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Interference effects for 0νββ decay in the left-right symmetric model
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Various mechanisms may contribute to neutrinoless double beta decay in the left-right symmetric model. The
interference between these mechanisms also contribute to the overall decay rate. The analysis of the contributions
of these interference terms is important for disentangling different mechanisms. In the present paper we study
interference effects contributing to the decay rate for neutrinoless double-β decay in the left-right symmetric
model. The numerical values for maximum interference for several nuclides are calculated. It is observed that,
for most of the interference terms, the contribution is smaller than 20% for all the nuclei considered in the study.
However, the interference between the mass mechanisms (light and heavy) and η mechanism is observed to be
in the range 30%–50%. The variation of the interference effect with the Q values is also studied.
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I. INTRODUCTION

The lepton-number-violating (LNV) rare nuclear process
of neutrinoless double-β decay (0νββ),

A
ZX → A

Z+2 X +2e−, (1)

could be an important low-energy manifestation of physics
beyond the Standard Model (BSM). In contrast with the two
neutrino double-β decay (2νββ), where two antineutrinos are
also emitted, in 0νββ the lepton number is violated by two
units (�L = 2). Experimental observation of 0νββ would
indicate BSM physics since lepton number is conserved in
the Standard Model (SM). In addition, 0νββ would prove the
Majorana nature of neutrinos [1]. Apart from the extensively
studied “standard mass mechanism” of light left-handed (LH)
neutrino exchange [2], several BSM mechanisms are proposed
to contribute to the 0νββ decay [2,3].

The left-right symmetric model (LRSM) is a natural ex-
tension of the SM where the parity is assumed to be restored
at energies higher than the electroweak scale. Actively investi-
gated at the LHC [4], in the LRSM scenario several competing
mechanisms contribute to 0νββ due to the presence of the
right-handed (RH) fields [5]. Additionally, LRSM provides
a natural framework for type-I [6] and type-II [7] seesaw
mechanisms generating small neutrino masses. Moreover, the
seesaw mechanism requires the existence of heavy, sterile
neutrinos [7]. Neutrino mixing schemes would then naturally
incorporate heavy-mass eigenstates for both LH and RH neu-
trinos (see Sec. II for details).

The study of the 0νββ decay rate allows us to extract
the new neutrino physics parameters resulting from such
BSM physics scenarios. However, the neutrino oscillation

*ahmed1f@cmich.edu
†mihai.horoi@cmich.edu

experiments alone cannot determine the absolute masses of
the neutrinos. Moreover, if the regular “mass mechanism”
dominates, then 0νββ decay will allow us to determine the
absolute masses of neutrinos. All these features make 0νββ an
exciting process for probing BSM physics. It thus becomes es-
sential to disentangle the competing underlying mechanisms
inducing 0νββ in order to extract these new neutrino physics
parameters arising from BSM physics [8]. The inverse half-
life formula for 0νββ has the following general structure:

[T 0ν
1/2]−1 =

∣∣∣∣∣
∑

i

(PPP)i × (PSF)
1
2
i × (NME)i

∣∣∣∣∣
2

. (2)

Here, PPP are the particle physics parameters arising from
BSM physics, the phase-space factors (PSF) take into account
the kinematical factors of the two outgoing electrons, and
NME are the nuclear matrix elements for the nuclear transition
between the initial and final nuclei. The summation i is over
all possible amplitudes that could induce the 0νββ process.
Because of the modulus squared, interference between differ-
ent terms in Eq. (2) also contribute to the total decay rate of the
process. In Ref. [9] we studied the interference between the
standard mass mechanism and heavy RH neutrino exchange
mechanism. Our analysis in Ref. [9] showed dependence of
the relative interference factor on the Q value of 0νββ (Qββ).
A contribution no larger than 12% was found for all the nuclei
considered. Here we extend our study of interference to other
relevant pairs of mechanisms, inducing 0νββ in the LRSM
for six nuclei of current experimental interest.

The paper is organized as follows: Section II gives a brief
outline of the LRSM followed by the general formalism for
0νββ in LRSM in Sec. III. In Sec. IV we present the analysis
of the interference terms with the numerical results.

2469-9985/2020/101(3)/035504(11) 035504-1 ©2020 American Physical Society

https://orcid.org/0000-0002-8880-7735
https://orcid.org/0000-0003-0371-2241
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.101.035504&domain=pdf&date_stamp=2020-03-30
https://doi.org/10.1103/PhysRevC.101.035504


FAHIM AHMED AND MIHAI HOROI PHYSICAL REVIEW C 101, 035504 (2020)

II. BRIEF REVIEW OF LEFT-RIGHT
SYMMETRIC MODEL

In the LRSM the SM gauge group GSM ≡ SU(3)C ⊗
SU(2)L ⊗ U(1)Y is extended to SU(3)C ⊗ GLR with GLR ≡
SU(2)L ⊗ SU(2)R ⊗ U(1)B−L [7,10,11]. Restoring parity
above the electroweak scale, the extended group SU(2)R

allows us to form the RH fermions as doublets. We have
the following fermion particle content in LRSM with the
corresponding representation under SU(3)C ⊗ GLR [5,12,13]:

SU(2)L Leptons: LL j =
(

νL j

eL j

)
∈ (1, 2, 1,−1), (3)

SU(2)R Leptons: LR j =
(

νR j

eR j

)
∈ (1, 1, 2,−1), (4)

SU(2)L Quarks: QL j =
(

uL j

d ′
L j

)
∈ (

3, 2, 1, 1
3

)
, (5)

SU(2)R Quarks: QR j =
(

uR j

d ′
R j

)
∈ (

3, 1, 2, 1
3

)
, (6)

where the generations are defined as ν j=1,2,3 ≡ {νe, νμ, ντ },
e j=1,2,3 ≡ {e, μ, τ }, u j=1,2,3 ≡ {u, c, t}, d ′

j=1,2,3 ≡ {d ′, s′, b′}.
The subscripts L and R are associated with the chiral pro-
jection operators PL = 1

