
PHYSICAL REVIEW C 101, 035205 (2020)

Traces of the nuclear liquid-gas phase transition in the analytic properties of hot QCD
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The nuclear liquid-gas transition at normal nuclear densities, n ≈ n0 = 0.16 fm−3, and small temperatures,
T ≈ 20 MeV, has a large influence on analytic properties of the QCD grand-canonical thermodynamic potential.
A classical van der Waals equation is used to determine qualitatively these unexpected features due to dense cold
matter. The existence of the nuclear matter critical point results in thermodynamic branch points, which are
located at complex chemical potential values, for T > Tc � 20 MeV, and exhibit a moderate model dependence
up to rather large temperatures T � 100 MeV. The behavior at higher temperatures is studied using the van der
Waals hadron resonance gas (vdW-HRG) model. The baryon-baryon interactions have a decisive influence on the
QCD thermodynamics close to μB = 0. In particular, nuclear matter singularities limit the radius of convergence
rμB/T of the Taylor expansion in μB/T , with rμB/T ≈ 2–3 values at T ≈ 140–170 MeV obtained in the vdW-HRG
model.
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I. INTRODUCTION

The thermodynamic properties of QCD at finite temper-
atures and densities are important issues of modern high-
energy nuclear physics. Of particular interest are the phase
structure of QCD matter and the nature of the hadron-parton
transition. At zero baryon density, i.e., at μB = 0, this tran-
sition is a crossover, according to lattice QCD simulations
[1]. The nature of this transition at finite densities is not
established yet. The experimental search for the hypothetical
QCD chiral critical point (CP) [2] is performed at nonzero
intermediate baryon densities using measurements of fluctua-
tions in heavy-ion collisions [3–6] as well as indirect lattice
gauge theory methods, such as a Taylor expansion around
μB = 0 [7,8] or analytic continuation from imaginary μB

[9,10]. Current high quality lattice QCD data at physical quark
masses show no evidence or signatures of a chiral CP and
disfavor the existence of a phase transition of first or second
order at moderate baryon densities μB/T � π [11–14]. The
location or even the existence of that CP is not settled to date.
Possibilities for a phase transition at large baryon densities
can be explored in heavy-ion collisions at moderate collision
energies, such as the Compressed Baryonic Matter (CBM)
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experiment at the Facility for Antiproton and Ion Research
(FAIR) [15], or through precision neutron star merger obser-
vations and gravitational wave astronomy [16,17].

In contrast to the chiral QCD CP, the existence of the
nuclear liquid-gas phase transition (LGPT) with an associated
CP at Tc � 20 MeV and μc

B � 900 MeV is better estab-
lished both theoretically [18–22] and experimentally [23–25]
(see Ref. [26] for the current empirical estimates of the CP
location). This transition is also accessible on the lattice
through an effective theory [27]. Recently it was pointed
out that nuclear matter criticality has a sizable influence on
conserved charges susceptibilities in hot QCD matter, both
in the vicinity of the crossover temperature region at μB =
0 [28] and along the phenomenological freeze-out curve in
heavy-ion collisions [29–31]. In spite of the fact that the
nuclear phase transition ends at Tc ≈ 20 MeV, its remnants
appear to survive in certain observables to much higher
temperatures.

The presence of a phase transition and a CP is imprinted
in the analytic properties of a thermodynamic potential. The
pressure function, in particular, becomes a multivalued func-
tion of the chemical potential, and exhibits branch cut singu-
larities [32,33]. At subcritical temperatures these singularities
correspond to spinodal instabilities, at T = Tc the singularities
merge at the CP, and at T > Tc the singularities lie at complex
values of the chemical potential [34]. Phase transitions are
smoothed out in a finite volume; their remnants are charac-
terized there by the Lee-Yang zeros of the grand partition
function [35,36].

The thermodynamic branch points associated with the nu-
clear liquid-gas transition are studied in detail in the present
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work. First, analytic results on the basis of the classical van
der Waals (vdW) equation are presented in Sec. II. These are
compared at intermediate temperatures (T � 100 MeV) with
numerical results obtained using quantum vdW, Walecka, and
Skyrme models of nuclear matter (Sec. III). An extrapolation
to higher temperatures is achieved in the framework of the
vdW-HRG model, with a focus on the influence of the nuclear
matter LGPT singularities on convergence properties of the
Taylor expansion in μB/T around μB = 0 (Sec. IV). A sum-
mary in Sec. V closes the article.

