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We present a comprehensive study of mass modifications of scalar, pseudoscalar, vector, and axial-vector
mesons in nuclear matter using the three-flavor extended linear σ model (eLSM) and the two-flavor parity
doublet model (PDM). The meson masses in nuclear matter are determined by calculating the one-loop nucleon
corrections to the meson mean fields. As a result, we find all spin-0 meson masses except those of the pion,
kaon, and the lightest scalar-isoscalar mesons decrease at finite baryon density. For spin-1 mesons, masses of all
axial-vector mesons decrease in medium, and the density dependences of the ρ- and ω-meson masses strongly
depend on the value of chiral invariant mass (M0). Also, our results suggest M0 ≈ 0.8 GeV is preferable.
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I. INTRODUCTION

One of the most important phenomena of quantum chro-
modynamics (QCD) is the spontaneous breakdown of chiral
symmetry. This effect is essential to explain the masses of
light mesons as well as the interactions among them in a
vacuum [1,2]. In nuclear matter, however, chiral symmetry
is believed to be (partially) restored, which is expected to
lead to significant modifications of light meson properties.
Therefore, investigating meson properties such as masses in
medium gives us clues to a better understanding of the partial
(incomplete) restoration of chiral symmetry (see Refs. [3,4]
for reviews and references therein).

While the small masses of the pion and kaon can be
well understood by the spontaneous breakdown of chiral
symmetry, the large mass of η′ meson is mainly explained
by the U(1)A axial anomaly effect [5]. The U(1)A anomaly
is related to the existence of the instanton, which can play
an important role in color confinement [6]. Some previous
studies suggest the strength of the U(1)A anomaly can be
changed in finite baryon density, but it is still under discussion
whether the magnitude of the anomaly is strengthened or
weakened [7–9]. In association with the change of U(1)A

anomaly in nuclear matter, a mass reduction of the η′ meson
leads to the possibility of the formation of η′ mesic nuclei as
well [10–16].

The spectroscopy experiment of the pionic atom at the
Helmholtzzentrum für Schwerionenforschung GmbH (GSI)
was performed to observe the partial restoration of chiral
symmetry in nuclear matter, whose result suggests a reduction
of the chiral order parameter: f ∗

π (ρ0)2/ f 2
π ≈ 0.64 at normal
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nuclear density ρB = ρ0 [17]. Also, the fixed-target experi-
ments for vector meson mass modifications in nuclei at Japan
Proton Accelerator Research Complex (J-PARC) [18] and at
Jefferson Laboratory [19] were operated, but the result is still
under discussion due to a complexity from a broadening of
vector mesons. Another experiment called the E16 experiment
is planned at J-PARC. Furthermore, the η′ mesic nuclei exper-
iments at GSI [20–22] and at the University of Bonn [23–27]
and the pp → ppη′ reaction experiment at the COSY acceler-
ator complex [28] have been carried out, aimed at the change
of U(1)A axial anomaly in nuclear matter. Another η′ mesic
nuclei experiment is ongoing at SPring-8 [29] (see Ref. [30]
for a review and references therein).

In the present work, we comprehensively study the mass
modifications of light scalar, pseudoscalar, vector, and axial-
vector mesons in nuclear matter to provide useful information
on the partial restoration of chiral symmetry and the change
of the U(1)A anomaly in medium to existing and forthcoming
experiments. For this purpose, we employ the three-flavor
extended linear σ model (eLSM) established in Refs. [31–37],
in which vector and axial-vector mesons are incorporated
in addition to the scalar and pseudoscalar mesons,1 while
global chiral symmetry and scale invariance is respected. The
eLSM not only reproduces meson properties in vacuum such
as masses and decay widths, but has also been proven to be
useful for the investigation of nuclear matter as well [47].

In this study, the nucleons are introduced by the two-
flavor parity doublet model (PDM) [41–45], and nuclear
matter is constructed in the one-loop approximation of the
nucleon [46–49] while the mesons are obtained from the

1Further extensions of the eLSM are possible by including
tetraquark states [38–40], for example.

2469-9985/2020/101(3)/035209(16) 035209-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.101.035209&domain=pdf&date_stamp=2020-03-27
https://doi.org/10.1103/PhysRevC.101.035209


DAIKI SUENAGA AND PHILLIP LAKASCHUS PHYSICAL REVIEW C 101, 035209 (2020)

eLSM. In our approach, not only the vacuum properties
of nucleons but also the nuclear matter properties such as
the saturation density, the binding energy per nucleon, and
the incompressibility are successfully reproduced. The PDM
contains two types of nucleons, the nucleon and its chiral
partner, and in the so-called mirror assignment, it is possible
to construct a nucleon mass term without violating chiral
symmetry. In other words, the PDM predicts the existence of
a nucleon mass that does not originate from chiral symmetry
breaking, which is the so-called chiral invariant mass (M0).
The existence of M0 is also suggested by lattice calculations
in the context of a parity doubling; however, its precise value
is still under discussion [50–52]. In this paper, we find the
value of M0 ≈ 0.8 GeV to be preferable.

This paper is organized as follows. In Sec. II, the three-
flavor eLSM is introduced and the determined model pa-
rameters are shown provided by Ref. [35]. In Sec. III, we
present the two-flavor PDM and construct nuclear matter

by combining the eLSM and the PDM. In Sec. IV, the
remaining parameters are determined and numerical results
of the density dependence of the meson masses are presented.
Sections V and VI are devoted to the discussions and conclu-
sions, respectively.

II. EXTENDED LINEAR σ MODEL (eLSM)

In this paper, we present a comprehensive study of light
mesons in nuclear matter by employing the three-flavor
eLSM. This model was established in Ref. [35], and success-
fully reproduced meson properties in vacuum such as masses
and decay widths. In this section, we introduce the eLSM and
present the determined parameters of the above reference.

The Lagrangian of the eLSM maintains a scale invariance
except for current quark mass effects, in which a dilaton
is responsible for the violation of scale invariance of QCD,
which is given by

LeLSM = Ldil + Tr[(Dμ�)†(Dμ�)] − m2
0

(
G

G0

)2

Tr[�†�] − λ1(Tr[�†�])2 − λ2Tr[(�†�)2] + Tr[H (�† + �)]

− 1

4
Tr[LμνLμν + RμνRμν] + Tr

[(
m2

1

2

(
G

G0

)2

+ 


)(
L2

μ + R2
μ

)] + c1(det� − det�†)2

+ i
g2

2
(Tr[Lμν[Lμ, Lν]] + Tr[Rμν[Rμ, Rν]]) + h1

2
Tr[�†�]Tr

[
L2

μ + R2
μ

] + h2Tr
[
L2

μ��† + R2
μ�†�

]
+ 2h3Tr[Lμ�Rμ�†] + g3(Tr[LμLνLμLν] + Tr[RμRνRμRν]) + g4(Tr[LμLμLνLν]

+ Tr[RμRμRνRν]) + g5Tr[LμLμ]Tr[RνRν] + g6(Tr[LμLμ]Tr[LνLν] + Tr[RμRμ]Tr[RνRν]), (1)

where the meson nonets �, Lμ, and Rμ are

� = 1√
2

⎛
⎜⎜⎝

σN +a0
0+i(ηN +π0 )√

2
a+

0 + iπ+ K∗+
0 + iK+

a−
0 + iπ− σN −a0

0+i(ηN −π0 )√
2

K∗0
0 + iK0

K∗−
0 + iK− K̄∗0

0 + iK̄0 σS + iηS

⎞
⎟⎟⎠,

Lμ = 1√
2

⎛
⎜⎜⎝

ωN +ρ0√
2

+ f1N +a0
1√

2
ρ+ + a+

1 K∗+ + K+
1

ρ− + a−
1

ωN −ρ0√
2

+ f1N −a0
1√

2
K∗0 + K0

1

K∗− + K−
1 K̄∗0 + K̄0

1 ωS + f1S

⎞
⎟⎟⎠

μ

,

Rμ = 1√
2

⎛
⎜⎜⎝

ωN +ρ0√
2

− f1N +a0
1√

2
ρ+ − a+

1 K∗+ − K+
1

ρ− − a−
1

ωN −ρ0√
2

− f1N −a0
1√

2
K∗0 − K0

1

K∗− − K−
1 K̄∗0 − K̄0

1 ωS − f1S

⎞
⎟⎟⎠

μ

. (2)

G is the dilaton field and its kinetic term and self-interaction
terms are included in Ldil.2 The chiral transformation laws for

2Explicitly, Ldil is of the form [53–58]

Ldil = 1

2
∂μG∂μG − 1

4

m2
G

G2
0

(
G4ln

G

G0
− G4

4

)
, (3)

�, Lμ, and Rμ are

� → gL�g†R, Lμ → gLLμg†L, Rμ → gRRμg†R, (4)

with G0 being the dilaton mean field and mG being the dilaton mass
which is matched by the trace anomaly of QCD.
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where gL (gR) is an element of U(3)L [U(3)R] chiral group.
Lμν and Rμν in Eq. (1) are the field strengths

Lμν = ∂μLν − ∂νLμ, Rμν = ∂μRν − ∂νRμ, (5)

representing the kinetic terms for the (axial-)vector mesons.
The covariant derivative is Dμ� = ∂μ� − ig1(Lμ� − �Rμ).3

The matrices H and 
 are responsible for the explicit
breaking of chiral symmetry which take forms of H =
diag( h0N

2 , h0N
2 , h0S√

2
) and 
 = diag(δN , δN , δS ), respectively.

