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Fluctuations in the composition of nuclear pasta in symmetric
nuclear matter at finite temperature
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The equilibrium distributions of the different pasta geometries and their linear sizes are calculated from
the mean field Gibbs energy functional in symmetric nuclear matter at finite temperature. The average sizes
and shapes coincide approximately with the ones predicted by a standard pasta calculation in the coexisting
phase approximation, but fluctuations are additionally calculated and seen to increase with temperature and
baryonic density. The different pasta shapes are shown to coexist in a wide domain of density and temperature,
in qualitative agreement with the findings of large scale molecular dynamics simulations, but with a much less
expensive computational cost.
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I. INTRODUCTION

Exotic nonspherical shapes of nuclear matter, the so-called
pasta phases, are possible because of a competition between
short range nuclear attraction and long range Coulomb repul-
sion, leading to the phenomenon of Coulomb frustration, well
known in statistical mechanics [1]. Such complex phases are
expected in the inner crust of neutron stars (NS), as well as in
core-collapse supernova cores [2–6].

Even if their existence is limited to a very narrow range
of densities, their electrical and thermal conductivity are be-
lieved to be very important for the thermal [7,8] and magnetic
evolution of neutron stars [9,10], and their elastic proper-
ties give some information on the quasiperiodic oscillations
(QPOs) observed in some soft-gamma ray repeaters (SGR)
[11] and on magnetar giant flares [12]. Moreover, in supernova
matter, the presence of density inhomogeneities contributes in
an important way to neutrino opacity [10,13–15]. In particu-
lar, it was suggested that pasta can slow neutrino diffusion in
protoneutron stars and greatly increase the neutrino signal at
late times after core collapse [16].

Most calculations of nuclear pasta assume a crystalline
structure in the so-called single nucleus approximation
(SNA): different pasta geometries and sizes are associated
to different temperatures, densities, and proton fractions, but
at a given thermodynamic condition matter is described by
the spatial repetition of identical Wigner-Seitz cells. This is
a poor approximation because at finite temperature different
configurations can coexist at thermal equilibrium, and a rich
phenomenology corresponding to multiple domains and de-
fects is expected [17]. These fluctuations of composition are
believed to be particularly important in the case of pasta,
because of the very small energy barriers separating different
geometries [18]. In the calculations of crustal heating and
cooling, these defects are modelled by an external impurity
factor, which is essentially a free parameter [19].

The importance of fluctuations is confirmed by the realis-
tic, and numerically very expensive, molecular dynamics sim-
ulations of nuclear pasta that go beyond the SNA: hundreds of
thousands of particles are needed to avoid deformations due
to boundary conditions and finite size effects [20,21]. These
calculations treat nucleons as purely classical particles. Self-
consistent mean-field approximations with realistic effective
interactions have also been performed [22–24], but no more
than some thousand nucleons can be simulated even if massive
parallel computing is employed [24]. Shell and finite size ef-
fects were also investigated with the help of Skyrme-Hartree-
Fock equations solved on a three-dimensional (3D) Cartesian
grid and some impressive structures were obtained. These ef-
fects were shown to be minimized only for very large number
of nucleons, of at least A = 2000 [25]. In these microscopic
studies, it was observed that complex geometries different
from the standard spheres, slabs and rods can be obtained,
though at a very expensive computational cost. However, it is
not clear if those triple periodic minimal surface (TPMS) pasta
configurations [26] will survive at finite temperature, which is
the object of the present study. For this reason, we stick to the
standard pasta geometries in the following.