II. THERMODYNAMIC BRANCH POINTS OF A
LIQUID-GAS PHASE TRANSITION

Let us first consider the system of interacting nucleons as a
classical real gas described by the vdW equation. The pressure
reads [37]

p(T, n) = T n

1 − bn
− an2, (1)

where a > 0 and b > 0 correspond, respectively, to attractive
and repulsive interactions. In the grand-canonical ensemble
(GCE) the particle number density n(T, μ) is defined by a
transcendental equation [38]:

eμ/T = n

φ(T )(1 − bn)
exp

[
bn

1 − bn
− 2an

T

]
. (2)

Here

φ(T ) = dm2T

2π2
K2(m/T ), (3)

where d is the degeneracy factor and m is the particle’s mass.1

Substituting n(T, μ) into Eq. (1) then allows one to recon-
struct the GCE pressure function, i.e., a full thermodynamic
potential in the GCE.

At given values of T and (complex) μ, Eq. (2) may have
more than a single solution, meaning that n(T, μ) is a mul-
tivalued function. This multivalueness entails the existence
of branch points. Early studies of the branch points for the
classical vdW equation can be found in Ref. [39]. Here we
present a systematic analysis of the behavior of branch points
related to the nuclear liquid-gas transition and their relevance
for the QCD phase diagram.

The branch points of n(T, μ) are defined through the
equation [32]

(∂μ/∂n)T = 0. (4)

Applied to Eq. (2) this yields

2anbr

T
(1 − bnbr )

2 = 1. (5)

Equation (5) is a cubic equation for nbr defining the branch
points. μbr is recovered by substituting nbr into Eq. (2).

1In our consideration d = 4, m = 938 MeV for nucleons. We
neglect the small difference between proton and neutron masses.

The cubic equation (5) has three roots which are explicitly
obtained using Cardano’s formulas:

nbr1,2 = 1

b

(
−q1 + q2

2
± i

√
3

q1 − q2

2
+ 2

3

)
, (6)

nbr3 = 1

b

(
q1 + q2 + 2

3

)
, (7)

where q1,2 = 3
√

A ± √
� with

A = 1

108

(
27b

a
T − 4

)
, � = A2 − 1

93
. (8)

The third root, nbr3, given by Eq. (7), is real at all values of
T and is larger than the limiting density of the vdW excluded
volume: nbr3 > 1/b. Therefore, nbr3 is not accessible in the
region of physical solutions at any temperature and does not
appear to be connected to the existence of the first-order phase
transition in the vdW equation. nbr3 will thus be omitted from
consideration in the following.

The behavior of the two relevant roots (6) depends qualita-
tively on the value of the temperature. The two roots are real
at subcritical temperatures, � < 0 ⇔ T < Tc = 8a/(27b).
They correspond to the spinodal points of the subcritical
isotherms, i.e., (∂ p/∂n)T = 0.

At the critical temperature, � = 0, T = Tc, the two roots
become degenerate. They coincide with the CP location,
nbr1 = nbr2 = nc = 1/(3b).

At supercritical temperatures, � > 0 ⇔ T > Tc, the two
roots correspond to a pair of complex conjugate numbers,
i.e., the singularities lie in the complex plane. This is a
manifestation of the so-called crossover transition [32].

In the present work we do only consider the analytic
properties of pure phases and will not consider Maxwell’s
mixed phase construction.

III. BRANCH POINTS OF THE NUCLEAR
LIQUID-GAS TRANSITION

In this section temperature dependence of the location of
branch points associated with the nuclear liquid-gas transition
is evaluated using different models of nuclear matter. The list
of models considered is given below.

A. van der Waals

As the simplest model for the nuclear liquid-gas transition
we take the classical van der Waals equation (1) for nucleons.
We take the vdW parameter values a = 329 MeV fm3 and
b = 3.42 fm3 from Ref. [40]. These parameter values yield
the binding energy of 16 MeV in the nuclear ground state at
n = n0 = 0.16 fm−3 in the vdW model extended to include
the Fermi statistics (see below). The locations of branch
points are evaluated using Eqs. (2) and (5). The classical vdW
equation predicts a nuclear liquid-gas transition with a CP at
the following location:

Tc = 8a

27b
� 28.5 MeV, nc = 1

3b
� 0.10 fm−3. (9)

The model captures the qualitative features associated with
a first-order phase transition but it is not accurate at small
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temperatures, where Fermi-Dirac statistics cannot be ne-
glected. For the same reasons, the classical vdW equation
overestimates the value of the critical temperature by about
10 MeV [40,41].

The quantum statistical effects are taken into account in
the quantum van der Waals model (QvdW) [40]. The QvdW
model is defined by the following equations:

p(T, μ) = pid (T, μ∗) − an2, (10)

n(T, μ) = (1 − bn)nid (T, μ∗), (11)

μ∗ = μ − bpid (T, μ∗) + 2an. (12)

Here nid, pid are, respectively, the density and the pressure
of the ideal Fermi gas. In the Boltzmann approximation
Eqs. (10)–(12) reduce to the classical vdW equations (1)
and (2).