In the following analysis, we will regard the dilaton as
the f0(1710) whose mass is larger than the other light me-
son masses. Thus, the dilaton dynamics will be ignored in
what follows; i.e., the dilaton field in Eq. (1) is simply
replaced by its mean field: G → G0. Also, we assume the
large-Nc suppression works well for interactions containing
the spin-1 mesons, which allows us to drop the single-trace
terms [60,61]. Hence, the reduced three-flavor eLSM reads

Lred
eLSM = Tr[(Dμ�)†(Dμ�)] − m2

0Tr[�†�] − λ1
(
Tr[�†�]

)2

− λ2Tr[(�†�)2] + Tr[H (�† + �)] − 1

4
Tr[LμνLμν

+ RμνRμν] + Tr

[(
m2

1

2
+ 


)(
L2

μ + R2
μ

)]

+ c1(det� − det�†)2 + h2Tr
[
L2

μ��† + R2
μ�†�

]
+ 2h3Tr[Lμ�Rμ�†]

+ g4p(Tr[LμLνLμLν] + Tr[RμRνRμRν])

+ g4p(Tr[LμLμLνLν] + Tr[RμRμRνRν]). (6)

We note that the g2 term is dropped as well, although this
term can provide mass modifications to the spin-1 kaon sector
in nuclear matter due to the ωN mean field. We expect the
correction is small since the ωN mean field is suppressed in
comparison to the σN or σS meson fields. We also note that
due to the lack of information on the values for the four-point
couplings of spin-1 mesons, we have taken g3 = g4 ≡ g4p for
simplicity.

The values of the model parameters determined in Ref. [35]
are listed in Table I. These parameters are fixed in order to
reproduce the masses and decay widths of light mesons in

TABLE I. Parameters extracted from the eLSM in Ref. [35].
Here, C1 = m2

0 + λ1(φ̂2
N + φ̂2

S ) and C2 = m2
1 with φ̂N and φ̂S being

the vacuum expectation value (VEV) of σN and σS in the vacuum.

Parameters in eLSM Values

C1 [GeV2] −0.9183
C2 [GeV2] 0.4135
c1 [GeV−2] 450.5
δN [GeV2] 0
δS [GeV2] 0.1511
g1 5.8433
φ̂N [GeV] 0.1646
φ̂S [GeV] 0.1262
h0N [GeV3] 0.001135
h0S [GeV3] 0.02138
h2 9.880
h3 4.867
λ2 68.30

vacuum, with the mean fields of σN and σS , φ̂N ≡ 〈σN 〉vac and
φ̂S ≡ 〈σS〉vac,4 satisfying gap equations. The detailed proce-
dure to fix the parameters are given in Ref. [35]. According
to this reference, the value of λ1 cannot be fixed due to a
large uncertainty of the f0 (scalar-isoscalar) meson sector.
Besides, as we have mentioned in the previous paragraph,
the value of g4p remains to be determined. The parameters λ1

and g4p will be determined by fitting them to nuclear matter
properties in Sec. IV A. In fact, g4p can play a significant role
in reproducing the incompressibility of nuclear matter [46].

III. CONSTRUCTION OF NUCLEAR MATTER

A. Parity doublet model (PDM)

In this study, the meson masses in nuclear matter are
determined by calculating the one-loop nucleon corrections
to the meson mean fields. To this end, we combine the three-
flavor eLSM and the two-flavor PDM. Although light mesons
containing (anti)strange quarks can in principle couple with
nucleons, we do not include such interactions for the sake of
a clear and transparent study. Hence, the Lagrangian of the
PDM is given by [41,45]

LN = ψ̄1r (i�∂ + μBγ0 + gV ��̃R)ψ1r + ψ̄1l (i�∂ + μBγ0 + gV ��̃L)ψ1l + ψ̄2r (i�∂ + μBγ0 + hV ��̃L)ψ2r + ψ̄2l (i�∂ + μBγ0 + hV ��̃R)ψ2l

+ g̃1V (Tr[R̃μ]ψ̄1rγ
μψ1r + Tr[L̃μ]ψ̄1lγ

μψ1l ) + g̃2V (Tr[R̃μ]ψ̄1lγ
μψ1l + Tr[L̃μ]ψ̄1rγ

μψ1r ) + h̃1V (Tr[R̃μ]ψ̄2rγ
μψ2r

+ Tr[L̃μ]ψ̄2lγ
μψ2l ) + h̃2V (Tr[R̃μ]ψ̄2lγ

μψ2l + Tr[L̃μ]ψ̄2rγ
μψ2r ) − M0[ψ̄1lψ2r − ψ̄1rψ2l − ψ̄2lψ1r

+ ψ̄2rψ1l ] − k1(det�̃ + det�̃†)[ψ̄1lψ2r − ψ̄1rψ2l − ψ̄2lψ1r + ψ̄2rψ1l ] − k2(det�̃ − det�̃†)[ψ̄1lψ2r

+ ψ̄1rψ2l + ψ̄2lψ1r + ψ̄2rψ1l ] − G1[ψ̄1r�̃
†ψ1l + ψ̄1l�̃ψ1r] − G2[ψ̄2r�̃

†ψ2l + ψ̄2l�̃ψ2r], (7)

3In fact, Lμ and Rμ are not “gauge fields” as understood by the transformation laws in Eq. (4), such that these vector mesons do not need to
couple with � by a covariant derivative, unlike in the context of hidden local symmetry (HLS) [59]. The remnant contributions are provided
by h2 and h3 terms.

4Throughout this paper, we use a symbol “X̂ ” for referring to a vacuum value of the quantity X .

035209-3



DAIKI SUENAGA AND PHILLIP LAKASCHUS PHYSICAL REVIEW C 101, 035209 (2020)

in which ψ1r(l ) is the naive-assigned nucleon and ψ2r(l ) is the
mirror-assigned one; i.e., these nucleons transform under the
U(2)L × U(2)R chiral transformation as

ψ1r → g̃Rψ1, ψ1l → g̃Lψ1l ,

ψ2r → g̃Lψ2, ψ2l → g̃Rψ2r, (8)

with g̃L ∈ U(2)L and g̃R ∈ U(2)R. �̃, R̃μ, and L̃μ are two-
flavor projected light meson fields given by

�̃ = σN + iπaτ a,

Ṽμ = L̃μ + R̃μ

2
= 1

2
(ωN + ρaτ a)μ, (9)

Ãμ = L̃μ − R̃μ

2
= 1

2

(
f1N + aa

1τ
a
)
μ
,

with τ a being the Pauli matrices. In Eq. (7), μB is a baryon
number chemical potential introduced to access finite baryon
density. Unfamiliar terms are the k1 and k2 ones, which
include determinants of the multiplets in flavor space. Al-
though the mass dimensions of k1 and k2 are [GeV−1] in the
two-flavor case, these terms are allowed by the U(1)A axial
anomaly in principle. In particular, the k2 term is essential
to reproduce the decay width of N∗(1535) → Nη decay in
vacuum [62]. The k1 term provides an additional contribution
to the nucleon masses, as will be observed soon. Under chiral
symmetry breaking at finite density, σN , σS , and the time-
component of ω

μ
N possess the mean field values:

φN ≡ 〈σN 〉, φS ≡ 〈σS〉, ω̄N ≡ 〈
ω

μ=0
N

〉
, (10)

respectively [φS enters through the eLSM in Eq. (6)]. In a
vacuum, these values are reduced to φN → φ̂N , φS → φ̂S , and
ω̄N → 0. Note that the trace terms proportional to g̃1V , h̃1V ,
g̃2V , and h̃2V allowed by the chiral symmetry are included to
provide a difference between the ρNN and ωN NN couplings,
which make the density dependences of the ρ and ωN masses
differ.