In a recent paper [27], a perturbative method was in-
troduced, allowing to calculate the full nuclear distribution
associated to a given equation of state (EoS) of stellar mat-
ter based on the single-nucleus Wigner-Seitz approximation,
with a numerical effort comparable to the one needed for a
simple SNA. In this approach, the different configurations are
weighted according to their Gibbs energy, which is consis-
tently calculated from the EoS. The only hypothesis needed
is that the corrections to the chemical potentials calculated
in the SNA can be treated perturbatively, and neglected at
first order. This hypothesis can be considered as safe in the
high temperature domain investigated in the present work, as
it was recognized already in the 1980s [28]. This technique
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was applied in Ref. [27] to evaluate the nuclear distribution
during core collapse, based on a nonrelativistic equation of
state. In this paper, we use the same formalism but we apply
it to a relativistic mean-field functional. Furthermore, we use
it for the first time to compute the distributions in the pasta
regime, and show that at moderate temperature the different
pasta geometries can coexist with comparable probabilities
in a large range of densities, at very low computational
cost.

The plan of the paper is as follows. In Sec. II the theo-
retical formalism is presented. After a short summary of the
main equations for a relativistic mean-field treatment of finite
temperature homogeneous matter in Sec. II A. In Sec. II B we
show how the free energy for the different pasta geometries is
computed and in Sec. II C the statistical formalism allowing
to calculate the pasta distributions and the multicomponent
(or NSE) formalism used for this study is recalled. For this
exploratory study, we limit ourselves to symmetric matter.
This has not a direct application for astrophysical purposes,
but allows describing the main features of the pasta distribu-
tions as a function of density and temperature. The extension
to asymmetric matter is in progress. The results are presented
in Sec. III, and Sec. IV contains conclusions and outlooks.

II. FORMALISM

A. Finite temperature relativistic mean field

We consider a neutral system of electrons, protons and
neutrons with masses given respectively by me = 0.511 MeV
and M = 939 MeV and their corresponding antiparticles, in-
teracting in the mean-field approximation of static fields with
and through an isoscalar-scalar field φ0, an isoscalar-vector
field V0, and an isovector-vector field b0. The parameters
of the models are the meson masses ms, mv , mρ , the linear
coupling parameters gs, gv, gρ of the mesons to the nucleons,
and the nonlinear scalar couplings κ, λ, for which we use the
NL3 [29] parameter set.

The bulk nuclear matter properties of the NL3 model
are the binding energy B/A = 16.3 MeV, the compressibility
K = 272 MeV, the symmetry energy Esym = 32.4 MeV, the
effective mass M∗/M = 0.60, and the slope of the symmetry
energy L = 93.9 MeV, all calculated at the saturation density
of the model ρ0 = 0.148 fm−3. It is well known that this pa-
rameter set is not one of the most realistic RMF models [30].
Nevertheless, the unphysical characteristics of NL3 mainly
appear at densities above nuclear saturation and for asym-
metric matter, situations which are not explored in the present
work. Conversely, a reliable calculation of the surface tension
coefficient was obtained for NL3 within the self-consistent
microscopic Thomas-Fermi approximation [31]. As it will be
clear in the following, a consistent treatment of surface and
bulk is crucial to obtain realistic results in a pasta calculation,
and this is the reason why this parametrization was often
employed in previous works that use the same formalism
[13,31–33].

In future calculations, realistic proton fractions for astro-
physical applications will be considered, and the parametriza-
tion will be reviewed.

The following equations of motion for the fields are ob-
tained and solved self-consistently [32,33,35]:

m2
s φ0 + κ

2
φ2

0 + λ

6
φ3

0 = gsρs,

(1)
m2

vV0 = gvρB ; m2
ρb0 = gρ

2
ρ3.

They depend on the the equilibrium densities ρB = ρp + ρn,
ρ3 = ρp − ρn, where ρp and ρn are the proton and neutron
densities, as well as on the associated scalar densities ρs =
ρsp + ρsn and ρs3 = ρsp − ρsn. The proton/neutron densities
are given by

ρi = 1

π2

∫ ∞

0
d pp2( fi+ − fi−), i = p, n (2)

and the corresponding scalar density by

ρsi = 1

π2

∫ ∞

0
d pp2 M∗

i√
p2 + M∗

i
2

( fi+ + fi−) (3)

with the distribution functions given by

fi± = 1

1 + exp[(ε∗
i (p) ∓ νi )/T ]