Thermodynamic functions at fixed T and μ are usually
determined by solving Eq. (12) numerically with respect to
(w.r.t.) μ∗, which then allows calculating all other quantities.
The vdW parameter values are the same as for the classical
vdW model above. The QvdW model predicts a CP at Tc �
19.7 MeV and nc � 0.07 fm−3 (μc � 908 MeV).

One needs to evaluate the derivative (∂μ/∂n)T in order
to determine the thermodynamic branch points. To do that
we apply the derivative w.r.t. n at fixed T to Eqs. (11) and
(12), which allows us to determine (∂μ/∂n)T explicitly. The
resulting equation (∂μ/∂n)T = 0 for the branch points reads

2anbr

T
(1 − bnbr )

2ωid(T, μ∗
br ) = 1. (13)

Here ωid (T, μ∗) is the scaled variance of particle number
fluctuations of an ideal quantum gas in the GCE:

ωid(T, μ∗) = 1 − dη

2π2nid

∫ ∞

0
dkk2

×
[

exp

(√
m2 + k2 − μ∗

T

)
+ η

]−2

, (14)

with η = +1 for fermions. In the Maxwell-Boltzmann ap-
proximation (η = 0) one has ωid = 1 and Eq. (13) reduces to
Eq. (5) of the classical vdW model.

Here we solve Eq. (13) numerically to determine μ∗
br.

2 At
T = Tc the solution of Eq. (13) corresponds to the CP. We
use the CP as a starting point of the numerical procedure and
move in small steps in temperature independently for T > Tc

(crossover) and T < Tc (first-order phase transition), using the
solution at the previous step as an initial guess for the next one.

Figure 1 depicts the resulting chemical potential values
corresponding to the branch points. At T < Tc there are two
real solutions which correspond to the spinodals of the first-
order phase transition, as discussed in Sec. II for the classical
vdW equation. These are depicted in Fig. 1 by two solid lines.
At T = Tc the two roots become degenerate at the CP. At
T > Tc, μbr have non-zero imaginary parts; the branch points

2nbr is calculated at a given μ∗
br from Eq. (11).

FIG. 1. Locations of thermodynamic branch points associated
with the nuclear liquid-gas transition in the μB-T plane evaluated
within the quantum van der Waals model of nuclear matter. The
two solid lines depict the two spinodals of the nuclear liquid-gas
transition at T < Tc. The dashed line corresponds to the real part
of the crossover branch point μbr at T > Tc. The circle represents
the CP.

correspond to two complex conjugate roots. The behavior of
the real part μR

br ≡ Re[μbr] at T > Tc is shown in Fig. 1 by the
dashed line.

A comparison between the classical and quantum vdW
models can clarify the role of the Fermi statistics. The com-
parison is exhibited in Fig. 2, where the temperature depen-
dencies of real and imaginary parts of μbr are depicted. Both
models exhibit qualitatively similar behavior. The classical
vdW model does not yield an accurate description of μbr at
small temperatures. This is an expected artifact of neglecting
the quantum statistics. Classical vdW model results approach
the QvdW model at large temperatures, where effects of
quantum statistics become negligible.

B. Skyrme model

To cross-check the robustness of results obtained in the
framework of the (quantum) vdW model we consider thermo-
dynamic branch points in two alternative models of nuclear
matter. In the Skyrme model of nuclear matter the attractive
and repulsive interactions are modeled through a mean field
[42,43],

usk (n) = −α

(
n

n0

)
+ β

(
n

n0

)γ

, (15)

which shifts the single-particle energy levels. Here the first
term corresponds to intermediate-range attractive interactions
and the second term to short-range repulsive interactions. The
nucleon number density is given by a self-consistent equation,

n(T, μ) = nid[T, μ − usk (n)]. (16)

Here we use the following parameter values: n0 = 0.16 fm−3,
γ = 2, α � 122.6 MeV, and β � 70.4 MeV. These parameter
values yield a binding energy of 16 MeV in the nuclear
ground state at n = n0 = 0.16 fm−3. The γ = 2 value corre-
sponds to the so-called hard Skyrme equation of state, with
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FIG. 2. Temperature dependence of (a) μR
br ≡ Re[μbr] and (b) μI

br/T ≡ Im[μbr/T ] evaluated for a system of interacting nucleons through
the classical van der Waals equation (dashed black lines), the quantum van der Waals equation (solid black lines), the Skyrme mean-field
model (dot-dashed blue lines), and the Walecka relativistic mean-field model (dotted red lines). The points depict the respective locations of
the nuclear matter critical points in the corresponding models.

an incompressibility modulus of K0 � 380 MeV. The CP is
located in this model at Tc = 21.9 MeV, nc = 0.06 fm−3

(μc � 895 MeV).
The derivative (∂μ/∂n)T can be evaluated from Eq. (16)

in a fairly straightforward manner. The branch point equation
(∂μ/∂n)T = 0 reads[

α

(
nbr

n0

)
− βγ

(
nbr

n0

)γ ]
ωid[T, μ − usk (nbr )]

T
= 1. (17)

In practice, Eq. (17) is solved numerically for a quantity μ∗
br ≡

μ − usk (nbr ), as Eq. (16) gives nbr as an explicit function of
μ∗

br. As for the QvdW model, the CP location is used as a
starting point of the numerical procedure to determine the
temperature dependence of the branch points.