2 (1 − γ 5) and PR = 1
2 (1 + γ 5). The

first three entries of the quadruplet of numbers denote the
dimension of the representation under each of the gauge
groups SU(3)C , SU(2)L, and SU(2)R, respectively [14]. The
fourth entry denotes the quantum number associated with the
group U(1)B−L: the difference between the baryon and lepton
number, B − L = 2(Q − T3L − T3R), with Q being the electro-
magnetic charge and T3L and T3R being the third component
of the isospin corresponding to SU(2)L and SU(2)R, respec-
tively. For example, (3, 1, 2, 1

3 ) for SU(2)R quarks denote a
triplet under SU(3)C , a singlet under SU(2)L, a doublet under
SU(2)R, and has a charge 1

3 under U(1)B−L, [13]. The seven
massless gauge bosons along with their respective couplings
for the GEW

LR sector are

SU(2)L : gL,
{
W 1

Lμ,W 2
Lμ,W 3

Lμ

}
, (7)

SU(2)R : gR,
{
W 1

Rμ,W 2
Rμ,W 3

Rμ

}
, (8)

U(1)B−L : g′, Bμ. (9)

The interaction Lagrangian before spontaneous symmetry
breaking (SSB) between fermions and gauge bosons for the
GLR sector is constructed in parallel with the SM electroweak
Lagrangian (a summation of repeated indices, j, a = 1, 2, 3
and μ = 0, 1, 2, 3, is implied),

LEW
LR = gL

[
LL jγ

μ σa

2
LL j + QL jγ

μ σa

2
QL j

]
W a

Lμ

+ gR

[
LR jγ

μ σa

2
LR j + QR jγ

μ σa

2
QR j

]
W a

Rμ

+ g′[LL jγ
μ B−L

2 LL j + QL jγ
μ B−L

2 QL j

+ LR jγ
μ B−L

2 LR j + QR jγ
μ B−L

2 QR j
]
Bμ. (10)

The charge-current part of LEW
LR , which is relevant for 0νββ,

takes the following form (confining ourselves to only the first

generation):

LCC
LR ⊇ gL√

2
[(νeLγ μeL + uLγ μd ′

L )W +
μL

+ (eLγ μνeL + d ′
Lγ μuL )W −

μL]

+ gR√
2

[(νeRγ μeR + uRγ μd ′
R)W +

μR

+ (eRγ μνeR + d ′
Rγ μuR)W −

μR], (11)

where the charged vector bosons are defined in terms of the
W a=1,2,3

L(R)μ fields as

W ±
L(R)μ = 1√

2

(
W 1

L(R)μ ∓ iW 2
L(R)μ

)
. (12)

The scalar sector consists of two Higgs triplets and a bi-
doublet [15],

�L(R) =
[

1√
2
�+

L(R) �++
L(R)

�0
L(R)

−1√
2
�+

L(R)

]
, 	 =

[
φ0

1 φ+
2

φ−
1 φ0

2

]
, (13)

with �L ∈ (1, 3, 1, 2), �R ∈ (1, 1, 3, 2), and 	 ∈ (1, 2, 2, 0).
The gauge symmetry GLR is broken in two stages by the
scalar sector of the theory. Above the SM electroweak scale
the SSB: SU(2)L ⊗ SU(2)R ⊗ U(1)B−L → SU(2)L ⊗ U(1)Y

takes place through the vacuum expectation value (VEV) of
the two Higgs triplets,

〈�L〉 =
(

0 0
1√
2
vLeiθL 0

)
, 〈�R〉 =

(
0 0

1√
2
vR 0

)
. (14)

This breaks the parity and also allows Majorana mass terms
for neutrinos. In the second stage, the SM electroweak SSB:
SU(2)L ⊗ U(1)Y → U(1)EM takes place through the VEV of
the bi-doublet Higgs,

〈	〉 =
(

1√
2
κ1 0

0 1√
2
κ2eiα

)
. (15)

Here we have written the Lagrangian in the flavor basis. After
SSB, LEW

LR acquires mass terms for the fermions and gauge
bosons. For the neutrino sector type I + II seesaw scenario
is assumed, giving rise to small masses for light neutrinos
due to the presence of heavy Majorana neutrinos [5]. The
mass-matrix for neutrinos (νe,μ,τ ), d-type quarks (d ′

j) and the
charged vector bosons (W ±

L(R)) are not diagonal in the flavor
basis. We thus reexpress the flavor-basis fields in terms of
fields in the mass-basis diagonalizing the mass matrices, for
d ′ quarks:

d ′
L = Vud dL + VussL + VubbL, (16)

d ′
R = V ′

ud dR + V ′
ussR + V ′

ubbR, (17)

for electron-neutrinos:

νeL =
light∑

i=1,2,3

UeiνLi +
heavy∑

i=1,2,3

Sei(NRi )
c, (18)

νeR =
light∑

i=1,2,3

T ∗
ei (νLi )

c +
heavy∑

i=1,2,3

V ∗
ei NRi, (19)

035504-2



INTERFERENCE EFFECTS FOR 0νββ … PHYSICAL REVIEW C 101, 035504 (2020)

(a) WL mediation for purely LH fields. (b) WR-WL mediation for RH-LH mixed fields.

(c) WL-WR mediation for LH-RH mixed fields. (d) WR mediation for purely RH fields.