, (4)

where ε∗
i =

√
p2 + M∗

i
2,

M∗
i = M − gs φ0, (5)

and the effective chemical potentials are

νi = μi − gvV0 − gρ

2
τ3i b0, (6)

τ3i = ±1 being the isospin projection for the protons and
neutrons, respectively. The baryonic free energy density is
defined as

F = E − TS, (7)

where the energy density is given by

E = 1

π2

∑
i=n,p
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24
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0 , (8)

and the entropy density reads

S = 1

T
(E + P − μpρp − μnρn), (9)

as a function of the baryonic pressure

P = 1

3π2

∑
i=p,n

∫ ∞
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d p

p4

ε∗
i
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+ m2
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2
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We always consider neutral matter and therefore the electron
density is equal to the density of the protons. The leptonic
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thermodynamic quantities are given by standard relativistic
free Fermi gas, and explicit expressions can be found in
Refs. [32,33].

B. Nuclear pasta within the coexisting phases method

As in [6,33], for a given total density ρB and proton fraction
Yp = ρp/ρB = ρe/ρB (with ρe the net electron density), the
average characteristics of the pasta structures are built with
different geometrical forms in a background nucleon and
electron gas. This is achieved within the so-called coexisting
phase approximations (CPA). The cluster and the gas are
distributed in two homogeneous components at different den-
sities ρI and ρII each satisfying the self-consistent equations
(1) for the scalar fields. The equilibrium between the two
components is obtained imposing equality of pressure and
chemical potentials:

PI
(
νI

p, ν
I
n, M∗

n
I
, M∗

p
I) = PII

(
νII

p , νII
n , M∗

n
II
, M∗

p
II)

,

μI
i = μII

i , i = p, n. (11)

Finally particle number conservation defines the volume frac-
tion f I ≡ f of the dense “phase”:

f = ρB − ρII

ρI − ρII
(12)

with ρB and ρp = ρe the total baryonic and proton density,
the latter being also equal to the net electron density, which
is considered as homogeneous over the Wigner-Seitz cell,
i.e., ρI

e = ρII
e . The solution of the above equations allows

estimating, for a given thermodynamic condition (T, ρB,Yp),
the mass and volume fraction associated to clusterized matter,
but not the cluster shape nor its linear dimension. These latter
can be variationally determined introducing finite size effects,
namely the interplay between Coulomb and surface energy.
The total baryonic energy density of the cell is given by

ED = f E I + (1 − f )E II + Esurf,D + ECoul,D, (13)

where E I (II ) is the baryonic energy density of homogeneous
matter at the baryonic density ρI (II ) given by Eq. (8). This term
only depends on the densities ρI (II ), ρI (II )

p , while the surface
and Coulomb term additionally depend on the assumed ge-
ometry (D = 1, 2, 3). By minimizing the sum Esurf,D + ECoul,D

with respect to the size of the droplet/bubble, rod/tube, or slab
we get the virial condition [6] Esurf,D = 2ECoul,D, and

ECoul,D = 2β

42/3
(e2π�D)1/3

(
σD

(
ρI

p − ρII
p

))2/3
, (14)

where β = f for droplets and β = 1 − f for bubbles, σ is the
surface energy coefficient, D is the dimension of the system.
For droplets, rods, and slabs,

�D =
{( 2−D f 1−2/D

D−2 + f
)

1
D+2 , D = 1, 3;

f −1−ln( f )
D+2 , D = 2.