C. Walecka model

The last nuclear matter model under consideration is the
Walecka model [20,44], which is one of the simplest examples
of a relativistic mean field theory. The attractive and repulsive
interactions are modeled through exchange of scalar σ and
vector ω mesons, respectively. The mesonic fields are treated
in a mean-field approximation. The interactions lead to an
effective shift of the chemical potential μ → μ∗ and mass
m → m∗ of nucleons, leading to the following form of the
grand-canonical thermodynamic potential (pressure):3

p(T, μ) = pid (T, μ∗; m∗) + (μ − μ∗)2

2c2
v

− (m − m∗)2

2c2
s

. (18)

Here c2
s > 0 and c2

v > 0 are the coupling parameters corre-
sponding to attractive and repulsive interactions, respectively.

3Here we neglect the contribution of antinucleons, which is small
in the nuclear matter region of the phase diagram.

The effective chemical potential μ∗ and effective mass m∗ are
determined from gap equations:(

∂ p

∂μ∗

)
m∗

= 0 ⇐⇒ μ − μ∗ = c2
vnid (T, μ∗; m∗), (19)(

∂ p

∂m∗

)
μ∗

= 0 ⇐⇒ m − m∗ = c2
s ns

id (T, μ∗; m∗). (20)

Here ns
id is the scalar density of an ideal Fermi gas of nucleons.

The particle number density is

n(T, μ) = nid (T, μ∗; m∗). (21)

The values of coupling parameters are determined from the
nuclear ground state properties (see Ref. [45] for details): c2

s =
14.6 fm2 and c2

v = 11.0 fm2. The model predicts nuclear mat-
ter CP at Tc = 18.9 MeV, nc = 0.07 fm−3 (μc � 909 MeV).

The branch points are determined through Eq. (4). In order
to evaluate (∂μ/∂n)T we first note that μ = μ∗ + c2

vn, as
follows from Eqs. (19) and (21). Therefore,

(∂μ/∂n)T = (∂μ∗/∂n)T + c2
v. (22)

(∂μ∗/∂n)T is determined by applying the (∂/∂n)T derivative
to the gap equations (19) and (20), and solving the resulting
system of linear equations for (∂μ∗/∂n)T and (∂m∗/∂n)T :

(∂μ∗/∂n)T = 1 + c2
s ∂m∗n∗

s

∂μ∗n∗ + c2
s (∂μ∗n∗∂m∗n∗

s − ∂μ∗n∗
s ∂m∗n∗)

. (23)

Here n∗ ≡ nid (T, μ∗; m∗) and n∗
s ≡ ns

id (T, μ∗; m∗).
The branch points equation (4) reads

1 + c2
s ∂m∗n∗

s + c2
v∂μ∗n∗ = c2

s c2
v (∂μ∗n∗

s ∂m∗n∗ − ∂μ∗n∗∂m∗n∗
s ).
(24)

This equation is solved numerically to determine μ∗
br [the gap

equation (20) is used to relate m∗ and μ∗].
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D. Comparison between models

Figure 2 depicts the temperature dependence of the real
and imaginary parts of the branch point chemical potential
evaluated in the four considered models of nuclear matter.
The qualitative behavior in all models is consistent with the
analytic expectations obtained within the classical vdW model
in Sec. II. As mentioned before, at small temperatures the μR

br
values in the classical vdW model are quite different from all
other models. This is an artifact due to the absence of Fermi
statistics in the classical vdW model.

The large temperature behavior is qualitatively similar in
all models considered. Quantitatively, the QvdW and Walecka
models are very similar while the Skyrme model yields a
stronger temperature dependence of the real part μR

br and a
milder temperature rise of the imaginary part μI

br/T .
At large temperatures the classical and quantum vdW

models give almost identical results. Effects of Fermi statistics
are negligible at T � 100 MeV. The analytic results of Sec. II
describe μR

br and μI
br very accurately in this regime.

IV. HADRON RESONANCE GAS AND NUCLEAR MATTER

A. Branch points

At temperatures T � 100 MeV, which are probed by rela-
tivistic heavy-ion collisions and studied in finite-temperature
lattice gauge theory, excitations of hadronic degrees of free-
dom other than nucleons cannot be neglected. The hot
hadronic phase is typically modeled in the framework of
the hadron resonance gas (HRG) model. The standard HRG
model does not usually incorporate nuclear matter properties
and the associated liquid-gas criticality.