FIG. 1. β-decay diagrams in LRSM at the W -boson and effective Fermi-like four-fermion level.

and for W bosons:(
W ±

L

W ±
R

)
=

(
cos ξ sin ξeiα

− sin ξe−iα cos ξ

)(
W ±

1

W ±
2

)
. (20)

Here Eq. (16) is the first row of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix for LH quark mixing with Eq. (17)
being the first row of an equivalent CKM matrix for RH
quark mixing [16]. The matrix elements Vud and V ′

ud can be
approximated as Vud  cos θc and V ′

ud  cos θ ′
c in terms of the

Cabibbo angle θc for LH d quarks and analogous θ ′
c for RH

d quarks [17]. We have considered the (3-light + 3-heavy)
scenario for Majorana neutrino mixing wherein the mass basis
of the light neutrinos is νi with masses mi, and the heavy

neutrinos are Ni with masses Mi. The S, T, V mixing matrices
are generalization of the PMNS matrix U for the LH-light
neutrino mixing. The charged W bosons, W ±

L(R) are linear
combination of physical bosons W ±

1(2) with definite masses
mW1 and mW2 , respectively. We can further assume a discrete
LR symmetry where the Lagrangian is invariant under the
exchange L ↔ R. This assumption requires that the two gauge
couplings be equal, g = gL = gR. The case of gL �= gR leads to
different expressions for the effective couplings GF , λ, η (see
below), but the form of the 0νββ amplitudes are the same
as for gL = gR (see Ref. [18] for details). Thus, under these
assumptions we can write the charged-current Lagrangian for
the first fermion generation in the mass basis as

LCC
LR ⊇ g√

2

3∑
i=1

{[(U ∗
eiνLi + S∗

ei(NRi )c)γ μeL + cos θcuLγ μdL](cos ξW +
1μ + sin ξeiαW +

2μ)

+ [eLγ μ[UeiνLi + Sei(NRi )
c] + cos θcdLγ μuL](cos ξW −

1μ + sin ξeiαW −
2μ)

+ [(Tei(νLi)c + VeiNRi )γ
μeR + cos θ ′

cuRγ μdR](− sin ξe−iαW +
1μ + cos ξW +

2μ)

+ [eRγ μ[T ∗
ei (νLi)

c + V ∗
ei NRi] + cos θ ′

cdRγ μuR](− sin ξe−iαW −
1μ + cos ξW −

2μ)}. (21)

III. FORMALISM FOR 0νββ IN THE LEFT-RIGHT
SYMMETRIC MODEL

A. β decay in left-right symmetric model

Starting from the charge-current Lagrangian of Eq. (21)
for the LRSM, after applying second-order perturbation in
the gauge coupling g, we get four different types of β-decay
diagrams due to the presence of RH currents (see Fig. 1).
We can then integrate out the heavy degrees of freedom for
the charged bosons (mWL , mWR � 80 GeV) to get point-like
Fermi vertices. Figure 1(a) shows the usual β-decay via W −

L

exchange with Gβ = GF cos θc being the effective point-like
coupling between LH-quark and LH-lepton currents, and GF

is the Fermi constant. Figures 1(b), 1(d), and 1(c) describe the
presence of RH quarks and/or lepton currents. In Fig. 1(b)
the RH-quark and LH-lepton currents are coupled by WR-WL

mixing, mediated by the effective coupling Gβκ . Figure 1(c)
shows the diagram of WL-WR exchange between LH-quark
and RH-lepton currents with effective coupling Gβη. Lastly,
Fig. 1(d) shows the RH counterpart for the usual β decay
of Fig. 1(a) with W −

R exchange, and Gβλ is the effective
coupling between RH currents for quarks and lepton. The
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exact expressions for the effective couplings, GF , λ, η, in
terms of the LRSM parameters are given in Eqs. (7)–(9) of
Ref. [18]. For small WL-WR mixing (ξ � 1) we get

GF 
√

2g2/8m2
WL

, η = κ  tan ξ, (22)

λ  (mW1/mW2 )2  (mWL /mWR )2. (23)

Thus, at the level of effective couplings, we can write an
effective low-energy (V ± A) Fermi-like current-current La-
grangian for β decay [17,18] considering the RH currents.
Taking cos θ ′

c/ cos θc = 1, one gets

Lβ
LR = Gβ√

2

[
jμL J†

Lμ + κ jμL J†
Rμ + η jμR J†

Lμ + λ jμR J†
Rμ

] + H.c.,

(24)

where jμα = eαγ μνeα and J†
α,μ = uαγμdα are leptonic and

hadronic currents, respectively, with α = L, R. The four terms
in Eq. (24), in that order, correspond to the four diagrams of
Fig. 1, respectively. “H.c.” denotes the Hermitian conjugate
terms, which do not contribute to 0νββ.

Notice that the neutrino fields are written in the flavor basis.
The light and heavy neutrino mixing parameters in Eq. (19)
are part of the leptonic currents and not of the effective BSM
parameters η, λ. The LNV parameters of neutrino mixing are
realized at the amplitude level in our analysis.1

B. Amplitudes and diagrams for 0νββ from Lβ

LR

At the effective Lagrangian level of Eq. (24) 0νββ ampli-
tude arises at second order (G2

β) of perturbation. The time-

ordered product of Lβ
LR has ten distinct terms,

T
(
Lβ

LR(x)Lβ
LR(y)

) = G2
β

2
T ([ jLJ†

L ]x[ jLJ†
L ]y + 2κ[ jLJ†

L ]x[ jLJ†
R]y + κ2[ jLJ†

R]x[ jLJ†
R]y + λ2[ jRJ†

R]x[ jRJ†
R]y + 2λη[ jRJ†

R]x[ jRJ†
L ]y

+ η2[ jRJ†
L ]x[ jRJ†

L ]y + λ[ jLJ†
L ]x[ jRJ†

R]y + η[ jLJ†
L ]x[ jRJ†

L ]y + κλ[ jLJ†
R]x[ jRJ†

R]y + κη[ jLJ†
R]x[ jRJ†

L ]y). (25)