In Lagrangian (7), although ψ1r(1l ) and ψ2r(2l ) are con-
venient to observe the chiral symmetric properties of the
Lagrangian, these fields are not mass eigenstates. The mass
eigenstates N+ and N− are obtained by introducing a mixing
angle θ as(

N+
N−

)
=

(
cos θ γ5sin θ

−γ5sin θ cos θ

)(
ψ1

ψ2

)
, (11)

with θ satisfying

tan 2θ = 2
(
M0 + k1

2 φ2
N

)
(G1 + G2)φN

,

cos 2θ = (G1 + G2)φN√
(G1 + G2)2φ2

N + 4
(
M0 + k1

2 φ2
N

)2
,

sin 2θ = 2
(
M0 + k1

2 φ2
N

)
√

(G1 + G2)2φ2
N + 4

(
M0 + k1

2 φ2
N

)2
, (12)

and the corresponding mass eigenvalues are

m± = 1

2

[√
(G1 + G2)2φ2

N + 4

(
M0 + k1

2
φ2

N

)2

∓ (G2 − G1)φN

]
(13)

for N± (double-sign correspondence). N+ is a positive-parity
state while N− is a negative-parity state; then, we assign N+
to the nucleon N (939) and N− the N∗(1535). Equations (12)
and (13) show that the direct U(1)A anomaly correction to the
nucleons (k1 term) can modify both the mixing angle θ and the
mass eigenvalues m±. At the point of chiral restoration φN =
0, Eq. (13) yields m± → M0, which shows that the nucleon
masses can be generated without chiral symmetry breaking.5

This is why M0 is often refereed to as a chiral invariant mass.
By assuming g̃1V = h̃1V = g̃2V = h̃2V ≡ g̃ (but still gV and

hV are not identical) for simplicity, the Lagrangian (7) is
rewritten into

LN = N̄+i�∂N+ + N̄−i�∂N− − m+N̄+N+ − m−N̄−N− + (gV cos2θ + hV sin2θ )N̄+��̃V N+ + (gV cos2θ − hV sin2θ )N̄+��̃Aγ5N+
− (gV − hV )sin θ cos θ N̄+��̃V γ5N− − (gV + hV )sin θ cos θ N̄+��̃AN−
− (gV − hV )sin θ cos θ N̄−��̃V γ5N+ − (gV + hV )sin θ cos θ N̄−��̃AN+
+ (gV sin2θ + hV cos2θ )N̄−��̃V N− + (gV sin2θ − hV cos2θ )N̄−��̃Aγ5N− + 2g̃N̄+�ωN N+ + 2g̃N̄−�ωN N−
− k1(det� + det�†)fl{sin 2θ N̄+N+ + cos 2θ N̄+γ5N− − cos 2θ N̄−γ5N+ + sin 2θ N̄−N−}
− k2(det� − det�†)fl{sin 2θ N̄+γ5N+ + cos 2θ N̄+N− − cos 2θ N̄−N+ + sin 2θ N̄−γ5N−}
− gNNσ N̄+

(
σN + aa

0τ
a
)
N+ − gNNπ N̄+iγ5(ηN + πaτ a)N+ + gNN∗σ N̄+γ5

(
σN + aa

0τ
a
)
N−

+ gNN∗π N̄+i(ηN + πaτ a)N− − gNN∗σ N̄−γ5
(
σN + aa

0τ
a
)
N+ − gNN∗π N̄−i(ηN + πaτ a)N+

− gN∗N∗σ N̄−
(
σN + aa

0τ
a
)
N− − gN∗N∗π N̄−iγ5(ηN + πaτ a)N−, (14)

5According to Ref. [63], deconfinement implies restoration of chiral symmetry and therefore no hadrons should exist in the chiral limit.
However, this argument does not generalize to finite density as argued by Glozman [64] and supported by lattice investigations [65,66].
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TABLE II. Input parameters in terms of the vacuum properties of
the nucleons.

Inputs in the vacuum Values

m̂+ [GeV] 0.939
m̂− [GeV] 1.535
ĝN+

A 1.267

ĝN−
A 0.2±0.3 [67]

�̂N∗ (1535)→Nη [GeV] 0.065

in terms of N+ and N−, with

(det�̃+det�̃†)fl = 1
2

(
2φNσN + σ 2

N −η2
N − aa

0aa
0+πaπa

)
,

(det�̃ − det�̃†)fl = iφNηN , (15)

and

gNNσ = −G2 − G1

2
+ G1 + G2

2
cos 2θ,

gNNπ = G1 + G2

2
+ G1 − G2

2
cos 2θ,

gNN∗σ = G1 + G2

2
sin 2θ,

gNN∗π = −G2 − G1

2
sin 2θ,

gN∗N∗σ = G2 − G1

2
+ G1 + G2

2
cos 2θ,

gN∗N∗π = −G1 + G2

2
− G2 − G1

2
cos 2θ. (16)

The parameters in the PDM together with the remaining
ones in the eLSM are fixed by both the vacuum properties
of nucleons and nuclear matter properties. In terms of the
vacuum properties, input parameters are the nucleon mass
(m̂+), the N∗(1535) mass (m̂−), the axial charges (ĝN±

A ), and

the N∗ → Nη decay width (�̂N∗(1535)→Nη), which are summa-
rized in Table II. (Recall the symbol “X̂ ” stands for a vacuum
value of the quantity X .) In our model, the axial charges and
N∗(1535) → Nη decay width are calculated as [31]

ĝN+
A = φ̂N

m̂+

[
ĝNNπ + (gV cos2θ̂ − hV sin2θ )

g1

m̂2
a1

φ̂N m̂+

]
,

ĝN−
A = φ̂N

m̂−

[
ĝN∗N∗π + (gV sin2θ̂ − hV cos2θ̂ )

g1

m̂2
a1

φ̂N m̂−

]
,

(17)

and

�̂N∗(1535)→Nη = 1

8π

| �pη|
m̂2−

Ĝ2
[
(m̂+ + m̂−)2 − m̂2

η

]
, (18)

with

| �pη| =
√

[m̂2− − (m̂+ + m̂η )2][m̂2− − (m̂+ − m̂η )2]

2m̂−
,

Ĝ = −ẐηN (k2φ̂N cos 2θ̂ − ĝNN∗π )cos θ̂η, (19)

respectively. Here, the renormalization factor ẐηN and the
mixing angle θ̂η are given in Eqs. (A16) and (A18), respec-
tively. As already mentioned, the parameter k2 is crucial to fit
the N∗(1535) → Nη decay in Eq. (18) [62]. The list of the
determined parameters after fitting nuclear matter properties
will be summarized in Table IV in Sec. IV A.

B. Nuclear matter

In this subsection, we construct nuclear matter by combin-
ing the eLSM and the PDM provided in Secs. II and III A,
and fit the remaining parameters. Here, nuclear matter is
constructed by the one-loop approximation of the nucleon
combined with the meson mean fields in Eq. (10). Therefore,
the grand potential (per volume) reads6

�/V = − 1

4π2

⎡
⎣2

3

√
k2

F + m2+k3
F −

√
k2

F + m2+kF m2
+ + m4

+ln

⎛
⎝kF +

√
k2

F + m2+
m+

⎞
⎠
⎤
⎦

+
[

m2
0

2

(
φ2

N + φ2
S

) + λ1

4

(
φ2

N + φ2
S

)2 + λ2

8

(
φ4

N + 2φ4
S

) − h0NφN − h0SφS − m2
ωN

2
ω̄2

N − g4p

2
ω̄4

N

]

−
[

m2
0

2

(
φ̂2

N + φ̂2
S

) + λ1

4

(
φ̂2

N + φ̂2
S

)2 + λ2

8

(
φ̂4

N + 2φ̂4
S

) − h0N φ̂N − h0Sφ̂S

]
, (20)

in which the effective chemical potential is

μ∗
B ≡ μB − gωω̄N , (21)

6Here, contributions from N− are absent. This is true as far as we
stick to lower density ρB � 2ρ0 (ρ0 is the normal nuclear density).

with

gω = − 1
2 (gV cos2θ + hV sin2θ ) − 2g̃. (22)

The Fermi momentum kF is defined via the relation μ∗
B =√

k2
F + m2

+ , and the baryon number density ρB is given by
ρB = 2

3π2 k3
F . Note that the vacuum contributions to the grand

potential have been subtracted to measure the thermodynamic
quantities properly. The grand potential in Eq. (20) and gap
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TABLE III. Input parameters in terms of the nuclear matter
properties.

Inputs in nuclear matter Values

P|ρ0 0
μB|ρ0 [GeV] 0.923
K [GeV] 0.24

equations with respect to φN , φS , and ω̄N ,

∂�

∂φN
= 0,

∂�

∂φS
= 0,

∂�

∂ωN
= 0, (23)

are essential to get nuclear matter quantities and determine
the density dependence of the meson masses consistently with
the vacuum ones. We should note, in the current approach, the
ωNN coupling (gω) in Eq. (22) depends on the density via the
mixing angle θ because we have assumed gV 
= hV .

