
now, for given ρtot (or kF,tot) the relation �(T = 0) = 1.76 Tc,
is no longer true.

In Ref. [17], we already studied the combined effect of
correlations using the NSR approach, and screening in the
Landau approximation. Since we have seen that the screening
changes completely if one passes from the Landau approxima-
tion to the full Skyrme RPA, we would like to revisit this study
using the Skyrme RPA instead of the Landau approximation.

Figure 7 shows the transition temperatures including the
effect of preformed pairs via the NSR approach (i.e., as
functions of kF,tot), obtained with the bare and the screened
interactions, respectively (black and red dashed lines). For
ease of comparison, the figure also displays the transition
temperatures calculated from the bare and the screened in-
teraction without the NSR effect (i.e., as functions of kF ;
black and red solid lines). All curves take into account the
effective mass, which has been calculated using the respective
Skyrme parametrizations (SLy4 in the left panel and BSk19 in
the right panel).

As already observed in Ref. [17], we note that the effect
of screening is much stronger than the effect of pair corre-
lations, except at very low densities (kF � 0.1 fm−1 in the
case of SLy4 and kF � 0.2 fm−1 in the case of BSk19), where
both effects are equally important (cf. black dashed and red
solid lines).

As expected, the effect of preformed pairs is in fact limited
to the range kF � 0.8 fm−1, where the ratio Tc/μ is not too
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FIG. 7. Transition temperature versus kF or kF,tot, respectively,
obtained with (dashed lines) and without (solid lines) pair correla-
tions via the Nozières-Schmitt-Rink procedure, both with the bare
(black lines) and with the screened (red lines) interactions. All curves
were obtained including the effective mass m∗ computed with the
respective Skyrme interaction (SLy4 in the left panel and BSk19 in
the right panel).

small so that the neutron matter is close to the so-called
BCS-BEC crossover regime [42,43]. This regime has been
extensively studied with ultracold atoms [44] and in that case
it was shown in Ref. [45] that by including simultaneously the
effects of screening and pairing fluctuations (corresponding
to the noncondensed preformed pairs), one reproduces very
well the experimental result for the critical temperature in the
unitary limit, i.e., in the case of a contact interaction with
infinite scattering length.

In the present case of neutron matter, if the effect of
pair correlations is included on top of screening (red dashed
lines in Fig. 7), it is even weaker than in the case without
screening, i.e., the difference between the solid and dashed
red curves is smaller than the difference between the solid and
dashed black curves, which do not include screening. This
is because the screening weakens the attractive interaction,
reducing the pairing correlations and hence the correlated den-
sity compared to the one obtained with the bare interaction,
in agreement with our conclusions in our previous work (see
Fig. 15 in Ref. [17]).

VI. CONCLUSION

The main goal of this work is to check the Landau ap-
proximation used in our previous work [17] (and in other
recent studies of medium polarization effects [21–24]) for
the ph interaction while calculating diagram (b) shown in
Fig. 1. To that end, we use the Skyrme interaction as it allows
for easy computation of the RPA diagrams. For consistency,
the same Skyrme interaction is also used in the calculation
of the effective mass. We compare different parametrizations
of the Saclay-Lyon family and of the more recent Brussels-

Montreal family of Skyrme interactions. For the 3p1h and
1p3h vertices, we use the Vlow k interaction at a cutoff � =
min(2.5 kF , 2 fm−1), which is also used as bare pp interaction.
As noted in Ref. [17], with the variable cutoff one can cor-
rectly account for the screening at low densities (GMB limit).

With the BSk and SLy families of interaction, there is
model dependence already at the level of the bare Tc due
to differences in the effective mass. Surprisingly, the model
dependence is reduced for the screened Tc, computed with the
full RPA. Comparing the full RPA results with those of the
Landau approximation, one finds that the Landau approxima-
tion is only valid at very low densities (kF � 0.4 fm−1, corre-
sponding to ρ � 0.002 fm−3). At higher densities, screening
is stronger, i.e., Tc is lower, with the full RPA. In particular,
the antiscreening observed with the Landau approximation
in Ref. [17] is completely lost, except with SLy4 in a small
range of densities. In addition, one observes a correlation
between the repulsion in the Landau parameter G0 and the
extent of screening, i.e., the more repulsive G0 gets, the
less screened is the dressed interaction. Qualitatively, this
is easily understood in the Landau approximation, but it
is interesting that this correlation is still present with the
full RPA.