From the above time-ordered product we see three types of
combinations of leptonic currents: jL jL, jR jR, and jL jR. After
applying Wick’s theorem to the time-ordered product, the
neutrino fields in the leptonic currents get contracted, giving
rise to the virtual neutrino propagator of 0νββ. The flavor
neutrinos are linear combinations of mass eigenstates as in
Eq. (19). Thus the virtual neutrino propagators would be of
two types: light or heavy massive Majorana neutrinos [13] for
each of the three leptonic current combinations. Expressed in
terms of the usual Dirac propagator we get for the neutrino
propagators [19],

T ( jL(x) jL(y)) ∝ νeL(x)νT
eL(y) =

∑
i

PL
[
U 2

ei SD
mi

(x − y)

+ S2
eiS

D
Mi

(x − y)
]
PLC,

(26)

T ( jR(x) jR(y)) ∝ νeR(x)νT
eR(y) =

∑
i

PR
[
T ∗2

ei SD
mi

(x − y)

+V ∗2
ei SD

Mi
(x − y)

]
PRC,

(27)

T ( jL(x) jR(y)) ∝ νeL(x)νT
eR(y) =

∑
i

PL
[
UeiT

∗
ei S

D
mi

(x − y)

+ SeiV
∗

ei S
D
Mi

(x − y)
]
PRC,

(28)

1See Sec. III D for the effective-field theory approach to 0νββ

where the LNV parameters are interpreted at the effective coupling
level but give us the same formula for the half-life.

where C is the charge-conjugation matrix and the Dirac prop-
agator SD

m′
i
is defined as (m′

i = mi, Mi),

SD
m′

i
(x − y) = i

∫
d4q

(2π )4

e−iq·(x−y)

q2 − m′2
i

(/q + m′
i ). (29)

of the presence of the chiral projection operators PL(R) we will
have two categories of contributions to the amplitude,

(i) PL(R)
/q + m′

i

q2 − m′2
i

PL(R) ∝ m′
i

q2 − m′2
i

, (30)

(ii) PL(R)
/q + m′

i

q2 − m′2
i

PR(L) ∝ /q

q2 − m′2
i

. (31)

Thus we have (i) mass-dependent amplitudes where the
two electrons have the same chirality, and (ii) momentum-
dependent amplitudes when the two electrons have opposite
chiralities [20]. The typical scale of momentum transfer for
the virtual neutrino is |q|  100 MeV. Here we assume mi �
|q| and Mi � |q| for the light and heavy Majorana neutrinos,
respectively. Depending on the mass of the intermediate Ma-
jorana neutrinos, we have two categories of approximations
for both the mass and momentum dependent amplitudes,

(i) mass-dependent propagators:

m′
i

q2 − m′2
i


{

mi
q2 , m2

i � q2 light νi

− 1
Mi

, M2
i � q2 heavy Ni,

(32)

(ii) momentum-dependent propagators:

/q

q2 − m′2
i


{ 1

|q| , m2
i � q2 light νi

− |q|
M2

i
, M2

i � q2 heavy Ni.
(33)

For the keV scale (Mi < |q|) neutrino case see Refs. [13,21].
We now discuss the (i) mass-dependent and (ii) momentum-
dependent cases separately.
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dL
Gβ uL

e−
L

e−
L

GβdL uL

Uei

Uei

νi

mi

νi

(a) Light neutrino exchange for purely LH currents.

Diagram ∝ ηm arising from jLJ†
LjLJ†

L term.

dR
Gβ λ

V
∗
ei

uR

e−
R

e−
R

Gβ λdR uR

V
∗
ei

Ni

Mi

Ni

(b) Heavy neutrino exchange for purely RH currents.

Diagram ∝ ηN arising from jRJ†
RjRJ†

R term.

FIG. 2. Relevant diagrams for 0νββ in LRSM for both electrons of same chirality.

1. Mass-dependent mechanisms:
Outgoing electrons having same chirality

The first six terms on the right-hand side of Eq. (25) are
mass-dependent terms where both the electrons are either LH
or RH. We can ignore most of the second-order terms because
of the smallness of the BSM parameters (κ , λ, η � 1) for both
light and heavy neutrino exchange. Moreover, the first-order
term in κ is further suppressed because of its dependence
on neutrino mass. Since the mixing matrix S is small and
given the heavy mass Mi being in the denominator, the heavy
neutrino exchange case for purely LH currents can be ignored.
Thus, the first term [ jLJ†

L ]x[ jLJ†
L ]y gives rise to the regular

mass mechanism of Fig. 2(a) of light neutrino exchange for
purely LH hadronic and leptonic currents. The amplitude for
the mass mechanism is then

Aν
L ∝ G2

β

∑
i

U 2
eimi

q2
, (34)

where the dimensionless LNV complex parameter ηm =
|ηm| exp(iφm) for the mass mechanism along with the phase
are defined in terms of the BSM parameters of LRSM as
follows:

|ηm| = 1

me
|〈mββ〉| = 1

me

∣∣∣∣∣
∑

i

U 2
eimi

∣∣∣∣∣, (35)

φm = Arg

[∑
i

U 2
eimi

]
. (36)

The only second-order term considered in Eq. (25) is the
λ2 term for the heavy neutrino exchange because the mix-
ing matrix V is assumed to be large. Thus, from the term
λ2[ jRJ†

R]x[ jRJ†
R]y we get the diagram of Fig. 2(b). Then, the

amplitude for the heavy neutrino exchange for the purely RH

currents is

AN
R ∝ G2

βλ2
∑

i

V ∗2
ei

Mi
, (37)

where the dimensionless LNV parameter ηN = |ηN | exp(iφN )
for the heavy neutrino exchange (Ni) is

|ηN | = mpλ
2

∣∣∣∣∣
∑

i

V ∗2
ei

Mi

∣∣∣∣∣ = mp

(
mWL

mWR

)4
∣∣∣∣∣
∑

i

V ∗2
ei

Mi

∣∣∣∣∣, (38)

φN = Arg

[∑
i

V ∗2
ei

Mi

]
. (39)

