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We developed a microscopic model for antikaon absorption on two nucleons in nuclear matter. The absorption
is described within a meson-exchange picture and the primary K−N interaction strength is derived from state-of-
the-art chiral coupled-channels meson-baryon interaction models. We took into account the medium modification
of the K−N scattering amplitudes due to the Pauli correlations. We derived the K−NN as well as K−N optical
potentials as functions of nuclear matter density including the real part of the K−NN potential. We calculated
the K− single- and two-nucleon absorption fractions and branching ratios for various mesonic and nonmesonic
channels. We confirmed the crucial role of in-medium effects in our calculations. Our results are in very good
agreement with available experimental data from old bubble chamber experiments as well as with the latest
results from the AMADEUS collaboration.
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I. INTRODUCTION

The absorption of K− on two or more nucleons represents
about 20% of all K− absorption in the surface region of
atomic nuclei. The multinucleon absorption ratios were first
measured in the 1960s and 1970s in bubble chamber experi-
ments [1–4]. The multinucleon absorption fraction measured
for K− capture on a mixture of C, F, and Br was found to be
0.26 ± 0.03 [1], while Ref. [2] quotes 0.28 ± 0.03 for capture
on Ne and Ref. [3] lists the value 0.19 ± 0.03 for capture
on C. Katz et al. [4] measured the K− two-nucleon absorp-
tion fractions for all possible final states on 4He and Veirs
and Burnstein [5] measured the K− two-nucleon absorption
fractions on the deuteron. A detailed kinematic analysis of
the reaction K− +4 He → � + d + n was given in Ref. [6],
together with a branching ratio for this process of 0.035 ±
0.002. In the past decade, experiment E549 at KEK measured
K− three- and four-nucleon absorption fractions on 4He for
channels with a � hyperon in the final state [7]. The FINUDA
collaboration analyzed the �− p emission rate in reactions
of low-energy antikaons with light nuclei (6 � A � 16) [8].
Very recently, the AMADEUS collaboration measured the
K− two-nucleon branching ratios with �p and �0 p in the
final state for low-energy antikaons absorbed by a carbon
target [9,10]. The ratio of branching ratios R = BR(K− pp →
�p)/BR(K− pp → �0 p) was found to be around 0.7 [10]. All
these measurements provided valuable and detailed informa-
tion about the K− multinucleon absorption processes.

The K−N interaction is known to be attractive in the
medium due to the subthreshold I = 0 resonance �(1405),
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which couples strongly to the π� channel giving rise to
a sizable K− absorption. The theoretical description of the
K−N interaction is currently provided by the chiral coupled-
channels meson-baryon interactions models [11–15] in which
the �(1405) is generated dynamically. Parameters of these
models are fitted to available low-energy K−N observables
[16–21]. On the other hand, the interaction of antikaons with
two and more nucleons lacks a solid theoretical description.

A very important source of information about the K−-
nucleus interaction is provided by kaonic atom experiments,
in which the low-energy K− annihilates in the surface region
of a nucleus, thereby probing the K−-nucleus potential at
low nuclear densities close to threshold. The latest analysis
of kaonic atom data by Friedman and Gal [22] showed that
K− optical potentials based on the K−N scattering ampli-
tudes derived from state-of-the-art chiral models fail in gen-
eral to describe the data unless a purely phenomenological
term representing the K− multinucleon interaction is added.
Moreover, after applying an extra constraint to reproduce the
K− single-nucleon absorption fractions from bubble chamber
experiments [1–3], only three models, namely the Prague
model (P) [11], the Kyoto-Munich model (KM) [12], and the
Barcelona model (BCN) [13], were found acceptable. The K−
multinucleon interaction is thus an inseparable part of any
realistic description of the K−-nucleus interaction.

The attractive nature of the K−N interaction led to conjec-
tures about the existence of K− bound states. The first ever
observation of the K− pp bound state was reported recently
by the J-PARC E15 Collaboration [23,24] in reactions em-
ploying in-flight antikaons on a 3He target. It has also a solid
theoretical support from the study of Ref. [25]. However, the
K− multinucleon absorption may have serious implications
for existence of the K−-nuclear states, particularly in heavier
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systems. The K− single-nucleon optical potential based on
the P and KM models, supplemented by a phenomenological
multinucleon potential fitted to reproduce kaonic atom data,
was applied in the calculations of K− quasibound states in
nuclei with A � 6 [26]. The multinucleon absorption potential
was found to have a significant contribution to the total
K−-nuclear absorptive potential. The widths of K−-nuclear
quasibound states resulted to be up to one order of magnitude
larger than the corresponding binding energies. It is to be
noted that kaonic atom data can probe reliably the K− poten-
tial only up to ∼50% of normal nuclear density ρ0. Therefore,
the evaluation of K− multinucleon potential around ρ0 ex-
plored by the K−-nuclear quasibound states is a mere extrap-
olation or analytical continuation of the empirical formula.