In this study, the saturation condition at the normal nuclear
density ρ0 = 0.16 fm−3: ∂

∂ρB
( E

N )|ρ0 = 0 (E is the total energy
and N is the mass number), the binding energy per nucleon
E
N |ρ0 − m̂+ = −16 MeV, and the incompressibility K = 0.24
GeV are chosen as input parameters by nuclear matter prop-
erties. First, the saturation condition reads

∂

∂ρB

(
E

N

)∣∣∣∣
ρ0

= P

ρ2
B

∣∣∣∣
ρ0

= 0, (24)

in which ρB = N/V have been utilized, with the help of simple
thermodynamic relations

E = −PV + μBN (25)

and

dE = μBdN, (26)

with dV = 0. Thus, we arrive at

P|ρ0 = 0. (27)

The pressure of the medium is simply defined by P ≡ −�/V
with Eq. (20). Next, using Eq. (27), the condition for the
binding energy per nucleon is reduced to

E

N

∣∣∣∣
ρ0

= μB|ρ0 = 0.923 GeV, (28)

together with Eq. (25) and m̂+ = 0.939 GeV. Finally,
again by using Eqs. (25), (26), and (27), we obtain the

FIG. 1. The density dependence of ( fπ )med/( fπ )vac and
( fK )med/( fK )vac for M0 = 0.8 GeV and k1 = 0.

incompressibility

K = 9ρ2
0

∂2

∂ρ2
B

(
E

N

)∣∣∣∣
ρ0

= 9ρ0

(
∂μB

∂ρB

)
V

|ρ0 = 0.24 MeV. (29)

The input parameters in terms of the nuclear matter properties
are summarized in Table III.

IV. RESULTS

A. Parameter determination

Before showing numerical results of meson mass modifi-
cations in nuclear matter, we determine the remaining model
parameters by fitting the inputs in Tables II and III. Our
procedure leaves two free parameters. Hence, we select M0

(chiral invariant mass) and k1 [the strength of direct U(1)A

anomaly effect to the nucleons] as free parameters.
The fixed parameters with a given set of M0 and k1 are

summarized in Table IV. Because of the strong constraints
by nuclear matter properties, the allowed range of M0 is
0.6 GeV � M0 � 0.8 GeV. In terms of k2, we could find two
solutions since the formula to calculate the N∗(1535) → Nη

decay width in Eq. (18) includes a quadratic term of k2. Here,
we pick up the solution of which the absolute value is smaller
as done in Ref. [62]. Although the value of ĝN−

A includes a
large uncertainty as given in Table II, we fix ĝN−

A = 0.2 here
since the results are largely insensitive to a change of ĝN−

A
within its error range. We should note that when the four-point
interaction among spin-1 mesons [g4p term in Eq. (6)] is
absent, we fail to reproduce the incompressibility. We assume

TABLE IV. Determined remaining parameters with given M0 and k1. In this table, we define dimensionless quantities k̃1 = k1φ̂N and
k̃2 = k2φ̂N .

M0 [GeV] k̃1 G1 G2 k̃2 gV hV g̃ λ1 g4p

0.8 5 −0.2924 3.329 −19.60 21.10 8.063 −6.333 −22.73 39.09
0.8 0 3.922 7.542 −0.2467 3.847 −9.186 −2.623 −22.98 42.01
0.8 −5 5.324 8.945 0.8113 2.625 −10.41 −2.668 −22.67 2.442
0.7 5 1.488 5.109 −4.392 8.432 −4.601 −4.350 −22.54 114.4
0.7 0 4.386 8.007 0.1265 3.381 −9.652 −3.683 −22.84 171.9
0.7 −5 5.497 9.118 0.9509 2.506 −10.53 −3.537 −22.48 106.7
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FIG. 2. The density dependence of spin-0 (left) and spin-1 (right) meson masses with M0 = 0.8 GeV and k̃1 = 0.

the sign of g4p should be positive. Otherwise, we could find
a nonzero ω̄N even in the vacuum, which is forbidden by the
Lorentz invariance. Furthermore, to determine the value of g̃,
we have chosen a solution in such a way that the value of
ω̄N is always positive. We emphasize that we could confirm
the first-order liquid-gas phase transition takes place at μB =
0.923 GeV [68].

A simple way to define the pion and kaon decay constants
is [69]

( fπ )med = φN

Zπ

, ( fK )med =
√

2φS + φN

2ZK
, (30)

as a naive extension of the vacuum ones: ( fπ )vac = φ̂N/Ẑπ

and ( fK )vac = (
√

2φ̂S + φ̂N )/(2ẐK ) [Zπ , ZK , Ẑπ , and ẐK are
renormalization factors defined in Eqs. (B4) and (A14)]. By
employing Eq. (30), the density dependences of ( fπ )med and
( fK )med for M0 = 0.8 GeV and k1 = 0 are depicted in Fig. 1.
This figure clearly shows the partial restoration of chiral sym-
metry at finite baryon density [70,71]. The reduction ratios of
fπ and fK to the vacuum ones are ( fπ )med/( fπ )vac ≈ 85% and
( fK )med/( fK )vac ≈ 87%, respectively.

B. Numerical results

Here, we calculate self-energies of scalar, pseudoscalar,
vector, and axial-vector mesons and show the resultant mass
modifications in nuclear matter. The grand potential (or equiv-
alently the effective action) has been obtained at one-loop
order of the nucleon with the meson mean fields in Eq. (20),
and the “ground state” of the system has been determined
by solving the gap equations with respect to φN , φS , and ω̄N

in Eq. (23), respectively. Accordingly, the meson masses in
nuclear matter are defined by including one-loop corrections
in addition to the meson mean fields [49,72].

A self-energy for the meson X at one-loop order in mo-
mentum space generally depends on the external momentum,
but here we consider �X (q0, �q = �0). In our approach, since
the one loops are regarded as corrections to the meson mean
fields, we reduce the self-energy to a local form approximately
as �X (q0, �0) → �X (mX , �0), with mX being a mass of meson
X in the mean-field approximation defined in Eqs. (A8)–
(A11). Because self-energies of the mesons are intricate,
detailed calculations of the one-loop self energies of the
mesons are provided in Appendix C for spin-0 mesons and in
Appendix D for spin-1 mesons. If the meson X is not affected
by any mixings, then the medium mass of meson X is sim-
ply given by (m2

X )med ≡ m2
X + �X (mX , �0). But in fact, some

mesons mix with others as in Ref. [35], which forces us to
solve them. We summarize the procedure to solve the mixings
and each meson mass formula in medium in Appendix B.

The resultant plots with several choices of M0 and k̃1 (k̃1 =
k1φ̂N ) are depicted in Figs. 2–5.7 Although the reproduction
of nuclear matter properties allows the value of k̃1 to be
up to k̃1 ≈ 5, when we take k̃1 ≈ 5, the mass of η meson
drops significantly and becomes negative in the lower density

7In these figures, f L
0 and f H

0 indicate the scalar-isoscalar mesons
possessing smaller and larger masses in our model, respectively. f N

1

and f S
1 are the axial-vector–isoscalar mesons without and with the

(anti)strange quark, respectively. Also, ωN and ωS correspond to ω

meson and φ meson in the Particle Data Group (PDG) notation.

FIG. 3. The density dependence of spin-0 (left) and spin-1 (right) meson masses with M0 = 0.8 GeV and k̃1 = −5.
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FIG. 4. The density dependence of spin-0 (left) and spin-1 (right) meson masses with M0 = 0.7 GeV and k̃1 = 0.

regime (1.5 � ρ/ρ0), caused by the contact interaction with
the nucleon [described by the second term in Eq (C3)]. This
behavior leads to an η-meson condensation phase that breaks
parity, which should be discarded. In other words, the mass
reduction of the η meson is sensitive to the value of k̃1.
Experimentally, while the η-nucleus interaction is known to
be attractive, its binding energy has not been determined
well [30]. Our results suggest k̃1 ≈ 0 is preferable so as to
get an appropriate mass reduction at finite density.

Also, we find the mass of f L
0 is (m f L

0
)vac = 0.18–0.27 GeV

in vacuum, and increases as we access finite density. The Par-
ticle Data Group (PDG) shows the mass of the lightest scalar-
isoscalar meson [ f0(500)] is in a range of m f0(500) = 400–500
MeV [73], which contradicts our results. However, the decay
width of f0(500) is large as well: � f0(500) = 400–700 MeV,
such that we need to include the dynamical processes to
estimate the f0(500) mass properly by the f L

0 one in our
model. We discuss this issue in Sec. VI in detail.

All figures indicate the masses of f H
0 , K∗

0 , a0, η′, and
η mesons decrease at finite density. Especially, the mass
reduction of η′ is about 200 MeV at normal nuclear density
ρB = ρ0 for all cases, which is larger than those in previous
studies [10,12,13] where the estimations are about 100 MeV.
The large reduction of the η′ meson mass would support the
possibility of the formation of η′ mesic nuclei as well as the
effective restoration of U(1)A axial anomaly, but experimen-
tally, the potential depth has been reported as V = −[44 ±
16(stat) ± 15(syst)] MeV [27]. This discrepancy could be
solved by employing a three-flavor PDM, which will be
discussed in more detail in Sec. V.