(15)

The results of the CPA can be realistic if the surface tension
coefficient σ is microscopically calculated [31–33]. We use
the functional form given in [31] for the the surface tension
coefficient, which was fitted from a full variation of the local
density profile in the Thomas-Fermi approximation. Each

structure is considered to be in the center of a charge neutral
Wigner-Seitz cell constituted by neutrons, protons and leptons
(electrons and positrons) [34]. This average Wigner-Seitz cell
is a sphere/cylinder/slab whose volume is the same as the unit
BCC cell. The linear size of the droplet (rod, slab) and of the
Wigner-Seitz cell are, respectively, given by

RD =
(

σD

4πe2
(
ρI

p − ρII
p

)2
�D

)1/3

, RW = RD

f 1/D
. (16)

In the SNA approximation, the equilibrium configuration
in a given thermodynamic condition is characterized by the
repetition in space of a unique geometry, which will be
referred to as the pasta solution. This solution is determined by
comparing the total free energy per particle as obtained in the
different geometries [2–6,31–33,35]. As a general trend, the
droplet shape prevails at the lowest densities, and is replaced
successively by rods, slabs, and bubbles as density increases.
The location of the transition between the different geometries
depends on the temperature, the proton fraction, and, to a
smaller degree, on the nuclear model [36].

An example is given in Fig. 1 at two different temperatures
(T = 1 and 5.5 MeV), from where one can see the actual
values of the free energy per particle in the different geome-
tries and densities. We can see that the free energy barrier
between the different configurations is extremely low in a
wide range of densities, and a qualitatively similar behavior is
observed in the whole sub-saturation density domain. This is
a generic result that was observed by many authors [2,3,5,6]
with different models. It means that we can expect a strong
superposition of different shapes in a complete statistical
calculation at finite temperature, as it is indeed observed in
large scale molecular dynamics simulations [17,21–24].

The statistical weight of these different configurations is
worked out in the next section.

C. Distribution of pasta structures

In a complete statistical mechanics treatment of finite
temperature matter, the total free energy should be minimized
with respect to the probabilities of the different microstates,
and in the absence of long range correlations a statistical dis-
tribution of Wigner-Seitz cells is obtained [27,37]. Working
in the grand-canonical ensemble, the different cells share the
same intensive parameters, namely, the chemical potentials
μn = μII

n , μp = μII
p as well as the pressure P = PII . As a

consequence, the characteristics of the nucleon gas (phase
II) are not modified with respect to the CPA treatment.
Conversely, the density, proton fraction and geometry can
fluctuate from one cell to another.

We follow the derivation of Refs. [27,37,38], but we adapt
it to the RMF model and extend it to the case of multiple free
energy minima due to the different geometries, which enables
multimodal probability distributions.

Since the SNA is known to reproduce very accurately the
average thermodynamic properties, we make the approxima-
tion that the relation between chemical potential μn, μp and
total baryonic and total density ρB, ρp can be obtained in
the SNA, that is from the solution of the equilibrium Gibbs
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FIG. 1. Free energy per nucleon as a function of the density for Yp = 0.5 and T = 1 (left figure) and 5.5 MeV (right figure) for different
geometries. The final (preferential) configuration curve coincides with the droplets at the bottom and the subsequent curves (from bottom to
top) represent rods, slabs, bubbles, and tubes.

equations of the CPA. The mean field equations require that
each pasta configuration corresponding to a given density
ρN leads to corresponding fluctuating meson fields. The free
energy density is still given by Eq. (7), but all the quantities
are calculated at a density ρ = ρN . For a given density value
ρN , within the volume corresponding to the spherical cell
V N

W = 4π (RN
3 )3

/3 f N , the number of particles of the cluster
does not depend on the geometry and is given by

AN = 4

3
πρN

(
RN

3

)3
, (17)

where RN
3 is given by

RN
3 =

(
3σ

4πe2
(
ρN

p − ρII
p

)2
�3

)1/3

. (18)

Analogous expressions hold for the proton and neutron
number ZN , NN of the cluster. For the other geometries, the
same volume is fixed in our calculations, in which the number
of particles is computed.