It is then clear that, to enrich our knowledge about the K−
absorption on two or more nucleons at any density, a sound
theoretical microscopic approach is needed. It should be con-
nected to the K−N chiral interaction models in order to pro-
vide a unified description of the K− single- and multinucleon
potential. The theoretical description of the K−NN absorption
via meson rescattering process was already proposed in 1989
by Onaga et al. [27]. Sekihara et al. [28] connected the two-
nucleon antikaon absorption potential to the modern chiral
K̄N interaction in a first exploratory study of the nonmesonic
absorption of the �(1405) in nuclear matter via a one-
meson exchange mechanism. Transition probabilities to �N
and �N final states were calculated, showing that the ratio
��N/��N = 1.2 is independent of the nuclear density when
employing the couplings of the �(1405) to K̄N and π� states
from a chiral unitary meson-baryon interaction model. In a
subsequent work [29], the authors developed a microscopic
model for the K−NN absorption in nuclear matter using the
free-space K−N scattering amplitudes derived from a chiral
meson-baryon interaction model. They described the K−NN
absorption within the meson-exchange picture and calculated
the imaginary part of the K−NN self-energy.

In this paper, we present a microscopic model for the
K−NN absorption in symmetric nuclear matter. It is motivated
by the approach of Nagahiro et al. [30] where a method
for obtaining the meson-nucleon-nucleon self-energy within
a meson-exchange picture was developed and applied to cal-
culate the η′NN optical potential in nuclear matter. We extend
the approach to incorporate also the exchange terms which
are non-negligible in the absorption of low-energy antikaons
studied in the present work. In the formalism employed here,
the absorption of K− on two nucleons is modeled within a
meson-exchange picture and the K−NN optical potential is
derived from the corresponding K− self-energy. The primary
K−N interaction strength is provided by the K−N scattering
amplitudes derived from the P and BCN chiral models. Unlike
Ref. [29], we take into account the Pauli correlations in the
medium for the K−N scattering amplitudes since they are
essential for in-medium kinematics. Moreover, we present
results for the real part of the K−NN optical potential derived
within the microscopic model for the first time.

We calculate branching ratios for the K− single- and two-
nucleon absorption channels and compare our findings with
old bubble chamber data as well as with the latest measure-
ments from the AMADEUS collaboration [10]. In general,
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FIG. 1. Feynman diagram for mesonic K− absorption in nuclear
matter. The shaded circles denote the K−N → πY, (Y = �, �)
t matrices derived from a chiral coupled-channels meson-baryon
interaction model.

our results reproduce the experimental data remarkably well,
especially when the in-medium effects are taken into account.

The paper is organized as follows. In Sec. II, we give a
brief description of the formalism used to derive the K−N
and K−NN optical potentials and basic information about
the chiral coupled-channels meson-baryon interaction models
used in our approach. In Sec. III, we present the real and
imaginary parts of the K−N and K−NN optical potentials
calculated within our model and compare the branching ratios
for mesonic and nonmesonic K− decay channels with data.
Finally, we summarize our findings in Sec. IV. Detailed
derivation of the K−N and K−NN optical potentials is given
in Appendices A and B, respectively.

II. FORMALISM

In this section we give a brief description of the formalism
used to derive the K−N and K−NN absorption potentials
in symmetric nuclear matter. More details can be found in
Appendices A and B. The K−N → MB amplitudes appear-
ing in the one-nucleon and two-nucleon absorption diagrams
are obtained from chiral coupled-channels meson-baryon in-
teraction models [11,13]. A derivation of a K− absorption
potential using chiral two-body scattering amplitudes was
applied before by Sekihara et al. [29]. In the present work
we consider in-medium K−N → MB amplitudes modified by
Pauli blocking effects.

A. Single-nucleon K− absorption in nuclear matter

Let us start with the 1N-absorption mechanism. The in-
teraction of a kaon K− with a single nucleon N = p, n
in nuclear matter is depicted by the Feynman diagram of
Fig. 1. The algebraic expression of the K−N self-energy is
given by Eq. (A1) in Appendix A, where all the details of
the calculation are thoroughly discussed. Here we only note
that the imaginary part of the corresponding K−N optical
potential, given by Eq. (A6), is obtained from the sum of
the contributions from different annihilation channels listed
in Table I,

ImVK−N =
∑

channels

ImVK−N→πY . (1)
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TABLE I. All considered channels for mesonic
and nonmesonic K− absorption in nuclear matter.

K−N→πY K−N1N2→Y N

K− p→ π 0� K− pp→ �p
→ π 0�0 → �0 p
→ π+�− → �+n
→ π−�+ K− pn(np) → �n

K−n → π−� → �0n
→ π−�0 → �− p
→ π 0�− K−n → �−n

We have checked that the sum in Eq. (1) gives the same
total one-nucleon absorption width obtained directly from
a tρ-type expression. Relatedly, the real part of the single-
nucleon potential, presented in Sec. III, is obtained from the
tρ expression as well.