Regarding the spin-1 mesons, the f1S-, K1-, f1N -, a1-, ωS-,
and K∗-meson masses decrease as the density increases for
any choice of M0 and k̃1, whereas for the ρ- and ωN -meson
masses, it depends on the specific parameters. For M0 =
0.8 MeV, the ρ-meson mass decreases slightly while the ωN -
meson mass scarcely changes at ρB = ρ0. On the other hand,
for M0 = 0.7 MeV, the ρ-meson mass does not change while
the ωN -meson mass increases at ρB = ρ0, and both masses
increase at higher density. The experimental result shows the
mass reduction of ωN meson is −[29 ± 19(stat) ± 20(syst)]
MeV at normal nuclear density, whereas a large imaginary
part of the optical potential of 70 MeV is also expected [30],
such that the choice of M0 = 0.8 GeV is preferable. In fact,
we have confirmed that the smaller value of M0 we take,
the more rapidly the ωN meson mass increases as we access
the finite density. It is worth noting that the difference of the
density dependence of ρ and ωN meson masses are induced
by the difference between the ρNN and ωN NN couplings,
which is allowed by the chiral symmetry as mentioned in
Sec. III A.

The ρ meson is regarded as chiral partner to the a1 meson
within the two-flavor chiral symmetry such that the ρ-meson
mass shift in nuclear matter is significant to study the partial
restoration of chiral symmetry in medium [74,75]. Although
all figures show that the ρ and a1 mesons tend to degenerate
at higher density, we need to include the decay widths and
a broadening effect in order to study the mass shifts more
precisely [76–78].

The mass reduction of f1N meson at normal nuclear density
is about 150–200 MeV, which is larger than the result in

FIG. 5. The density dependence of spin-0 (left) and spin-1 (right) meson masses with M0 = 0.7 GeV and k̃1 = −5.
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TABLE V. The allowed value of M0 for each m̂−.

m̂− [GeV] Range of M0 [GeV]

1200 0.57–0.75
1400 0.60–0.79
1535 0.61–0.81
1650 0.62–0.82

Ref. [79] using the QCD sum rule approach in which the
mass reduction is estimated from 55 to 130 MeV. In the
above reference, the ω and f1N mesons are regarded as chiral
partners in the context of two-flavor chiral symmetry within
the large-Nc limit. In our calculation, although the chiral
symmetry is not restored sufficiently, we can clearly observe
a tendency of degeneracy of the ωN and f1N mesons. In
terms of the ωS meson, we find a mass reduction of a few
percent, which is comparably consistent with the experimental
data [18]. This small mass reduction is realized within our
model by assuming the large-Nc suppression, i.e., by dropping
h1 term in Eq. (1).

As mentioned earlier, for the fitting procedure yielding
Table IV, we have assumed that the axial charge of N∗(1535)
is ĝN−

A = 0.2 while the value includes a large uncertainty, as
indicated in Table II. Therefore, we have varied the value
from ĝN−

A = −0.1 to ĝN−
A = 0.5 and found that all masses are

insensitive to the value of ĝN−
A .

C. Other choices for N−

While we have assigned the N∗(1535) to N− in Sec. IV B,
it is possible to regard another nucleon as the chiral partner
to the nucleon N (939). To examine such a possibility, we
simply change the input parameter m̂− to m̂ = 1.2 GeV, m̂− =
1.4 GeV, and m̂− = 1.65 GeV, whereas the other inputs except
for the N− → N+η decay width are unchanged, since the mass
modification of the mesons has been found to be less sensitive
to gV and hV . The values of k1 and k2 are fixed to be zero here
for simplicity.

A range of allowed values of M0 for each choice of m̂−
is listed in Table V. This table shows that the smaller value
of m̂1 we take, the smaller value of M0 we can obtain, as
can be anticipated naively. We also plot the resultant density
dependence of meson masses in Fig. 6 with m̂− = 1.4 MeV

and M0 = 0.79 GeV, and in Fig. 7 with m̂− = 1.65 MeV and
M0 = 0.8 GeV. The other parameters are listed in Table VI.
Figure 6 shows a rather reasonable value of ωN -meson mass
at ρ0. When we plot the result with m̂ = 1.2 GeV, the η mass
turns imaginary below ρB ≈ 1.3ρ0 which is unphysical for
any allowed values of M0.

V. DISCUSSION

In this section, we discuss the density dependences of η

and η′ mesons. The results in Sec. IV show that the η′ meson
mass is reduced by approximately 200 MeV at normal nuclear
density ρB = ρ0, which is greatly larger than the experimental
result of V = −[44 ± 16(stat) ± 15(syst)] MeV [27]. This
discrepancy could be improved by extending the two-flavor
PDM to the three-flavor PDM.

For instance, following the procedure in Refs. [62,81], the
k1 term describing U(1)A anomaly in Eq. (7) is replaced by

L3f−PDM
anomaly

∣∣
ηN ηS

= − κ ′

2
√

2

(
2φNηNηS + φSη

2
N

)
N̄+N+, (31)

[the factor 1/(2
√

2) is not important] when we employ the
three-flavor version of PDM. Here, to demonstrate how the
η′-meson mass in nuclear matter is improved by Eq. (31), we
only replace the k1 term in Eq. (7) by Eq. (31) and leave all
other terms unchanged. Besides, we adopt the parameter set of
the second line in Table IV apart from k̃1. The resultant density
dependence of η- and η′-meson masses with κ̃ ′ = 0, 15, 30
(κ̃ ′ = κ ′φ̂2

N ) is depicted in Fig. 8. The dashed, dotted, and solid
curves correspond to the results with κ̃ ′ = 0, κ̃ ′ = 15, and
κ̃ ′ = 30, respectively. The figure shows that when we use the
larger value for κ̃ ′, the resultant mass reduction of η′ meson
in nuclear matter gets small. Note that the result with κ̃ ′ = 0
coincides with the one in Fig. 2.

The demonstration provided above implies that the large
mass reduction of η′ meson in nuclear matter obtained in
Sec. IV can be improved by employing the three-flavor PDM,
especially by the U(1)A breaking term. In the same way,
the κ ′ term also generates L3f−PDM

anomaly |K = κ ′ φN

2 K+K−N̄+N+
and the resultant mass reduction of the kaon at ρB = ρ0

reads approximately 100 MeV for κ̃ ′ = 15 and 230 MeV
for κ̃ ′ = 30, respectively. These results show that the kaon
mass also becomes dependent on the density when we employ
the three-flavor PDM, while experimentally a mass shift of
the K− meson to about 270 MeV at ρB = 2ρ0 has been

FIG. 6. The density dependence of spin-0 (left) and spin-1 (right) meson masses with m̂− = 1.4 MeV, M0 = 0.79 GeV, and k1 = k2 = 0.
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FIG. 7. The density dependence of spin-0 (left) and spin-1 (right) meson masses with m̂− = 1.65 MeV, M0 = 0.8 GeV, and k1 = k2 = 0.

observed [82,83] (for a mass shift of the K+ meson, see, e.g.,
Ref. [80]).8

The treatment employed in this section violates the chiral
symmetry explicitly because we have assumed that κ ′ does not
depend on density, although κ ′ is a function of the density-
dependent nucleon mass. Besides, for more precise under-
standing within the three-flavor PDM, we need to take other
interacting terms allowed by chiral symmetry into account in
addition to Eq. (31) [81,85]. Such a global analysis is beyond
the scope of present work and left for a future publication. The
mass splitting between K and K̄ can also be generated within
such a global analysis. However, the density dependence of
spin-1 meson masses is expected to be largely unchanged
compared with the current study even if we employ the three-
flavor PDM, since the interactions among spin-1 mesons and
nucleons in the three-flavor PDM are essentially the same as
the ones in Eq. (7) [81].

VI. CONCLUSIONS

In this study, we have investigated the mass of scalar,
pseudoscalar, vector, and axial-vector mesons in nuclear mat-
ter comprehensively by employing the three-flavor extended
linear σ model and the two-flavor parity doublet model. To
this end, we have calculated one-loop corrections by the nu-
cleons to the meson mean fields. To fix the model parameters,
vacuum properties of the nucleons as well as normal nuclear
matter properties are used as inputs as shown in Tables II
and III. As a result of a strong restriction by the latter inputs,
we find the value of the chiral invariant mass (M0) should
be in a range of 0.6 GeV � M0 � 0.8 GeV, when we regard
N∗(1535) as the chiral partner to the nucleon.