2. Momentum-dependent mechanisms:
Outgoing electrons having opposite chiralities

The last four terms in Eq. (25) are momentum-dependent
terms. The first-order terms λ and η can give competing
contributions to 0νββ compared with the regular mass mech-
anism of Fig. 2(a) for light neutrino exchange. Thus, the term
λ[ jLJ†

L ]x[ jRJ†
R]y gives rise to the diagram of Fig. 3(a), the

so-called λ mechanism, due to the combination of LH and
RH currents. The amplitude of Fig. 3(a) for the λ mechanism
is then

Aν
λ ∝ G2

βλ
∑

i

UeiT
∗

ei

1

q
, (40)

where the corresponding dimensionless LNV PPP, ηλ =
|ηλ| exp(iφλ), is

|ηλ| = λ

∣∣∣∣∣
∑

i

UeiT
∗

ei

∣∣∣∣∣ =
(

mWL

mWR

)2
∣∣∣∣∣
∑

i

UeiT
∗

ei

∣∣∣∣∣, (41)

φλ = Arg

[∑
i

UeiT
∗

ei

]
. (42)
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dL
Gβ uL

e−
L

e−
R

Gβ λdR uR

Uei

T
∗
ei

νi

(a) λ-diagram due to both LH and RH currents. Diagram

∝ ηλ arising from jLJ†
LjRJ†

R term.

dL
Gβ uL

e−
L

e−
R

Gβ ηdL uL

Uei

T
∗
ei

νi

(b) η-diagram due to gauge boson mixing. Diagram ∝ ηη

arising from jLJ†
LjRJ†

L term.

FIG. 3. Relevant diagrams for 0νββ in LRSM for both electrons of opposite chirality.

The other first-order term η[ jLJ†
L ]x[ jRJ†

L ]y in Eq. (25) gives
rise to the diagram of Fig. 3(b), the so-called η mechanism
due to WL-WR mixing. The amplitude for Fig. 3(b) for the η

mechanism is then

Aν
η ∝ G2

βη
∑

i

UeiT
∗

ei

1

q
, (43)

where the corresponding dimensionless LNV PPP, ηη =
|ηη| exp(iφη ), is

|ηη| = η

∣∣∣∣∣
∑

i

UeiT
∗

ei

∣∣∣∣∣ = tan ξ

∣∣∣∣∣
∑

i

UeiT
∗

ei

∣∣∣∣∣, (44)

φη = Arg

[∑
i

UeiT
∗

ei

]
. (45)

Terms due to heavy neutrino exchange are suppressed, being
proportional to SeiV ∗

ei q/M2
i [5].

Apart from the diagrams considered in Figs. 2 and 3, there
could be additional contributions due to exchange of SU(2)R

and SU(2)L Higgs triplets in LRSM, see Fig. 3 of Ref. [5].
These diagrams are suppressed [5,12,22] and hence we will
not consider them in the subsequent analysis.

C. Half-life for 0νββ

Considering the total amplitude for 0νββ for the four
diagrams of Figs. 2 and 3,

A0ν = Aν
L + AN

R + Aν
λ + Aν

η, (46)

we arrive at the following inverse half-life formula for 0νββ:

[T 0ν
1/2]−1 = g4

A

⎡
⎣Cm|ηm|2 + CN |ηN |2 + Cλ|ηλ|2 + Cη|ηη|2

+
{m,N,λ,η}∑

i �= j

Ci j |ηi||η j | cos (φi − φ j )

⎤
⎦, (47)

where we have factorized g4
A = (1.27)4 to be consistent with

our definitions of the PSFs [23,24], see below. The first
four terms are contributions of the individual mechanisms.
The rest of the terms are due to the interference between
pairs of mechanisms, we have six such combinations. The
differences in phases for the LNV parameters ηi [Eqs. (35),
(38), (41), (44)] may produce interference effects. The Ci and
Ci j are products of relevant NME and PSF for individual and
interference terms, respectively [17,25]:

Cm = G01

[
MGT −

(
gV

gA

)2

MF + MT

]2

, (48)

CN = G01

[
MGT N −

(
gV

gA

)2

MFN + MT N

]2

, (49)

Cλ = G02M2
2− − 2

9
G03M1+M2− + 1

9
G04M2

1+, (50)

Cη = G02M2
2+ − 2

9
G03M1−M2+ + 1

9
G04M2

1−

− G07MPMR + G08M2
P + G09M2

R, (51)

CmN = −2G′
01

[
MGT −

(
gV

gA

)2

MF + MT

]

×
[

MGT N −
(

gV

gA

)2

MFN + MT N

]
, (52)

Cmλ = −
[

MGT −
(

gV

gA

)2

MF + MT

]

× [G03M2− − G04M1+], (53)
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CNλ = −
[

MGT N −
(

gV

gA

)2

MFN + MT N

]

× [G03M2− − G04M1+], (54)

Cmη =
[

MGT −
(

gV

gA

)2

MF + MT

]

× [G03M2+ − G04M1− − G05MP + G06MR], (55)

CNη =
[

MGT N −
(

gV

gA

)2

MFN + MT N

]

× [G03M2+ − G04M1− − G05MP + G06MR], (56)

Cλη = −2G02M2−M2+ + 2

9
G03[M1+M2+ + M2−M1−]

− 2

9
G04M1+M1−, (57)

where the following definitions are used:

M1± = MGT q ± 3

(
gV

gA

)2

MFq − 6MT q, (58)

M2± = MGT ω ±
(

gV

gA

)2

MFω − 1

9
M1∓. (59)

Note that the term 1
9M1∓ in Eq. (59) above is the correct

expression (see footnote on p. 146 of Ref. [26]); it was
incorrectly written as 1

9M1± in Eq. (3.5.16) of Ref. [17].
Detailed expressions for the thirteen NMEs {MF , MGT , MT ,
MFω, MFq, MGT ω, MGT q, MT q, MP, MR, MFN , MGT N , MT N }
are given in the Appendix of Ref. [27]. The expressions for
the nine PSF integrals {G01–G09} are [24]

G0k = g0ν

r2
A

∫ T +1

1
b0kF0(Zs, ε1)F0(Zs, ε2)p1 p2ε1ε2dε1, (60)

with

g0ν = (GF cos θc)4m9
e

(2π )5 ln 2
= 2.8 × 10−22 y−1, (61)

where the expressions for the nine kinematical factors b0k

(k = 1–9) and definitions of other terms are given in Ap-
pendix A of Ref. [24]. The PSF G′

01 in CmN [Eq. (52)] for the
interference between regular mass mechanism [Fig. 2(a)] and
heavy-neutrino exchange for purely RH currents [Fig. 2(b)]
has the same expression as G01 of Eq. (60) without the factors
ε1ε2 [9]. Because of our definitions of the PSFs and NMEs,
the products Ci and Ci j are reported in the units of y−1.