In this paper, we also include the correlations due to the
preformed pairs via the NSR approach. While the effect from
the preformed pairs is less drastic compared to the inclusion
of medium polarization, we note that the correlations within
NSR show up at low densities, where screening is strong even
in the Landau approximation. As a result, the NSR effect
of correlations on the density is weaker once screening is
included.

While the transition temperatures at low density (say, up to
kF � 0.9 fm−1, corresponding to ≈1/7 of saturation density)
are relatively robust, the high-density region is very sensitive
to the approximation used. As noted here, momentum depen-
dence of the ph interaction (and probably also of the effective
mass, which is constant in the case of Skyrme interactions)
seems to be a crucial ingredient in the extent to which the
bare interaction is dressed. Perhaps techniques that allow for
the building of the correlations from the medium such as
in-medium similarity renormalization group might help in
understanding the high-density region. Such a direction is
crucial especially for a realistic description of pairing in the
triplet channel.
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APPENDIX A: PARTICLE-HOLE INTERACTION
FROM SKYRME FORCES OF THE BSK FAMILY

The energy functional corresponding to the generalized
Skyrme force given in Eqs. (1) and (5) of Ref. [46] can be
found in Appendix A of Ref. [38]. Let us write it down
(correcting a typo in the C∇s term) for the case of pure neutron
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matter:

ESk = Cρρ2 + Cτ (ρτ − j2) + C∇ρ (∇ρ)2 + Css2

+CT (s · T − J 2) + C�ss · �s + C∇s(∇ ⊗ s)2

+C∇J (ρ∇ · J + s · ∇ × j) . (A1)

For the definitions of the quantities ρ, τ , j, s, T, J , and J, see
Ref. [36]. Since we are dealing with pure neutron matter, the
coefficients Ci are the sum of isoscalar and isovector coeffi-
cients: Ci = Ci

0 + Ci
1. While in standard Skyrme interactions

only Cρ and Cs are density dependent, this is now the case
for all the Ci except C∇J . In Eq. (A1), we have combined the
ρ�ρ term of Ref. [38] with the (∇ρ)2 term using integration
by parts. Hence, in terms of the coefficients of Ref. [38],
our coefficient C∇ρ corresponds to C∇ρ − (ρC�ρ )′, where
X ′ = dX/dρ. In contrast, the s�s term cannot be completely
absorbed in the (∇ ⊗ s)2 term (or vice versa) because of the
density dependence of C�s and C∇s, and we therefore keep
both terms. Using the abbreviations

t̃0 = t0(1 − x0) , t̃1 = t1(1 − x1) , t̃2 = t2(1 + x2) ,

t̃3 = t3(1 − x3) , t̃4 = t4(1 − x4) , t̃5 = t5(1 + x5) , (A2)

the coefficients Ci can be written as

Cρ = 1
4 t̃0 + 1

24 t̃3ρ
α ,

Cτ = 1
8 (t̃1 + 3t̃2 + t̃4ρ

β + 3t̃5ρ
γ ) ,

C∇ρ = 3
32 (t̃1 − t̃2 + (

1 + 2
3β

)
t̃4ρ

β − t̃5ρ
γ ) ,

Cs = − 1
4 t̃0 − 1

24 t̃3ρ
α ,

CT = ηJ
1
8 (−t̃1 + t̃2 − t̃4ρ

β + t̃5ρ
γ ) ,

C�s = 1
32 (3t̃1 + t̃2 + 2t̃4ρ

β ) ,

C∇s = − 1
32 (t̃4ρ

β + t̃5ρ
γ ) ,

C∇J = −W0 . (A3)

For interactions which were fitted without the J 2 terms (e.g.,
SLy4 [25], BSk19-21 [26]) one should use ηJ = 0, otherwise
ηJ = 1 (e.g., for SLy5 [25]).