Here we employ a vdW-HRG model, which was intro-
duced in Ref. [28] as a “minimum” extension of the HRG
model to incorporate the nuclear liquid-gas phase transition
into a HRG picture. In the present paper we follow this
“minimum” extension. The vdW-HRG model incorporates
vdW interactions for all baryon-baryon (and, by symmetry,
all antibaryon-antibaryon) pairs. The parameters a and b are
taken to be the same for all baryon pairs. Their values are
equal to the vdW parameters of nucleons (Sec. III). This en-
sures that the vdW-HRG model reduces to the vdW model of
nuclear matter in Sec. III when the contributions of baryonic
resonances become negligible, as is the case for the low T ,
large μB nuclear matter region of the phase diagram.

We do not include vdW terms for baryon-antibaryon pairs
as baryon-antibaryon interactions at short range are dom-
inated by annihilations rather than by a repulsive core as
in baryon-baryon interactions. Finally, most of the known
meson-meson and meson-baryon scatterings are dominated by
resonance formation. Such interactions are already incorpo-
rated in a HRG picture by including resonances as separate
particles. Note also that our particle list has no resonances
with |B| = 2; therefore, there is no double counting of at-
tractive interactions between baryon-baryon and antibaryon-
antibaryon pairs.

The pressure in the vdW-HRG model reads

p(T, μ) = pM (T, μ) + pB(T, μ) + pB̄(T, μ), (25)

with

pM (T, μ) =
∑
j∈M

pid
j (T, μ j ), (26)

pB(T, μ) =
∑
j∈B

pid
j

(
T, μB∗

j

) − an2
B, (27)

pB̄(T, μ) =
∑
j∈B̄

pid
j

(
T, μB̄∗

j

) − an2
B̄, (28)

where M stands for mesons, B (B̄) for (anti)baryons;
μ = (μB, μS, μQ) are the chemical potentials for net
baryon number B, strangeness S, and electric charge
Q; μ

B(B̄)∗
j = μ j − bpB(B̄) − abn2

B(B̄) + 2anB(B̄), where μ j =
BjμB + S jμS + QjμQ is the chemical potential for baryon
species j, with Bj , S j , and Qj being its corresponding quan-
tum numbers. nB and nB̄ are total densities of baryons and
antibaryons, respectively.

We neglect the quantum statistical effects for baryons
and antibaryons in the following. As was shown in Sec. III
this is a good approximation for temperatures T � 80 MeV
(see Fig. 2). For μQ = μS = 0, the (anti)baryon densities
nB(B̄)(T, μ) are defined by the transcendental equation

bφB(T )e±μB/T =
bnB(B̄) exp

[ bnB(B̄)

1−bnB(B̄)
− 2anB(B̄)

T

]
1 − bnB(B̄)

. (29)

Here

φB(T ) =
∑
i∈B

dim2
i T

2π2
K2(mi/T ). (30)

The sum in Eq. (30) runs over all baryons in the HRG.
Densities nB(B̄) are multivalued functions of μB. Both

baryons and antibaryons lead to an appearance of branch
points. Due to the charge conjugation parity symmetry, the
corresponding branch points are related to each other through
a transformation μB → −μB. The branch points of nB(B̄) are
defined as

dμB

dnB(B̄)

∣∣∣∣
μB=μbr

B

= 0. (31)

The branch point coordinates are determined through the
relations for the classical vdW equation (Sec. II) with a sub-
stitution φ(T ) → φB(B̄)(T ). Figure 3 depicts the temperature
dependence of the real and imaginary parts of the branch cut
singularities associated with the nuclear liquid-gas transition,
evaluated within the vdW-HRG model (solid black lines) and
the vdW model with (anti)nucleons only (dashed red lines).
Only limiting singularities—i.e., those closest to the μB =
0 expansion point—are presented. Two symmetric lines in
(a) correspond to baryons and antibaryons. Imaginary parts
of two complex-conjugated singularities, presented in (b),
are equal for baryons and antibaryons. Circles represent the
critical points of baryonic and antibaryonic matter. It is seen
that the real part decreases with temperature and crosses zero
at about T � 180 MeV. This implies that vdW interactions
become relevant even close to μB = 0 at sufficiently large
temperatures. This indeed was demonstrated for a number
of thermodynamic quantities in Ref. [28]. The addition of
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FIG. 3. The temperature dependence of the (a) real part of the limiting branch cut singularity and (b) imaginary part of the limiting branch
cut singularity. Calculations are performed for the vdW-HRG model (solid black lines) and for the vdW model with (anti)nucleons only (dashed
red lines). Maxwell-Boltzmann statistics is considered in both cases. The circles correspond to the critical points of, respectively, nuclear matter
and nuclear antimatter.

the baryonic resonances leads to a faster decrease of μR
br/T

towards zero. On the other hand, the resonances do not affect
the behavior of the imaginary part μI

br/T , at least not within
the vdW-HRG model used.