D. Effective-field theory approach to 0νββ

Before proceeding to the analysis section we would like
to point out that the effective Lagrangian of Eq. (24) arises
from an explicit LRSM charge-current Lagrangian, Eq. (21).
This is exactly the approach taken in the standard literature,
e.g., as in Ref. [17], where RH neutrinos are assumed to con-
tribute besides the usual SM neutrinos. In the effective-field
theory (EFT) approach to 0νββ we encounter a dimension-six
Lagrangian [27,28] that is similar in structure to Lβ

LR of

TABLE I. Values of the product of NME and PSF, Ci and Ci j ,
for various nuclei for the 0+ → 0+ transition in units of y−1. See
Tables V and VI of the Appendix.

48Ca 76Ge 82Se 124Sn 130Te 136Xe

Cm × 1014 2.57 3.00 11.54 4.14 5.22 4.39
CN × 1010 1.63 0.87 3.28 1.84 2.25 1.86
Cλ × 1013 1.22 0.43 3.52 0.79 1.24 0.99
Cη × 1009 1.45 1.40 5.11 2.74 3.67 3.09
CmN × 1013 −1.82 −4.11 −9.35 −6.10 −6.64 −5.75
Cmλ × 1014 −0.90 −1.13 −5.68 1.97 −2.64 −2.20
Cmη × 1011 0.38 0.64 1.91 −0.97 1.19 1.01
CNλ × 1012 −0.72 −0.61 −3.03 1.31 −1.74 −1.43
CNη × 1010 3.05 3.43 10.19 −6.45 7.80 6.58
Cλη × 1013 −1.51 −0.60 −5.05 −1.06 −1.65 −1.31

Eq. (21),

LEFT
6 = Gβ√

2

[
jμV−AJ†

V−A,μ+ εV+A
V −A jμV+AJ†

V −A,μ+ εV+A
V+A jμV+AJ†

V+A,μ

+ εS+P
S−P jS+PJ†

S−P+ εS+P
S+P jS+PJ†

S+P+ ε
TR
TR

jμν
TR

J†
TR,μν

]
, (62)

which is the most general Lorentz-invariant Lagrangian re-
sponsible for 0νββ in the second order of perturbation theory.
The leptonic and hadronic currents of the EFT Lagrangian
are respectively jβ = eOβν and J†

α = uOαd , with the Oα,β

operators defined as

OV ±A = γ μ(1 ± γ5), OS±P = (1 ± γ5),

OTR = i

2
[γμ, γv](1 + γ5). (63)

Note that the neutrino fields used in Eq. (62) are the SM
LH neutrinos in the flavor basis. Heavy RH neutrinos in
Eq. (19) are integrated out and any related parameters are
absorbed in the definition of the effective BSM couplings εβ

α .
EFT formalism allows us to relate BSM physics parameters
through the SM degrees of freedom. In the case of LRSM we
approximate the effective BSM couplings as

εV +A
V −A = ηη, εV +A

V +A = ηλ. (64)

The scalar-pseudoscalar (S ± P) and tensor (TR) terms do not
arise from the LRSM charged-current Lagrangian but from
other BSM models. The term related to the heavy-neutrino ex-
change in the presence of purely RH currents, AN

R [Fig. 2(b)],
is not given by the LEFT

6 since it is a short-range contribution

TABLE II. Interference coefficients εmλ(α) in % for specific α

values.

Nuclei εmλ(0.25) εmλ(0.5) εmλ(0.75) εmλ(1)

48Ca 6.42 7.57 7.95 8.03
76Ge 12.68 14.94 15.69 15.85
82Se 11.27 13.28 13.94 14.08
124Sn 13.81 16.28 17.09 17.27
130Te 13.16 15.51 16.28 16.45
136Xe 13.33 15.70 16.49 16.66
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TABLE III. Interference coefficients εmη(α) in % for specific α

values.

Nuclei εmη(0.25) εmη(0.5) εmη(0.75) εmη(1)

48Ca 25.11 29.60 31.07 31.40
76Ge 39.27 46.28 48.59 49.09
82Se 31.48 37.10 38.94 39.35
124Sn 36.32 42.80 44.93 45.40
130Te 34.29 40.41 42.42 42.86
136Xe 34.75 40.95 42.99 43.44

due to the exchange of heavy particles. LEFT
6 gives rise to

long-range contributions to 0νββ due to the exchange of light
neutrinos, see Figs. 1(b) and 1(c) of Ref. [27]. In the EFT
approach to 0νββ, the dimension-nine Lagrangian is [27]

LEFT
9 = G2

β

2mP

[
ε1JJ j + ε2JμνJμν j + εLLz

3 JμJμ j

+ εRRz
3 JμJμ j + εLRz

3 JμJμ j + εRLz
3 JμJμ j

+ ε4JμJμν jν + ε5JμJ jμ
]
. (65)

The expressions for the leptonic and hadronic currents are
given in Ref. [27]. The short-range contribution [see Fig. 1(d)
of Ref. [27] ] to 0νββ, AN

R , arises from the JμJμ j term
of LEFT

9 in first-order of perturbation where we approximate
εRRz

3 = ηN . However, the 0νββ half-life formula, Eq. (47),
is the same in both approaches. Thus, our analysis of the
interference between different mechanisms arising from Lβ

LR
can easily be extended to a subset of terms of the EFT
approach to 0νββ Lagrangians LEFT

6 and LEFT
9 . For a complete

discussion of 0νββ in the EFT approach, see Refs. [28–30].
The contribution of the (S ± P) and TR terms of LEFT

6 to
the total decay rate of 0νββ, along with the constraints on
the effective LNV couplings, have been studied with the
assumption that the interference terms are negligible [27]. As

TABLE IV. Interference coefficient ελη(α) in % for specific α

values.