The results show that all spin-0 meson masses except the π ,
K , and the lightest scalar-isoscalar ( f L

0 ) ones decrease at finite

8The mass reduction of the K− meson by about 100 MeV at ρB =
ρ0 is found in the quark meson coupling model; see, e.g., Ref. [84].

baryon density. In particular, a mass reduction of η′ meson is
about 200 MeV, which is larger than shown in the previous
works [10,12,13]. Also, in terms of the direct U(1)A axial
anomaly contribution to the nucleons, we find k1 ≈ 0 [k1 is
given in Eq. (7)] so as to obtain an appropriate mass reduction
of the η meson at normal nuclear density.

For spin-1 mesons, all axial-vector meson masses decrease
at finite density, while density dependences of ρ and ωN

mesons depend on the value of M0. In particular, the ωN

meson mass increases at finite density when we take a smaller
value of M0. The experimental result suggests a small reduc-
tion of the ωN -meson mass at normal nuclear density [30];
hence, to reproduce such behavior, M0 ≈ 0.8 GeV is prefer-
able within our framework. Unlike for spin-0 mesons, the
large-Nc suppression is assumed in our approach so that the
chiral partner structure of the ωN and f1N can be observed as
proposed in Ref. [79].

We expect our results to provide useful information on
meson mass shifts in nuclear matter to existing and upcoming
experiments, especially with regard to the partial restoration
of chiral symmetry and U(1)A axial anomaly restoration.

In what follows, we discuss topics which are not covered
in this paper. The small vacuum mass of the f L

0 and the
large mixing with f H

0 might be an indication that another
scalar-isoscalar resonance is needed to obtain correct vacuum
values for the f0 mesons. For instance, in Ref. [47] the authors
found that at nonzero density a light tetraquark has a strong
influence on the medium properties of the system due to the
interplay of two condensates, the tetraquark and the chiral
condensate. A tetraquark degree of freedom χ in the leading
order of the large-Nc expansion in the two-flavor case can
be incorporated into the current model using the following
interaction terms [40]:

Lχ�� = c

2
χ
(
σ 2

N + �π2 − �a0
2 − η2

N

)
, (32)

LχAV = d

2
χ
(
�ρ2
μ + �a2

1,μ − ω2
μ − f 2

1,μ

)
, (33)

TABLE VI. Parameters for m̂− = 1.4 GeV and m̂− = 1.65 GeV for the plots in Figs. 6 and 7.

m̂ [GeV] M0 [GeV] k1 G1 G2 k2 gV hV g̃ λ1 g4p

1.4 0.79 0 3.839 6.639 0 4.060 −8.973 −2.531 −23.01 3.420
1.65 0.8 0 4.023 8.343 0 3.661 −9.372 −2.792 −22.95 89.84
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FIG. 8. The density dependence of η′ (purple) and η (blue)
masses with the interaction term (31). The dashed, dotted, and solid
curves correspond to κ̃ ′ = 0, κ̃ ′ = 15, and κ̃ ′ = 30, respectively.

where the new eLSM Lagrangian would be given as

LeLSM → LeLSM + 1

2
∂μχ∂μχ − m2

χ

2
χ2 + Lχ�� + LχAV .

(34)

In this framework, the tetraquark is assumed to be mostly
f0(500), while the σN and σS correspond most likely to

f0(1370) and f0(1700), respectively, as previously eLSM
studies have shown [32,33,40]. Note, while in Ref. [40] the
authors found a negligible tetraquark condensate, the situation
here might be different due to the inclusion of the φS conden-
sate which is not considered in Ref. [40]. Modification of our
model by including the tetraquark as in Eq. (34) will be left as
a future work.
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APPENDIX A: MESON MASSES IN VACUUM

Here, we show mass formulas of scalar, pseudoscalar,
vector, and axial-vector mesons in vacuum obtained by the
three-flavor eLSM in Eq. (6). By reading the quadratic terms
with respect to the meson fields in Eq. (6) in the presence of
the mean fields in Eq. (10), first we find

Lred
eLSM = L(2)

σω + L(2)
a0ρ

+ L(2)
K∗

0 K∗ + L(2)
η f1

+ L(2)
πa1

+ L(2)
KK1

+ · · · , (A1)

with

L(2)
σω = 1

2
∂μσN∂μσN − m2

σN

2
σ 2

N + 1

2
∂μσS∂

μσS − m2
σS

2
σ 2

S − m2
σN σS

σNσS

− 1

4
ωNμνω

μν
N + m2

ωN

2
ωNμω

μ
N + 2g4pω̄

2
N

(
ω

μ=0
N

)2 − 1

4
ωSμνω

μν
S + m2

ωS

2
ωSμω

μ
S , (A2)

L(2)
a0ρ

= 1

2
∂μaa

0∂
μaa

0 − m2
a0

2
aa

0aa
0 − 1

4
ρa

μνρ
aμν + m2

ρ

2
ρa

μρaμ + 2g4pω̄
2
N (ρμ=0)2, (A3)

L(2)
K∗

0 K∗ = ∂μK̄∗
0 ∂μK∗

0 + ig1ω̄N∂0K∗
0 K̄∗

0 − m2
K∗

0
K̄∗

0 K∗
0 + ig1

(
φS√

2
− φN

2

)
(K̄∗

μ∂μK∗
0 − ∂μK̄∗

0 K∗
μ)

− 1

2
K̄∗

μνK∗μν + m2
K∗K̄∗

μK∗μ + 1

2
g4pω̄

2
N K̄∗μ=0K∗μ=0, (A4)

L(2)
η f1

= 1

2
∂μηN∂μηN − m2

ηN

2
η2

N + 1

2
∂μηS∂

μηS − m2
ηS

2
η2

S − m2
ηN ηS

ηNηS − g1φN∂μηN f μ
1N −

√
2g1φS∂μηS f μ

1S

− 1

4
f1Nμν f μν

1N + m2
f1N

2
f1Nμ f μ

1N − 1

4
f1Sμν f μν

1S + m2
f1S

2
f1Sμ f μ

1S + 2g4pω̄
2
N

(
f μ=0
1N

)2
, (A5)

L(2)
πa1

= 1

2
∂μπa∂μπa − m2

π

2
πaπa − g1φN∂μπaaaμ

1 − 1

4
aa

1μνaaμν
1 + m2

a1

2
aa

1μaaμ
1 + 2g4pω̄

2
N

(
aμ=0

1

)2
, (A6)

L(2)
KK1

= ∂μK̄∂μK + ig1ω̄N∂0KK̄ − m2
K K̄K − g1

(
φS√

2
+ φN

2

)
(K̄1μ∂μK + ∂μK̄K1μ)

− 1

2
K̄1μνKμν

1 + m2
K1

K̄1μKμ
1 + 1

2
g4pω̄

2
N K̄μ=0

1 Kμ=0
1 , (A7)

035209-11



DAIKI SUENAGA AND PHILLIP LAKASCHUS PHYSICAL REVIEW C 101, 035209 (2020)

where we have defined

m2
σN

= m2
0 +

(
3λ1 + 3

2
λ2

)
φ2

N + λ1φ
2
S − 1

2
(h2 + h3)ω̄2

N ,

m2
σS

= m2
0 + λ1φ

2
N + 3(λ1 + λ2)φ2

S ,

m2
σSσN

= 2λ1φNφS,

m2
a0

= m2
0 +

(
λ1 + 3

2
λ2

)
φ2

N + λ1φ
2
S − 1

2
(h2 + h3)ω̄2

N ,

m2
K∗

0
= m2

0 +
(

λ1 + λ2

2

)
φ2

N + (λ1 + λ2)φ2
S + λ2√

2
φNφS

− g2
1
ω̄2

N

4
− 1

4
(h2 + h3)ω̄2

N (A8)

for scalar mesons,

m2
ηN

= m2
0 +

(
λ1 + λ2

2

)
φ2

N + λ1φ
2
S + c1φ

2
Nφ2

S

− 1

2
(h2 + h3)ω̄2

N ,

m2
ηS

= m2
0 + λ1φ

2
N + (λ1 + λ2)φ2

S + c1

4
φ4

N ,

m2
ηN ηS

= c1

2
φ3

NφS,

m2
π = m2

0 +
(

λ1 + λ2

2

)
φ2

N + λ1φ
2
S − 1

2
(h2 + h3)ω̄2

N ,

m2
K = m2

0 +
(

λ1 + λ2

2

)
φ2

N + (λ1 + λ2)φ2
S − λ2√

2
φNφS

− g2
1
ω̄2

N

4
− 1

4
(h2 + h3)ω̄2

N (A9)