Inserting the functional (A1) into Eq. (8), one obtains the
ph interaction V0. In the case of the BSk interactions, the
additional density dependence of Cτ leads to a slightly more
general form than Eq. (11). To be specific, instead of one

coefficient v0
2 , one needs now two independent coefficients v0

2
and v0

3 analogous to Eq. (14):

v0
1 (q) = (ρ2Cρ )′′ + (ρCτ )′′τ + [

2C∇ρ − 1
2 (ρCτ )′

]
q2 ,

v0
2 = (ρCτ )′ , v0

3 = −2Cτ ,

v0
4 (q) = 2Cs − 2

(
C�s − C∇s + 1

4CsT
)
q2 ,

v0
5 = CsT , v0

6 = −2CsT , v0
8 = v0

9 = C∇J , (A4)

with τ = 3ρk2
F /5. All other v0

i are zero. The expressions
for the v0

i in terms of the Skyrme parameters t̃i are readily
obtained by inserting Eqs. (A3) into Eqs. (A4). They can
also be obtained from the W̄ (S)

i of Ref. [38]: v0
1 = W̄ (0)

1 /2 −
W̄ (0)

3 q2/4, v0
2 = W̄ (0)

2 /2, v0
3 = W̄ (0)

3 − W̄ (0)
2 , v0

4 = W̄ (1)
1 /2 −

W̄ (1)
3 q2/4, v0

5 = W̄ (1)
2 /2, and v0

6 = W̄ (1)
3 − W̄ (1)

2 .

APPENDIX B: GENERALIZED LINDHARD FUNCTIONS

The generalized Lindhard functions 
n can be computed
analytically. It is convenient to write them as 
n = N0kn

F 
̃n,
where 
̃n are dimensionless functions of q̃ = q/kF :


̃0 = −1

2
− 4 − q̃2

8q̃
ln

∣∣∣∣2 + q̃

2 − q̃

∣∣∣∣ , (B1)


̃2 = −12 − q̃2

16
− (4 − q̃2)2

64q̃
ln

∣∣∣∣2 + q̃

2 − q̃

∣∣∣∣ , (B2)


̃2L = −1

3
, (B3)


̃4 = −240 − 8q̃2 + 3q̃4

288
− (4 − q̃2)3

384q̃
ln

∣∣∣∣2 + q̃

2 − q̃

∣∣∣∣ . (B4)

The function 
2T can be obtained from 
2 and 
2L according
to Eq. (17).

Notice that our functions 
n are defined differently from
those in Refs. [30,31].

APPENDIX C: SOLUTION OF THE RPA EQUATION (12)

The Skyrme interaction V0 can be written in a form anal-
ogous to Eq. (14) [similar to Eq. (11) but generalized to
v0

3 = −2v0
2 in the case of BSk interactions, see Appendix A],

with the nonvanishing coefficients v0
i given in Eqs. (A4) and

all other v0
i = 0. Inserting this and Eq. (14) into Eq. (12), one

gets

V21 = V0
21 + {

v0
1 
0 + v0

2

[
p2

2
0 + 
2
] − v0

8 iq · p2 × σ2 
0
}
v1

+ {
v0

1

[
p2

1
0 + 
2
] + v0

2

[
p2

1 p2
2
0 + (

p2
1 + p2

2

)

2 + 
4

] − v0
8 iq · p2 × σ2

[
p2

1
0 + 
2
]}

v2

+ {
v0

3

[
p1 · p2 
2T + p1 · q p2 · q (
2L − 
2T )/q2] + v0

9 iq · p1 × σ2
2T
}
v3

+ {
v0

4 σ1 · σ2 
0 + v0
5 σ1 · σ2

[
p2

2
0 + 
2
] − v0

9 iq · p2 × σ1 
0
}
v4

+ {
v0

4 σ1 · σ2
[
p2

1
0 + 
2
] + v0

5 σ1 · σ2
[
p2

1 p2
2
0 + (

p2
1 + p2

2

)