B. Taylor expansion

The presence of thermodynamic branch points leads to a
number of consequences regarding the analytic properties of
QCD. Of particular interest is the Taylor expansion of the
QCD pressure:

p(T, μB) − p(T, 0)

T 4
=

∞∑
n=1

χB
2n(T )

(2n)!

(μB

T

)2n
. (32)

Here χB
2k (T ) = ∂2k (p/T 4)/∂ (μB/T )2k|μB=0 are the baryon

number susceptibilities evaluated at μB = 0. Expansion in-
cludes only even orders of chemical potential, as follows from
the charge conjugation parity symmetry of QCD.

The series (32) converges inside a circle in the complex
μB/T plane. The convergence is limited by a singularity
closest to the expansion point, which lies on the border of the
circle. A CP is an example of such singularity. A particular
feature of a CP is that the singularity lies on the real axis,
implying that Taylor expansion coefficients are asymptoti-
cally positive at the critical temperature. This fact is used
in various attempts to constrain the location of the QCD CP
using lattice QCD, by evaluating a number of leading-order
Taylor expansion coefficients at μB = 0, verifying that all
available coefficients are positive, and using various radius
of convergence estimators [12,46,47]. Note that a divergent
Taylor expansion can appear even without the presence of
physical phase transitions, e.g., in systems with repulsive
interactions only [48].

The thermodynamic singularities associated with the nu-
clear liquid-gas transition do limit the convergence range
of Taylor expansion in the vdW-HRG model. The expected
radius of convergence in the vdW-HRG model is given by

rμ = ∣∣μbr
B

∣∣ =
√[

Re
(
μbr

B

)]2 + [
Im

(
μbr

B

)]2
. (33)

Here μbr
B is the location of the limiting singularity. At T > Tc

this corresponds to the crossover singularities [Eq. (6)], which
both lie at the same distance from μB = 0. At T = Tc this
is the nuclear matter CP. At T < Tc the limiting singularity
is the spinodal point which separates the gaseous and me-
chanically unstable nuclear phases (the right solid curve in
Fig. 1).4

Figure 4 depicts the temperature dependence of the radius
of convergence in μB and in dimensionless μB/T variables.
For crossover temperatures, T ≈ 140–170 MeV, the radius
of convergence becomes as small as rμ/T ≈ 2–3. This indi-
cates a real possibility that convergence properties of Taylor
expansion in full QCD at crossover temperatures might be de-
termined by the remnants of the nuclear liquid-gas transition,
which manifest themselves in a form of singularities in the
complex plane.

We cross-check our vdW-HRG model results by analyzing
the convergence properties of Taylor expansion in this model
directly. First, we analyze the convergence radius from the
behavior of net baryon susceptibilities χB

k at μB = 0. We
calculate χB

k up to the order χB
120 numerically, using an ef-

ficient algorithm described in the Appendix. The computed
χB

k values are then used to determine rμ/T through various
estimators.

The so-called ratio estimator, rRE
n = |cn/cn+1|1/2 with cn ≡

χ2n/(2n) f , fails to provide a useful estimate of rμ/T . This is
a consequence of the fact that limiting singularity lies in the
complex plane, with a nonzero imaginary part μI

br/T = 0. In
such a case the ratio estimator does not converge [13,49].

4The branch point at the boundary of the liquid and the mechan-
ically unstable phase (the left solid curve in Fig. 1) does not limit
the radius of convergence of Taylor expansion, despite its smaller
μbr

B value. The reason is that this branch point lies on a Riemann
surface different from the one where the expansion point μB = 0 is.
The radius of convergence is unaffected by the third root [Eq. (7)] for
the same reason.
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FIG. 4. The temperature dependence of (a) the radius of convergence rμ and (b) the radius of convergence rμ/T calculated in the vdW-HRG
model (solid line) numerically using analytic formulas (31) and (33), and (blue dots) using the Mercer-Roberts radius of convergence estimator
(34) for Taylor expansion (32). Shaded areas represent that region of the phase diagram where the Taylor expansion (32) of the pressure
function does not converge. The black circle corresponds to the critical point of nuclear matter in the classical vdW model.