To obtain the probability PD(AN ) of finding a pasta struc-
ture with AN particles per unit cell, and dimension D, we
describe the macroscopic system as a collection of indepen-
dent Wigner-Seitz cells, each one characterized by the same
nucleon gas of density ρII , but different volume fractions f N

and cluster densities ρN , leading to different cluster masses
AN = ρNV N . The chemical equilibrium is no longer realized
at the level of the single cell, but only at the level of the
multi-component distribution. Mass and charge conservation
now read

ρB =
∑
N,D

PD(AN )[ f NρN + (1 − f N )ρII ], (19)

ρp =
∑
N,D

PD(AN )
[

f NρN
p + (1 − f N )ρII

p

]
, (20)

where the sum runs over cluster species N and dimensions D.
Charge neutrality in principle imposes ρp = ρe only for the
global system, but in fact charge neutrality is also realized at

the level of the single Wigner-Seitz cell because of the homo-
geneity of the electron and proton gas, ρe = ρN

p = Y N
p ρN

B .
The density of clusters corresponding to the fluctuation ρN

and the geometry D (nD(AN )) is linked to the probability PN

by

nD(AN ) = PD(AN )/VW ; VW =
∑

N

V N
W PD(AN ), (21)

where, as already mentioned, the volume cell does not depend
on the geometry, and the average cell volume VW is taken
from the pasta calculation. In the case of the traditional
pasta calculation (or SNA approximation), we would have
nN = 1/VW for ρN = ρI , and zero otherwise. The free energy
density of the multicomponent plasma for the ensemble of
occupations {nD(AN )} can be written as

F =
∑
N,D

nD(AN )
[

f N
(FN + EN

surf,D + EN
Coul,D

)]
V N

W

+
∑
N,D

nD(AN )[(1 − f N )F II ]V N
W

= F II +
∑
N,D

nD(AN )FD(AN ), (22)

where the contribution of the dilute part can be separated from
the rest if an in-medium free energy is defined as

FD(AN ) = AN

ρN

(FN + EN
surf,D + EN

Coul,D − F II
)
, (23)

or also

FD(AN ) = ED(ρN ) − E (ρII )

ρN
AN

− T
S (ρN ) − S (ρII )

ρN
AN , (24)

and we have used the definition of the volume fraction in each
cell f N = V N/V N

W . The single-nucleus free energy associated
to the independent cell problem is given by the general
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mean-field relation:

F̃D(AN ) ≡ ∂F
∂nD

= FD(AN ) + δF N
D , (25)

where δF N
D is a rearrangement term. The rearrangement term

arises from the self-consistency induced by the Coulomb term
[27]. Indeed, the Coulomb term given by Eq. (14) explicitly
depends on the local proton density ρN

p through the function
�D shown in Eq. (15). As the charge neutrality is realized
at the level of the single Wigner-Seitz cell, its proton charge
corresponding to the cluster N ,

ρp = f N
(
ρN

p − ρII
p

) + ρII
p , (26)

can be equalized to the global proton charge of the system
given by Eq. (20). This equation can be written in terms of the
cluster densities nD(AN ) as

ρp =
∑
N,D

nD(AN )V N
(
ρN

p − ρII
p

) + ρII
p . (27)

The equality between Eqs. (26) and (27) implies that the
local proton density ρN

p depends on the probability of the
associated fluctuation. As a consequence, a rearrangement
term arises:

δF N
D =

(
nD

∂F̃D

∂nD

)
(AN ). (28)

Changing variables from ρN
p to the volume fraction f N and

using the virial relation Esurf,D = 2ECoul,D we have

δF N
D = PD(AN )

VW

ANV N

ρN
3
∂EN

Coul,D

∂ f N
. (29)

As F̃D should scale with AN , we factor out the AN term, and
average the rest of the expression over the different fluctu-
ations, which amounts to replacing the different quantities
with the ones obtained in the pasta calculation at the same
thermodynamic conditions:

δF N
D = AN 1

ρI
3 f

∂ECoul,D

∂ f
, (30)

which, after the replacement of Eq. (15), becomes

δF N
D =

⎧⎪⎪⎨
⎪⎪⎩

AN

ρI ECoul,3
(
3 + 1

5�3
[ f − f 1/3]

)
, droplets

AN

ρI ECoul,2
(
3 + ( f −1)