for pseudoscalar mesons,

m2
ωN

= m2
1 + 1

2
(h2 + h3)φ2

N + 2g4pω̄
2
N ,

m2
ωS

= m2
1 + (h2 + h3)φ2

S + 2δS,

m2
ρ = m2

ωN
,

m2
K∗ = m2

1 + 1

4

(
g2

1 + h2
)
φ2

N + 1

2

(
g2

1 + h2
)
φ2

S

+ 1√
2

(
h3 − g2

1

)
φNφS + δS + g4pω̄

2
N (A10)

for vector mesons, and

m2
f1N

= m2
1 + 1

2

(
2g2

1 + h2 − h3
)
φ2

N + 2g4pω̄
2
N ,

m2
f1S

= m2
1 + (

2g2
1 + h2 − h3

)
φ2

S + 2δS,

m2
a1

= m2
f1N

,

m2
K1

= m2
1 + 1

4

(
g2

1 + h2
)
φ2

N + 1

2

(
g2

1 + h2
)
φ2

S

− 1√
2

(
h3 − g2

1

)
φNφS + δS + g4pω̄

2
N (A11)

for axial-vector mesons, respectively. With respect to K (K̄)
and K∗

0 (K̄∗
0 ) mesons, we have defined the mass at finite

chemical potential in the same manner as the “effective mass”
in Ref. [86].9

In Eqs. (A3)–(A7), a term proportional to |Vμ=0|2 (V =
ρ, K∗, f1N , a1, K1) is present. Field theoretically, one simple
way to remove the unphysical mode of the massive spin-1
meson is to start on a perturbation series by a Proca-type
Lagrangian. Thus, in order to restrict ourselves to the Proca-
type Lagrangian, we simply discard such a problematic term.

The masses of a0, ωN , ωS , ρ, K∗, f1N , f1S , a1, and K1 in
vacuum are straightforwardly obtained as(

m2
a0

)vac = m̂2
a0

,
(
m2

ωN

)vac = m̂2
ωN

,
(
m2

ωS

)vac = m̂2
ωS

,(
m2

ρ

)vac = m̂2
ρ,

(
m2

K∗
)vac = m̂2

K∗ ,
(
m2

f1N

)vac = m̂2
f1N

,(
m2

f1S

)vac = m̂2
f1S

,
(
m2

a1

)vac = m̂2
a1

,
(
m2

K1

)vac = m̂2
K1

,

(A12)

where m̂2
X (X = σN , σS, a0, . . . ) represents the corresponding

mean-field masses in Eqs. (A8)–(A11) in which φN , φS , and
ω̄N are replaced by φ̂N , φ̂S , and 0, respectively. For the other
mesons, we need to solve the mixings. As done in Ref. [35],
by introducing mixing angles and redefining the spin-1 meson
fields appropriately, we find(

m2
π

)vac = Ẑ2
π m̂2

π ,
(
m2

K∗
0

)vac = Ẑ2
K∗

0
m̂2

K∗
0
,

(A13)(
m2

K

)vac = Ẑ2
K m̂2

K ,

with

Ẑπ = m̂a1√
m̂2

a1
− g2

1φ̂
2
N

,

ẐK∗
0

= 2m̂K∗√
4m̂2

K∗ − g2
1(φ̂N − √

2φ̂S )2
, (A14)

ẐK = 2m̂K1√
4m̂2

K1
− g2

1(φ̂N + √
2φ̂S )2

for π , K∗
0 , and K , while

(
m2

f H
0 / f L

0

)vac = 1

2

(
m̂2

σN
+ m̂2

σS
±

√(
m̂2

σN
− m̂2

σS

)2 + 4m̂4
σN σS

)
,

(
m2

η′/η
)vac = 1

2

{(
m2

ηN

)vac + (
m2

ηS

)vac

±
√[(

m2
ηN

)vac − (
m2

ηS

)vac]2 + 4
(
m4

ηN ηS

)vac}
,

(A15)

9If we define the mass by mK ≡ ωK(|�k| = 0) (K = K, K̄, K∗
0 , K̄∗

0 )
with ωK being the dispersion, then the masses of K and K̄ (K∗

0 and
K̄∗

0 ) split.
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in which (m2
ηN

)vac = Ẑ2
ηN

m̂2
ηN

, (m2
ηS

)vac = Ẑ2
ηS

m̂2
ηS

, and
(m4

ηN ηS
)vac = Ẑ2

ηN
Ẑ2

ηS
m̂4

ηN ηS
with

ẐηN = m̂ f1N√
m̂2

f1N
− g2

1φ̂
2
N

, ẐηS = m̂ f1S√
m̂2

f1S
− 2g2

1φ̂
2
S

, (A16)

for σN , σS , ηN , and ηS . In obtaining Eq. (A15), we have
diagonalized the mass matrices as(

f L
0

f H
0

)
=

(
cos θ̂σ −sin θ̂σ

sin θ̂σ cos θ̂σ

)(
σN

σS

)
(A17)

and (
η

η′

)
=

(
cos θ̂η −sin θ̂η

sin θ̂η cos θ̂η

)(
ηN

ηS

)
, (A18)

by introducing mixing angles θ̂σ and θ̂η satisfying

tan 2θ̂σ = 2m̂2
σN σS

m̂2
σS

− m̂2
σN

, tan 2θ̂η = 2m̂2
ηN ηS

m̂2
ηS

− m̂2
ηN

. (A19)

APPENDIX B: MESON MASSES IN NUCLEAR MATTER

In this Appendix, we discuss general properties of meson
masses in nuclear matter. In the present analysis, we define
the meson mass in nuclear matter as a pole of each propagator
with vanishing three-momentum in which one-loop correc-
tions by the nucleons in addition to the meson mean fields
are included. A self-energy including one loops in momentum
space generally depends on the external momentum, but here
we consider �X (q0, �q = �0). In our approach, since the one
loops are regarded as corrections to the mean-field approxima-
tion, we reduce the self-energy to a local form approximately
as �X (q0, �0) → �X (mX , �0) with mX a mass of meson X in
the mean-field level defined in Eqs. (A8)–(A11). The concrete
expressions of �X (q0, �0) will be given in Appendixes C
and D.

For convenience, let us define the quantity

m̃2
X ≡ m2

X + �X (mX , �0). (B1)

Then, as a naive extension of Eq. (A12), a0, ωN , ωS , ρ,
K∗, f1N , f1S , a1, and K1 masses in nuclear matter are easily
provided by

(
m2

a0

)med = m̃2
a0

,
(
m2

ωN

)med = m̃2
ωN

,
(
m2

ωS

)med = m̃2
ωS

,(
m2

ρ

)med = m̃2
ρ,

(
m2

K∗
)med = m̃2

K∗ ,
(
m2

f1N

)med = m̃2
f1N

,

(
m2

f1S

)med = m̃2
f1S

,
(
m2

a1

)med = m̃2
a1

,
(
m2

K1

)med = m̃2
K1

.

(B2)

For the other mesons, we must solve the mixings as done in
Appendix A. Namely, as in Eq. (A13) π , K∗

0 , and K masses in
nuclear matter are(

m2
π

)med = Z2
π m̃2

π ,
(
m2

K∗
0

)med = Z2
K∗

0
m̃2

K∗
0
,

(
m2

K

)med = Z2
K m̃2

K , (B3)
with

Zπ = m̃a1√
m̃2

a1
− g2

1φ
2
N

,

ZK∗
0

= 2m̃K∗√
4m̃2

K∗ − g2
1(φN − √

2φS )2
,

ZK = 2m̃K1√
4m̃2

K1
− g2

1(φN + √
2φS )2

. (B4)

For σN , σS , ηN , and ηS , we find(
m2

f H
0 / f L

0

)med = 1

2

[
m̃2

σN
+ m̃2

σS
±

√(
m̃2

σN
− m̃2

σS

)2 + 4m̃4
σN σS

]
,

(
m2

η′/η
)med = 1

2

{(
m2

ηN

)med + (
m2

ηS

)med

±
√[(

m2
ηN

)med − (
m2

ηS

)med]2 + 4
(
m4

ηN ηS

)med
}
,

(B5)

where (m2
ηN

)med = Z2
ηN

m̃2
ηN

, (m2
ηS

)med = Z2
ηS

m̃2
ηS

, and
(m4

ηN ηS
)med = Z2

ηN
Z2

ηS
m̃4

ηN ηS
with

ZηN = m̃ f1N√
m̃2

f1N
− g2

1φ
2
N

,

ZηS = m̃ f1S√
m̃2

f1S
− 2g2

1φ
2
S

, (B6)

as in Eq. (A15) by introducing appropriate mixing angles.