2 + 
4

] − v0
9 iq · p2 × σ1

[
p2

1
0 + 
2
]}

v5

+ {
v0

6 σ1 · σ2
[
p1 · p2 
2T + p1 · q p2 · q (
2L − 
2T )/q2

] + v0
8 iq · p1 × σ1 
2T

}
v6

+ {
v0

4 σ1 · q σ2 · q
0 + v0
5 σ1 · q σ2 · q

[
p2

2
0 + 
2
]}

v7

+ {
v0

1 iq · p1×σ1 
0+v0
2 iq · p1×σ1

[
p2

2
0 + 
2
]−v0

6 iq · p2 × σ2
2T + v0
8 [q · p1 × σ1 q · p2 × σ2 
0 + 2q2
2T ]

}
v8
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+ {−v0
3 iq · p2 × σ1 
2T + v0

4 iq · p1 × σ2 
0 + v0
5 iq · p1 × σ2

[
p2

2
0 + 
2
]

+ v0
9

[
(p1 · p2 q2 − p1 · q p2 · q)
0 + (σ1 · σ2 q2 − σ1 · q σ2 · q)
2T

]}
v9

+ {
v0

1 p2
1
2 + v0

2 p2
1

[
p2

2
2 + 
4
] − v0

8 iq · p2 × σ2 p2
1
2

}
v10

+ v0
3 p1 · q p2 · q 
2Lv11

+ {
v0

4 σ1 · σ2 p2
1
2 + v0

5 σ1 · σ2 p2
1

[
p2

2
2 + 
4
] − v0

9 iq · p2 × σ1 p2
1
2

}
v12

+ v0
6 σ1 · σ2 p1 · q p2 · q 
2Lv13

+ {
v0

4 σ1 · q σ2 · q
[
p2

1
0 + 
2
] + v0

5 σ1 · q σ2 · q
[
p2

1 p2
2
0 + (

p2
1 + p2

2

)

2 + 
4

]}
v14

+ {
v0

4 σ1 · q σ2 · q p2
1
2 + v0

5 σ1 · q σ2 · q p2
1

[
p2

2
2 + 
4
]}

v15

+ {
v0

1 iq · p1 × σ1 
2 + v0
2 iq · p1 × σ1

[
p2

2
2 + 
4
] − v0

6 iq · p2 × σ2 p2
1
2T

+ v0
8

[
q · p1 × σ1 q · p2 × σ2 
2 + 2q2 p2

1
2T
]}

v16

+ {−v0
3 iq · p2 × σ1 p2

1
2T + v0
4 iq · p1 × σ2 
2 + v0

5 iq · p1 × σ2
[
p2

2
2 + 
4
]

+ v0
9

[
(p1 · p2 q2 − p1 · q p2 · q)
2 + (σ1 · σ2 q2 − σ1 · q σ2 · q)p2

1
2T
]}

v17

+ {
v0

6 q · p1 × σ1 q · p2 × σ2
2T + v0
8 iq · p1 × σ1 2q2
2T

}
v18 . (C1)

By collecting the coefficients of the different operators, we
obtain a system of linear equations for the unknown vi, of the
form (18).

Notice that for some of the vi, the equations are not
unique. For instance, the equation for v2 can be obtained
from the coefficients of p2

1 or p2
2. However, the final result

is independent of this choice because the equality of the
coefficients follows from the Hermiticity of V12 = V ∗