4�2

)
, rods

AN

ρI ECoul,1
(
3 + 1

3�1

[ f 2−1]
f

)
, slabs

. (31)

The calculation of the rearrangement term allows defining
the total one-cell multicomponent free energy density as

F̃ =
∑
N,D

nD(AN )F̃D(AN ) + F II . (32)

The grand-canonical partition sum of the independent cell
problem can now be explicitly written as

Z̃ =
∑
{nD}

exp −(F̃ − μnρn − μpρp)/T, (33)

which can be factorized as

Z̃ = Z̃clusZ II , (34)

where Z II is the partition sum of the homogeneous system
at density ρII , −T lnZ II = F II − ∑

q=p,n μqρ
II
q . Introducing

the single-nucleus grand-canonical potential

�̃D(AN ) = F̃D(AN ) − μN (35)

with the effective cluster chemical potential

μN =
∑

q=n,p

μqV N
(
ρN

q − ρII
q

)
, (36)

the clusterized part of the partition sum has the same func-
tional structure as for an ideal gas, and can be explicitly
calculated:

Z̃clus =
∑
{nD}

exp −
(

β
∑
N,D

nD(AN )�̃D(AN )

)

=
∏
N,D

∞∑
n=0

(exp −β�̃N )n

n!

=
∏
N,D

exp wD(AN ) (37)

with wD(AN ) = exp −β�̃D(AN ) and β = 1/T . This leads to
an analytical expression for the average cluster densities

nD(AN ) = ∂ ln Z̃clus

∂βμN
= wD(AN ), (38)

and finally for the probabilities

PD(AN ) = exp(−β�̃D(AN )∑
D

∑
A exp(−β�̃D(A))

, (39)

such that the total probability of the fluctuation ρN can be
calculated as PN = ∑

D PD(AN ).
Equation (39) is our main result, and allows calculating the

probability of the different pasta structures. We can see that
we have formally recovered a simple Boltzmann weighting
according to the different free energies of the clusters, biased
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FIG. 2. Denser phase single-nucleus grand canonical potential
with (wR, thick lines) and without (nR, thin lines) the rearrangement
term for T = 1 MeV. 1D curves are on the left, 2D in the middle and
3D on the right.
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FIG. 3. Evolution with density of the linear size of the different
geometries. Top curves stand for 3D, curves in the middle for 2D,
and bottom curves for 1D. Solid lines represent T = 1 MeV and
dashed lines T = 4.5 MeV for average distribution radius; dotted
lines represent the pasta phase at 1 MeV and dot-dashed lines the
pasta phase at T = 4.5 MeV.

by the chemical potentials that, for each thermodynamic con-
dition, are taken from the SNA pasta calculation. However,
the presence of the rearrangement term due to the Coulomb
correlations imposed by charged neutrality modifies this sim-
ple picture. It was already shown in Refs. [27,38], where only
spherical clusters were considered, that this term is essential
to recover the SNA solution as the most probable cluster in
the total multicomponent distribution. For this first applica-
tion with the RMF model and the inclusion of the different
pasta geometries, we limit ourselves to symmetric matter and
neglect proton fraction fluctuations, i.e., we consider Y N

p =
Y I

p = Y II
p = 0.5. Then, the baryonic density in each cell is the

same, ρN
B = ρB, and we simply have f N = ρB−ρII

ρN −ρII .
To quantify the rearrangement term in the case of geometry

fluctuations, we plot the Gibbs energy with (thick lines, higher
values) and without (thin lines, lower values) it for the three
lowest geometries at T = 1 MeV in Fig. 2. We can see that

this term plays a non-negligible role and can even change the
order of the preferential geometry.

III. RESULTS

To illustrate the formalism of Sec. II, we concentrate on the
low density regime, close to the transition from the spherical
to the rod shape, which is predicted by the NL3 model around
ρB = 0.03 fm−3 at zero temperature and at slightly different
densities as the temperature increases.