APPENDIX C: SELF-ENERGIES FOR THE SPIN-0 MESONS

Here, we list explicit forms of self-energies for the spin-0
mesons in nuclear matter with vanishing spatial momentum.
The couplings with the nucleons for each meson can be read
by the Lagrangian (14). By defining Ek =

√
|�k|2 + m2

+ , we
can get the following results:10

�σN (q0, �0) = 8(k1φN sin 2θ + gNNσ )2

π2

∫ kF

0
d|�k| |�k|4

Ek
(
4E2

k − q2
0

) + 2m+
π2

k1sin 2θ

∫ kF

0
d|�k| |�k|2

Ek

− 4(k1φN cos 2θ − gNN∗σ )2

π2

∫ kF

0
d|�k| |�k|2

Ek

2|�k|2q2
0 + m+(m+ + m−)

(
q2

0 − (m+ − m−)2
)

q4
0 − 2(2|�k|2 + m2+ + m2−)q2

0 + (m2+ − m2−)2
, (C1)

10As stated in the main text, only the nucleon N (939) forms a Fermi surface since we stick to lower density.
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�a0 (q0, �0) = 8g2
NNσ

π2

∫ kF

0
d|�k| |�k|4

Ek
(
4E2

k − q2
0

) − 2m+
π2

k1sin 2θ

∫ kF

0
d|�k| |�k|2

Ek

− 4g2
NN∗σ

π2

∫ kF

0
d|�k| |�k|2

Ek

2|�k|2q2
0 + m+(m+ + m−)

[
q2

0 − (m+ − m−)2
]

q4
0 − 2(2|�k|2 + m2+ + m2−)q2

0 + (m2+ − m2−)2
, (C2)

�ηN (q0, �0) = 8(k2φN sin 2θ + gNNπ )2

π2

∫ kF

0
d|�k| |�k|2Ek(

4E2
k − q2

0

) − 2m+
π2

k1sin 2θ

∫ kF

0
d|�k| |�k|2

Ek

− 4(k2φN cos 2θ − gNN∗π )2

π2

∫ kF

0
d|�k| |�k|2

Ek

2|�k|2q2
0 + m+(m+ − m−)

(
q2

0 − (m+ + m−)2
)

q4
0 − 2(2|�k|2 + m2+ + m2−)q2

0 + (m2+ − m2−)2
, (C3)

and

�π (q0, �0) = 8g2
NNπ

π2

∫ kF

0
d|�k| |�k|2Ek(

4E2
k − q2

0

) + 2m+
π2

k1sin 2θ

∫ kF

0
d|�k| |�k|2

Ek

− 4g2
NN∗π

π2

∫ kF

0
d|�k| |�k|2

Ek

2|�k|2q2
0 + m+(m+ − m−)

(
q2

0 − (m+ + m−)2
)

q4
0 − 2(2|�k|2 + m2+ + m2−)q2

0 + (m2+ − m2−)2
. (C4)

The remaining spin-0 mesons do not couple with the nucle-
ons directly so that �σS (q0, �0) = �K∗

0
(q0, �0) = �ηS (q0, �0) =

�K (q0, �0) = 0.

APPENDIX D: SELF-ENERGIES FOR THE SPIN-1 MESONS

In this Appendix, we show the explicit forms of self-
energies for spin-1 mesons in nuclear matter with vanishing
spatial momentum. Before showing the results, to begin with,
we discuss a general property of a spin-1 meson propagator in
medium.

First, let us assume a propagator of a free spin-1 meson
with mass m in the vacuum takes the form of “unitary gauge”:

Dμν
0 (q) = −i

q2 − m2

(
gμν − qμqν

m2

)
; (D1)

then, the inverse propagator is given by(
D−1

0

)μν
(q) = i(q2 − m2)gμν − iqμqν (D2)

(q2 = q2
0 − |�q|2). Next, let us denote the self-energy in

medium by

�μν (q0, �q) = �T (q0, �q)Pμν
T + �L(q0, �q)Pμν

L

+�s(q0, �q)(gμν − vμvν ) + �t (q0, �q)vμvν,

(D3)

where the three-dimensional transverse and longitudinal pro-
jection operators are defined by

PT
μν = gμi

(
δi j − �qi �q j

| �q|2
)

g jν, PL
μν = qμqν

q2
− gμν − PT

μν, (D4)

and vμ = (1, �0) fixes the reference frame of the medium.
Hence, according to the Dyson equation (D−1)μν (q0, �q) =
(D−1

0 )μν (q) − i�μν (q0, �q), we find the full propagator
in medium expressed in terms of �T (q0, �q), �L(q0, �q),

�s(q0, �q), �t (q0, �q) as

Dμν (q0, �q) = i

X T (q0, �q)
Pμν

T + i
q2[m2 + �t (q0, �q)]

X L(q0, �q)
Pμν

L

+ i
q2[q2 − m2 + �L(q0, �q) − �t (q0, �q)]

X L(q0, �q)

qμqν

q2

+ i
q2[�t (q0, �q) − �s(q0, �q)]

X L(q0, �q)
vμvν, (D5)

with

X T (q0, �q) ≡ q2 − m2 + �T (q0, �q) − �s(q0, �q),

X L(q0, �q) ≡ q2
0[m2 + �t (q0, �q)][q2 − m2 + �L(q0, �q)

−�s(q0, �q)] − |�q|2[m2 + �s(q0, �q)][q2 − m2

+�L(q) − �t (q)]. (D6)

The transverse (longitudinal) mass of a spin-1 meson is de-
fined by the pole position of the full propagator in Eq. (D5)
with vanishing spatial momentum: X T (L)(q0, �0) = 0. In cal-
culating Eq. (D6), practically, it is useful to employ the
following relations [87]:

�T (q0, �q) = 1

2
Pμν

T �μν + q0qi

| �q|2 �i0 − qiq j

| �q|2 �i j,

�L(q0, �q) = q2qi

q0| �q|2 �i0,

�s(q0, �q) = q0qi

| �q|2 �i0 − qiq j

| �q|2 �i j = qi

| �q|2 qμ�iμ,

�t (q0, �q) = �00 − qi

q0
�i0 = 1

q0
qμ�μ0. (D7)

At first glance, X T (q0, �0) and X L(q0, �0) do not coincide by
Eq. (D6), which allows us to define the two kinds of masses of
spin-1 meson in medium. However, according to the explicit
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calculations in our model, we find �T (q0, �0) = �L(q0, �0) ≡ �V (q0, �0) and the full propopagator (D5) turns into

Dμν (q0, �q) = i

q2
0 − m2 + �V (q0, �0) − �s(q0, �0)

Pμν
T + i

q2
0 − m2 + �V (q0, �0) − �s(q0, �0)

Pμν
L + · · · , (D8)

which clearly shows that the masses of spin-1 meson in transverse and longitudinal components are identical as naively expected.
In the following, we will show the results of self-energies for spin-1 mesons in nuclear matter. The interaction terms are

extracted by Eq. (14) as in Appendix C. We should note the self-energy �X (q0, �0) here is defined by �X (q0, �0) ≡ −�V
X (q0, �0) +

�s
X (q0, �0). The results are

�ωN (q0, �0) = 8

3π2

[
1

2
(gV cos2θ + hV sin2θ ) + 2g̃

]2 ∫ kF

0
d|�k| |�k|2

Ek

2|�k|2 + 3m2
+

4E2
k − q2

0

+ 4

3π2

[
1

2
(gV − hV )sin θ cos θ

]2

×
∫ kF

0
d|�k| |�k|2

Ek

3m+(m+ − m−)
[
(m+ + m−)2 − q2

0

] + 2|�k|2(m2
+ − m2

− − 2q2
0

)
q4

0 − 2(2|�k|2 + m2+ + m2−)q2
0 + (m2+ − m2−)2

, (D9)

�ρ (q0, �0) = 8

3π2

[
1

2
(gV cos2θ + hV sin2θ )

]2 ∫ kF

0
d|�k| |�k|2

Ek

2|�k|2 + 3m2
+

4E2
k − q2

0

+ 4

3π2

[
1

2
(gV − hV )sin θ cos θ

]2

×
∫ kF

0
d|�k| |�k|2

Ek

3m+(m+ − m−)
[
(m+ + m−)2 − q2

0

] + 2|�k|2(m2
+ − m2

− − 2q2
0

)
q4

0 − 2(2|�k|2 + m2+ + m2−)q2
0 + (m2+ − m2−)2

, (D10)

� f1N (q0, �0) = 16

3π2

[
1

2
(gV cos2θ − hV sin2θ )

]2 ∫ kF

0
d|�k| |�k|2

Ek

|�k|2
4E2

k − q2
0

+ 4

3π2

[
1

2
(gV + hV )sin θ cos θ

]2

×
∫ kF

0
d|�k| |�k|2

Ek

3m+(m+ + m−)
[
(m+ − m−)2 − q2

0

] + 2|�k|2(m2
+ − m2

− − 2q2
0

)
q4

0 − 2(2|�k|2 + m2+ + m2−)q2
0 + (m2+ − m2−)2

, (D11)

and

�a1 (q0, �0) = � f1N (q0, �0). (D12)

The remaining spin-1 mesons do not couple with the nucleons directly so that �ωS (q0, �0) = �K∗ (q0, �0) = � f1S (q0, �0) =
�K1 (q0, �0) = 0.
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