Nuclei ελη(0.25) ελη(0.5) ελη(0.75) ελη(1)

48Ca 0.45 0.54 0.56 0.57
76Ge 0.31 0.37 0.38 0.39
82Se 0.48 0.56 0.59 0.60
124Sn 0.29 0.34 0.35 0.36
130Te 0.31 0.36 0.38 0.39
136Xe 0.30 0.35 0.37 0.38

an extension of our current work, we plan to explore in the
future the contribution of all the possible interference terms
arising from LEFT

6 . A similar analysis can be also carried out
for the interference terms arising from LEFT

9 ; see, e.g., Eq. (5)
of Ref. [27].

IV. ANALYSIS OF INTERFERENCE TERMS

We now analyze the contribution of each of the interfer-
ence terms in Eq. (47) by comparison with the related pairs
of squared amplitudes for each individual mechanisms. The
interference between light-LH and heavy-RH neutrinos [CmN

term in Eq. (47)] was analyzed in Ref. [9]. Here we analyze
the other five terms (three after symmetry, see below). We
write a generic approximate inverse half-life formula for a pair
of mechanisms in the following manner:

[
T 0ν

1/2

]−1  g4
A[Ci|ηi|2 + Cj |η j |2 + Ci j |ηi||η j | cos (φi − φ j )],

(66)

where i, j = {m, N, λ, η} and i �= j. We assume the individ-
ual mechanism squared amplitude to be a factor α of each

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Q (MeV)

8

10

12

14

16

18
m (%)

48Ca

76Ge

82Se

124Sn

130Te

136Xe

FIG. 4. Coefficient of maximum interference εmλ(1) plotted against Qββ values.
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FIG. 5. Coefficient of maximum interference εmη(1) plotted against Qββ values.

other (0 < α � 1),

Cj |η j |2 = αCi|ηi|2 ⇒ |η j | =
√

α
Ci

Cj
|ηi|. (67)

Thus, our approximate generic half-life expression becomes[
T 0ν

1/2

]−1  g4
A(1 + α)Ci|ηi|2[1 + εi j cos (φi − φ j )], (68)

where the interference coefficient

εi j (α) =
√

α

1 + α

|Ci j |√|Ci||Cj |
(69)

would allow us to compare the contribution of the interference
term with respect to that of each individual mechanisms for

maximum interference, | cos (φi − φ j )| = 1. We numerically
calculate the products of NME and PSF, and the ten Ci and Ci j

of Eqs. (48)–(57), given in Table I.
The NME for the six isotopes used in this study were

calculated by using shell-model techniques [2,31] in three
different model spaces, using three different effective Hamil-
tonians [27,32,33]. Some of the NME are sensitive to short-
range correlation (SRC) effects entering the two-body matrix
elements. Here we used the CD-Bonn SRC parametrization
[2]. Using the AV18 SRC parametrization [2] or/and the
Strasbourg-Madrid choice for the effective Hamiltonians [27]
does not significantly change the results. The relevant NME
and PSF used in this study are given in the Appendix. Besides
the values of Ref. [27], we have also considered the PSF of

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Q (MeV)

0.3

0.4

0.5

0.6

0.7
(%)

48Ca

76Ge

82Se

124Sn 130Te

136Xe

FIG. 6. Coefficient of maximum interference ελη(1) plotted against Qββ values.
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Ref. [34] in conjunction with the various sets of NME. The
results for the two sets of PSF do not have any appreciable
difference. As discussed in Ref. [27], competing contributions
to the NME are always present but some are dominant, such
as those of the Gamow-Teller-type operators, thus avoiding
full cancellations of the total NME. In addition, given that
calculations in different model spaces with different effective
Hamiltonians lead to similar results, we have confidence in
the reliability of our conclusions.

Using Eq. (69) we then evaluate the interference coeffi-
cients, εmλ, εmη, εNλ, εNη, and ελη, for different nuclei and for
some specific α values, in Tables II–IV. Note that the interfer-
ence coefficients εmλ and εNλ are equal. Using Eqs. (48), (50),
and (53) we see that

εmλ = εNλ =
√

α

1 + α

|G03M2− − G04M1+|√
G01|Cλ|

. (70)

Similarly, using Eqs. (49), (50), and (54) we get

εmη = εNη =
√

α

1+ α

|G03M2+−G04M1− − G05MP+G06MR|√
G01|Cη|

.

(71)

Using Eqs. (48), (49), and (52), one sees from Eq. (69) that
the interference coefficient between the mass mechanism and
heavy neutrino exchange mechanism (εmN ) is ∝2G′

01/G01,
which was considered in Ref. [9]. We observe that maximum
interference occurs for α = 1, i.e., when the pairs of individ-
ual mechanisms are equal to each other. Moreover, εi j (α) and
εi j (1/α) are the same, as one can verify from Eq. (69).