An accurate estimate for the radius of convergence is
obtained using the Mercer-Roberts estimator [50],

rMR
n =

∣∣∣∣cn+1cn−1 − c2
n

cn+2cn − c2
n+1

∣∣∣∣
1/4

, (34)

and the so-called Domb-Sykes presentation [51,52] (see de-
tails in Ref. [13]). The resulting values of rμ and rμ/T us-
ing 120 Taylor expansion coefficients are depicted by blue
symbols in Fig. 4. These values agree with the prior analytic
expectations shown by the solid lines, indicating that the
Mercer-Roberts estimator converges to the correct value. We
also analyze how many coefficients are needed to obtain a
meaningful estimate of rμ/T . The calculations suggest that
rμ/T at T = 100–200 MeV can be estimated with a 10%
accuracy using 5–10 nonzero Taylor expansion coefficients
(see Table I). We note that performance of estimating rμ/T

can be improved by considering a modified Mercer-Roberts
estimator of Ref. [49]:

rMMR
n =

∣∣∣∣ (n + 1)(n − 1)cn+1cn−1 − n2c2
n

(n + 2)ncn+2cn − (n + 1)2c2
n+1

∣∣∣∣
1/4

. (35)

This is shown in the second row of Table I.
Next, we study the convergence properties of the Taylor

expansion by comparing the pressure isotherms evaluated us-
ing a truncated Taylor expansion around μB = 0 and through
a full numerical calculation. Figure 5 shows this comparison
for the T = 150 MeV isotherm, where a subtracted scaled
pressure [p(T, μB) − p(T, 0)]/T 4 as a function of μB/T is

TABLE I. The number of leading Taylor expansions coefficients
needed to extract the radius of convergence rμ within 10% of the true
value through the Mercer-Roberts (first row) and modified Mercer-
Roberts (second row) estimators in the vdW-HRG model.

Estimator 100 MeV 150 MeV 170 MeV 200 MeV

MR χB
16 χB

16 χB
10 χB

20

MMR χB
22 χB

10 χB
8 χB

14

analyzed. The truncated Taylor expansion describes well the
full result for μB/T < rμ/T as well as in a small region beyond
rμ/T . We verified that this small region shrinks towards zero
as more and more expansion terms are included, and that
divergence of the series at μB/T > rμ/T becomes more and
more evident. Thus, for μB/T > rμ/T the Taylor expansion
can at best be only viewed as an asymptotic series.

The present calculation incorporates only hadronic degrees
of freedom. Of course, mechanisms other than the nuclear
liquid-gas transition are present in full QCD, which affect the
analytic properties of the thermodynamic potential and which
are not covered within the vdW-HRG model. This includes,
for instance, the QCD transition to quark-gluon degrees of
freedom and the associated chiral criticality. Another known
QCD transition is the Roberge-Weiss transition at imaginary
chemical potential [53], occurring at temperatures T > TRW,
where TRW ≈ 208 MeV [54]. These mechanisms will yield

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8
vdW-HRG T = 150 MeV

[P
(μ

B
,T
)-
P
(0
,T
)]
/T

4

μB/T

Exact
O(μ4B)
O(μ8B)
O(μ50B )
O(μ100B )

FIG. 5. The dependence of the subtracted scaled pressure
[p(T, μB ) − p(T, 0)]/T 4 on μB/T , as calculated within the vdW-
HRG model at T = 150 MeV using the numerical solution [Eq. (29)]
(solid black line) and the Taylor expansion truncated at χB

4 (dash-
dotted red line), χB

8 (dotted green line), χB
50 (dashed yellow line), and

χB
100 (dash-dotted blue line). The vertical dashed line corresponds to

the value of the convergence radius rμ/T � 2.6.
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additional restrictions on the radius of convergence of Taylor
expansion, in addition to those due to nuclear liquid-gas
transition alone that we study here. The work reported here,
on the other hand, merely demonstrates how the presence of
the nuclear liquid-gas transition alone can affect the conver-
gence properties of the Taylor expansion. For similar reasons
we do not perform here a comparison of the higher-order
cumulants χB

2k with the lattice data, but merely use these
quantities to analyze the behavior of the Taylor-expanded
pressure.

It should also be noted that the liquid-gas transition has
been treated in this work on a mean-field level, and the
associated critical behavior corresponds to the mean-field
universality class. Going beyond the mean-field approxima-
tion can modify the universality class and the nature of the
singularity associated with a critical point of a phase tran-
sition [32], which, in turn, will modify the behavior of the
higher-order susceptibilities χB

2k . Studying the thermodynamic
singularities beyond the mean field level can, therefore, be an
interesting future endeavor, which can be achieved, e.g., using
renormalization group methods.