Figure 3 displays the evolution with density of the average
linear size of the different geometries for two different temper-
atures. We can see that the temperature effects are negligible,
while bigger pasta structures appear in denser matter, as
expected. This is in perfect agreement with the standard pasta
calculation in the SNA (thin solid and dashed lines in Fig. 3),
but in this latter a single geometry is considered in a given
thermodynamic condition.

In our formalism, the different geometries can coexist and
Fig. 4 shows the probability distribution as a function of
the pasta linear dimension with different geometries and two
temperatures, at two densities that correspond in the CPA
approximation to the droplet and rod phase (see Fig. 1).
We can see that the droplet configuration (3D) dominates at
the lower density and both temperatures considered, but the
contribution of the rod geometry is far from being negligible.
At slightly higher density, the situation changes: the slab
configuration (1D) dominates at both temperatures and the
three geometries can be seen to coexist at T = 5 MeV. What-
ever the geometry, the distribution is strongly peaked on the
most probable cluster at the lowest temperature as expected,
but considerable fluctuations are seen as the temperature
increases.

The evolution with temperature of the probability of the
different geometries is displayed in Fig. 5 for two different
densities. The droplet geometry tends to prevail at the low
temperature in the lower density regime considered and re-
mains dominant at all temperatures. At the lower density,
the slab configuration (1D) is hardly noticed. At the higher
density, the spherical configuration is replaced by the slab one
as the dominant geometry and the other two geometries (3D
and 2D) are also present, as already observed in Fig. 4. Hence,
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FIG. 4. Probability distribution as a function of the pasta linear dimension with different geometries, for different temperatures and
densities with Yp = 0.5. Solid lines represent T = 1 MeV and dashed lines T = 5 MeV.
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FIG. 5. Evolution with temperature of the probability of the
different geometries. Solid lines represent ρ = 0.0119 fm−3 and
dashed lines represents ρ = 0.0278 fm−3. From top to bottom the
solid curves stand for 3D, 2D, and 1D (hardly noticed) and the dashed
curves for 1D, 2D, and 3D.

Fig. 5 demonstrates that in a very wide range of temperatures
the geometries coexist with comparable probabilities.

IV. CONCLUSIONS

In this paper, we have extended a formalism recently
introduced in Refs. [27,38] to the calculation of fluctuations
of the pasta configurations. The statistical distribution of
different pasta geometries and sizes is evaluated from the free
energy functional of a single Wigner-Seitz cell, calculated
with a relativistic mean field model with the coexisting phase
approximation, and a surface tension fitted from Thomas-
Fermi calculations at constant proton fraction. For this first
application, we have restricted our efforts to symmetric matter
and to a limited density region. We have shown that the

droplets, rods, and slabs coexist with comparable probabilities
in a large interval of densities and temperatures.

It is important to remark that in our formalism the pasta
symmetry is always exactly respected. This is expected to
be a good approximation at low temperature, well verified
by microscopic calculations in three dimensions that allow
all symmetry breakings [24]. However, more complicated
geometries such as “waffle”, “parking garage”, and “TPMS”
structures [21,25,26] are expected in some regimes of proton
fractions, and could be added to the geometries presently con-
sidered. This might require extra corrections for applications
in the supernova context where temperatures of the order of
the MeV are explored. Indeed in this regime shape fluctuations
are clearly observed in molecular dynamics simulations, even
if finite thermalization time and finite size effects are difficult
to handle and might distort the distributions [21,25].

Finally, it is important to recall that the presence of density
inhomogeneities is known to contribute in an important way
to neutrino opacity, and in general to the dynamics of super-
nova and neutron star cooling through a modification of the
transport coefficients such as shear viscosity as well as elec-
trical and thermal conductivities [10,13–15]. The evaluation
of transport coefficients within our formalism is in progress,
and will be presented in a forthcoming paper.

We would like to end by emphasizing the extremely low
computational cost involved in our formalism as compared
with [17,24–26] where the coexisting geometrical shapes are
observed.
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