V. RESULTS AND DISCUSSION

From Tables II–IV we observe an interference coefficient
no larger than ∼18% for the interference between the mass
mechanism and the λ process (εmλ). The same conclusions
can be drawn for the case for interference between RH-heavy
neutrino exchange and the λ mechanism (εNλ = εmλ). The
interference coefficient for λ and η mechanisms is negligible
with a maximum of 0.59% for 82Se. The interference between
the mass mechanism and heavy neutrino exchange mecha-
nism, εmN , was considered in Ref. [9] for α = 1, see Eq. (25)
and Table 1 of Ref. [9]. For the interference between the mass
mechanism and the η mechanism, the maximum interference
coefficient [εmη(α = 1)] ranges from 30% to 50% with a
maximum of about 49% for 76Ge. The interference coefficient
for RH-heavy neutrino exchange and the η mechanism, εNη,
has the same value.

We plot the coefficients for maximum interference, εmλ(1),
εmη(1), and ελη(1), as functions of Q value (Qββ) of various
nuclei in Figs. 4–6, respectively. We observe that εmλ(1) and
εmη(1) decrease with Qββ . In our study of the interference be-
tween the mass mechanism [Fig. 2(a)] and the heavy-neutrino
exchange for purely RH currents [Fig. 2(b)] in Ref. [9] we
found a similar dependence of εmN on Qββ (see Fig. 2 of
Ref. [9]). For the ελη(1) in Fig. 6 we do not observe any
particular dependence on Qββ .

In summary, we studied the contributions of the inter-
ference effects to the 0νββ decay rate for four competing

mechanisms arising from LRSM: (i) the regular mass mecha-
nism for light-neutrino exchange of purely LH currents (ηm),
(ii) the heavy-neutrino exchange mechanism for purely RH
currents (ηN ), (iii) the λ mechanism (ηλ), and (iv) the η-
mechanism (ηη). We extended our analysis of Ref. [9] to
interference effects between the mass mechanism (ηm) and
heavy-neutrino exchange mechanism (ηN ) to the other five
contributions. Besides several BSM scenarios, the LRSM is
being actively investigated at the LHC [4]. Several competing
mechanisms have been proposed to contribute to 0νββ. It is
important to know if different mechanisms can be disentan-
gled. For that goal, analyzing the contribution of interference
terms to the decay rate is essential. By comparing the decay
rate of several nuclei of experimental interest one may be
able to differentiate between two competing mechanisms, pro-
vided that the contribution of interference term is negligible
[27,35]. In the present study we have observed that most of
the two-mechanism interference terms introduce a relatively
minor modification to the half-life, less than 20%. However,
the interference between the neutrino exchange mechanisms
(light and heavy) and the η mechanism is not small enough
for the nuclei considered. In that case, the angular distribution
of the emitted electrons can be used to distinguish between
these two mechanisms, as has been discussed in Ref. [35]. One
should emphasize that the interference coefficients we found
are not large enough to lead to a full cancellation of the decay
rate [see Eq. (66)]. Our conclusions are based on shell-model
NME calculated with different sets of effective Hamiltonians
and short-range correlation parametrizations, thus giving us
confidence in their reliability.

Our analysis of the interference terms in 0νββ decay rate
in the context of LRSM can also be extended for the EFT ap-
proach to 0νββ. Specifically, as discussed in Sec. III D, the in-
terference of the amplitudes arising from scalar-pseudoscalar
(S ± P) and tensor (TR) terms in LEFT

6 with the four amplitudes
studied here. This analysis will be reported separately.
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TABLE V. PSF in y−1 for 0+ → 0+ transition. Values of
(G01–G09) are taken from Ref. [27] for all the isotopes except for
124Sn. Values of G′

01 are taken from Ref. [9].

48Ca 76Ge 82Se 124Sn [36] 130Te 136Xe

G01 × 1014 2.45 0.23 0.10 0.89 1.41 1.45
G′

01 × 1015 [9] 1.09 0.29 0.76 0.98 1.37 1.46
G02 × 1014 15.46 0.35 3.21 1.68 3.25 3.15
G03 × 1014 1.82 0.12 0.65 0.50 0.85 0.85
G04 × 1015 5.04 0.42 1.92 1.56 2.53 2.58
G05 × 1013 3.28 0.60 2.16 2.70 4.12 4.36
G06 × 1012 3.87 0.50 1.65 1.47 2.16 2.21
G07 × 1010 2.85 0.28 1.20 1.11 1.75 1.80
G08 × 1011 1.32 0.17 0.82 1.04 1.72 1.83
G09 × 1010 15.55 1.12 4.42 2.95 4.47 4.44
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TABLE VI. Dimensionless NME for 0+ → 0+ transition. Values taken from Refs. [27,33,36]. From Ref. [27], we have considered the
NME calculated with the CMU effective Hamiltonians and CD-Bonn SRC parametrization.

48Ca 76Ge 82Se 124Sn [33,36] 130Te 136Xe

MGT −0.805 −3.200 −3.000 −1.853 −1.658 1.501
MF 0.233 0.674 0.632 0.467 0.438 −0.400
MT −0.073 −0.011 −0.012 −0.019 0.006 −0.007
MGT N −55.890 −156.493 −144.907 −113.364 −103.025 92.565
MFN 22.893 62.649 58.091 43.295 40.984 −36.942
MT N −11.308 −0.205 −0.513 −3.827 2.022 −2.178
MGT q −0.709 −3.228 −3.034 1.793 −1.587 1.440
MFq 0.121 0.383 0.362 −0.267 0.249 −0.230
MT q 0.173 0.059 0.058 0.011 0.013 −0.012
MGT ω −0.930 −3.501 −3.287 2.053 −1.855 1.682
MFω 0.232 0.659 0.618 −0.456 0.427 −0.391
MR −1.001 −3.243 −3.088 2.663 −2.530 2.312
MP −0.390 2.435 2.303 −2.060 1.707 −1.600
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APPENDIX

In this Appendix we tabulate the values of the ten PSFs,
{G01–G09, G′

01} and the thirteen NMEs {MF , MGT , MT , MFω,
MFq, MGT ω, MGT q, MT q, MP, MR, MFN , MGT N , MT N } taken
from the literature.
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