V. SUMMARY

The presence of the nuclear liquid-gas transition at tem-
peratures T � 20 MeV in QCD leads to the emergence of
thermodynamic branch points in the QCD grand potential.
These branch points correspond to the spinodals of the first-
order phase transition at T < Tc, to the critical point at
T = Tc, and to crossover singularities in the complex μB

plane at T > Tc. This qualitative result, obtained analytically
within the classical vdW equation, is generic for any ar-
bitrary mean-field description of nuclear matter, as follows
from the universality argument for critical behavior. From a
quantitative point of view, this behavior of the branch points
exhibits mild model dependence at moderate temperatures
T � 100 MeV, whereas the inclusion of all other hadronic
degrees of freedom proves also important at higher tempera-
tures, T ≈ 130–180 MeV.

The van der Waals hadron resonance gas model analysis
implies that signals from the nuclear liquid-gas transition
are clearly visible in analytic properties of QCD even at
crossover temperatures and moderate baryochemical poten-
tials. In particular, the radius of convergence of a Taylor
expansion reaches in the vdW-HRG model values as small as
rμ/T ≈ 2–3 for temperatures T ≈ 140–170 MeV. Such high
temperatures are typically assumed to only be associated with
the chiral crossover transition at μB = 0. However, the present

results show that the radius of convergence of the Taylor
expansion in QCD at these temperature exhibits clearly the
remnants of the nuclear liquid-gas transition, at a region where
we expected the signals of chiral criticality. If the hypothetical
chiral critical point is located deeply in baryon-rich matter,
as indicated by a recent analysis of QCD thermodynamics
within the chiral mean-field approach [55], the attempts to
locate the QCD CP by using the Taylor expansion method
must take great care to distinguish the supposed signals of the
conjectured chiral CP from the well established nuclear matter
liquid-vapor CP.
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APPENDIX: ON THE EVALUATION OF BARYON NUMBER
SUSCEPTIBILITIES IN THE vdW-HRG MODEL

An even-order baryon number susceptibility, χ2m, is ex-
pressed at μB = 0 through the (2m − 1)-order derivative of
the baryonic density, nB, w.r.t. μB/T :

χ2m(T ) = ∂2m(p/T 4)

∂ (μB/T )2m

∣∣∣∣
μB=0

= 1

T 3

∂2m−1(nB − nB̄)

∂ (μB/T )2m−1

∣∣∣∣
μB=0

= 2

T 3

∂2m−1nB

∂ (μB/T )2m−1

∣∣∣∣
μB=0

. (A1)

Here we used Eq. (25), the fact that ∂ pB(B̄)/∂μB = ±nB, and
∂knB̄/∂ (μB)k|μB=0 = (−1)k+1∂knB/∂ (μB)k|μB=0.

To find an arbitrary-order derivative ∂knB/∂ (μB/T )k|μB=0

we rewrite Eq. (29) for baryon density in the following form:

f (T, μB) = g(nB), (A2)

where in the vdW-HRG model

f (T, μB) = ln[bφB(T )] + μB/T and

g(nB) = ln[bnB] − ln[1 − bnB] + bnB

1 − bnB
− 2anB

T
(A3)

are the logarithms of, respectively, the left- and right-hand
sides of Eq. (29). Applying Faà di Bruno’s formula to Eq. (A2)
gives

∂n f

∂ (μB/T )n
=

n∑
k=1

∂kg

∂ (nB)k
Bn,k

(
∂nB

∂ (μB/T )
,

∂2nB

∂ (μB/T )2
, . . . ,

∂n−k+1nB

∂ (μB/T )n−k+1

)
, (A4)

where Bn,k are partial exponential Bell polynomials. The left-hand side of Eq. (A4), ∂n f /∂ (μB/T )n, equals unity for n = 1 and
is zero for all n > 1. Using Bn,1( ∂nB

∂ (μB/T ) ,
∂2nB

∂ (μB/T )2 , . . . ,
∂nnB

∂ (μB/T )n ) = ∂nnB
∂ (μB/T )n , Eq. (A4) can be presented in the form

∂g

∂nB

∂nnB

∂ (μB/T )n
= ∂n f

∂ (μB/T )n
−

n∑
k=2

∂kg

∂ (nB)k
Bn,k

(
∂nB

∂ (μB/T )
,

∂2nB

∂ (μB/T )2
, . . . ,

∂n−k+1nB

∂ (μB/T )n−k+1

)
, (A5)
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which links the nth-order derivative of nB with all of its lower-order derivatives. For n = 1 we obtain the following from Eq. (A4):

∂nB

∂ (μB/T )
=

[
∂g

∂nB

]−1

= nB

[
1

(1 − bnB)2
− 2anB

T

]−1

. (A6)

By substituting (A6) in Eq. (A5) one can calculate the second-order derivative, ∂2nB/∂ (μB/T )2. The procedure can then be
applied iteratively to evaluate all derivatives of nB w.r.t. μB/T up to a desired order. The baryon number susceptibilities χ2m are
evaluated from Eq. (A1).
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