21. Here,
we choose the equations for v2, v5, v8, v9, v14, v16, and
v17 that are obtained from the coefficients of p2

2, σ1 · σ2 p2
2,

−iq · p2 × σ2, −iq · p2 × σ1, σ1 · q σ2 · q p2
2, iq · p1 × σ1 p2

2,
and iq · p1 × σ2 p2

2, respectively.
With this choice, the nonvanishing matrix elements in

Eq. (18) are

A1,1 = v0
1
0 + v0

2
2 , A1,2 = v0
1
2 + v0

2
4 ,

A1,8 = 2v0
8q2
2T , A2,1 = v0

2
0 , A2,2 = v0
2
2 ,

A3,3 = v0
3
2T , A3,9 = v0

9q2
0 , A3,17 = v0
9q2
2 ,

A4,4 = v0
4
0 + v0

5
2 , A4,5 = v0
4
2 + v0

5
4 ,

A4,9 = v0
9q2
2T , A5,4 = v0

5
0 , A5,5 = v0
5
2 ,

A6,6 = v0
6
2T , A7,7 = v0

4
0 + v0
5
2 ,

A7,9 = −v0
9
2T , A7,14 = v0

4
2 + v0
5
4 ,

A8,1 = v0
8
0 , A8,2 = v0

8
2 , A8,8 = v0
6
2T ,

A9,4 = v0
9
0 , A9,5 = v0

9
2 , A9,9 = v0
3
2T ,

A10,2 = v0
2
0 , A10,10 = v0

2
2 ,

A11,3 = v0
3 (
2L − 
2T )/q2 , A11,9 = −v0

9
0 ,

A11,11 = v0
3
2L , A11,17 = −v0

9
2 , A12,5 = v0
5
0 ,

A12,12 = v0
5
2 , A13,6 = v0

6 (
2L − 
2T )/q2 ,

A13,13 = v0
6
2L , A14,7 = v0

5
0 , A14,14 = v0
5
2 ,

A15,14 = v0
5
0 , A15,15 = v0

5
2 , A16,8 = v0
2
0 ,

A16,16 = v0
2
2 , A17,9 = v0

5
0 , A17,17 = v0
5
2 ,

A18,8 = v0
8
0 , A18,16 = v0

8
2 , A18,18 = v0
6
2T . (C2)

This system of equations has actually two decoupled blocks
corresponding to the indices 1, 2, 6, 8, 10, 13, 16, 18, which
have products of two time-even operators, and to the indices
3, 4, 5, 7, 9, 11, 12, 14, 15, 17, which have products of two
time-odd operators.

The solution for the time-even operators reads:

v1 = φa − 1


0
, v2 = v0

2φ2φa , v6 = v0
6φ6T ,

v8 = v0
8φ2φ6T φa , v10 = (

v0
2

)2

0φ

2
2φa ,

v13 =
(
v0

6

)2
(
2L − 
2T )φ6Lφ6T

q2

v16 = v0
2v

0
8
0φ

2
2φ6T φa , v18 = (

v0
8

)2

0φ

2
2φ

2
6T φa , (C3)

and the solution for the time-odd operators:

v3 = φ3T φc − 1


2T
, v4 = φbφc − φ2

5


0φ
2
5

, v5 = v0
5φbφc

φ5
,

v7 = −
(
v0

9

)2

2T φ3T φ2

bφc

φ2
5

, v9 = v0
9φ3T φbφc

φ5
,

v11 = φ3L
[
1 − φc − (1 − φ3T φc)v0

3 (
2L − 
2T )
]

q2
2T
,

v12 = (
v0

5

)2

0φbφc , v14 = −v0

5 (v0
9 )2
0
2T φ3T φ2

bφc

φ5
,

v15 = −(
v0

5v
0
9

)2

2

0
2T φ3T φ2
bφc ,

v17 = v0
5v

0
9
0φ3T φbφc , (C4)
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where the following abbreviations have been used:

φ2 = 1

1 − v0
2
2

, φ3L,T = 1

1 − v0
3
2L,T

,

φ5 = 1

1 − v0
5
2

, φ6L,T = 1

1 − v0
6
2L,T

,

φa = 1

1 − 
0
[
v0

1 + (
v0

2

)2

4 + 2q2

(
v0

8

)2

2T φ6T

]
φ2

2

φb = 1

1 − v0
4
0 − 2v0

5
2 + (
v0

5

)2
(
2

2 − 
0
4)
,

φc = 1

1 − q2
(
v0

9

)2

0
2T φ3T φb

. (C5)
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