B. Two-nucleon K− absorption in nuclear matter

The absorption of K− by two nucleons in nuclear matter
is described within a meson-exchange picture. Our formalism
for 2N absorption follows closely the approach Nagahiro et al.
[30] used to derive the η′NN optical potential, except that in
the present work we also consider the non-negligible effect
of the exchange terms. The Feynman diagrams representing
the 2N-absorption process with different intermediate virtual
mesons exchanged (K, π, η) are depicted in Figs. 2 and 3.
The shaded circles denote the K−N t matrices derived from
a chiral coupled-channels meson-baryon interaction model.
We refer to the diagrams shown in Fig. 2, which provide the

N1 N2Y N

π(η)

π(η)

N1 N2N Y

K̄
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K− K−
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FIG. 2. Two-fermion-loop Feynman diagrams for nonmesonic
K− absorption on two nucleons N1, N2 in nuclear matter. The shaded
circles denote the K−N t matrices derived from a chiral coupled-
channels meson-baryon interaction model.
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FIG. 3. One-fermion-loop Feynman diagrams for nonmesonic
K− absorption on two nucleons N1, N2 in nuclear matter. The shaded
circles denote the K−N t matrices derived from a chiral coupled-
channels meson-baryon interaction model.

main contribution to the K−NN self-energy, as “two fermion
loop (2FL).” We refer to the diagrams shown in Figs. 3(a)
and 3(b) as “one fermion loop of type A (1FLA)” and to
those in Figs. 3(c) and 3(d) as “one fermion loop of type
B (1FLB).” Note that the direct contributions correspond to
diagrams 2FL(a) and 2FL(b) in Fig. 2, while the remaining
diagrams in this figure and those of Fig. 3 are obtained from
antisymmetrizing the initial N1N2 system, as well as from
exchanging the place of the N and Y baryons in the final
state. The considered channels for two-body K− absorption
in nuclear matter are listed in the second column of Table I.
Each channel in that list can proceed via direct and exchange
diagrams with the corresponding intermediate mesons. In
this way, our approach incorporates the same 2N-absorption
processes as those studied in Ref. [29].

The total K−NN potential is then built as a sum of con-
tributions coming from the 2FL and 1FL diagrams for all
considered channels listed in Table I,

VK−NN =
∑

channels

V 2FL
K−NN + V 1FLA

K−NN + V 1FLB
K−NN . (2)

For illustration, there are 37 2FL-type diagrams, 28 1FLA-
type diagrams, and 33 1FLB-type diagrams that contribute
to the total K−NN optical potential. The details of the
derivation of the 2FL and 1FL K−NN self-energies and the
explicit forms of their respective optical potentials are given in
Appendix B.

The argument of the t matrices used in the evaluation of
the K− optical potential is the center-of-mass energy

√
s. In

the discussion of our results for the K− optical potential it is
useful to know the range of values this parameter may take. As
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FIG. 4. The energy shift δ
√

s = √
s − Eth probed in our model

as a function of the relative density ρ/ρ0 for two values of the kaon
binding energy BK− and momentum pK− .

we consider the interaction of an external K− with a nucleon
in nuclear matter, the expression for

√
s reads

√
s =

√
(EK− + 〈EN 〉)2 − 〈k〉2 − p2

K−
ρ

ρ0
, (3)

where EK− = mK− − BK− ρ

ρ0
, 〈EN 〉 is the average nucleon en-

ergy given by Eq. (A4), 〈k〉 =
√

3
5 kF is the average nucleon

momentum, and pK− is the kaon momentum [we average
over the angles, i.e., (〈k〉 + �pK− )2 → 〈k〉2 + p2

K−]. Here mK−

is the antikaon mass, BK− denotes the K− binding energy at
saturation density ρ0, ρ is the nuclear matter density, and
kF is the corresponding Fermi momentum. We multiply the
kaon momentum by a square root of relative density, i.e.,
pK− → pK− ( ρ

ρ0
)1/2 in order to maintain the low-density limit

in
√

s, i.e.,
√

s → mK− + mN as ρ → 0.
In Fig. 4 we present the energy shift δ

√
s = √

s − Eth, with
Eth = mK− + mN , as a function of the relative density ρ/ρ0

for two values of the kaon binding energy BK− = 0 MeV and
50 MeV and two different kaon momenta pK− = 0 MeV/c
and 200 MeV/c1 at ρ0. In the case of kaon at rest,
pK− = 0 MeV/c (black), we probe energies down to
∼40 MeV below threshold at saturation density for
BK− = 0 MeV. If the value BK− increases to 50 MeV, then
we probe lower energies, approaching the π� threshold
at saturation density. If we assign the kaon a momentum
pK− = 200 MeV/c (red) at saturation density, then the abso-
lute value of the energy shift increases by about 16 MeV at ρ0

for both values of BK− .

C. KN interaction models

The K−N t matrices employed in our calculations are
derived from two different chiral coupled-channels meson-
baryon interactions, namely the BCN [13] and P models

1This value corresponds to a momentum of a kaon bound by
50 MeV in a potential VK− ∼ −80 MeV at ρ0.

[11]. The parameters of both models are fitted to low-energy
K− p data such as low-energy K− p scattering cross sections
[18–20], threshold branching ratios [16,17], and the strong
interaction energy shift and width of kaonic hydrogen atom
[21]. The two models were also confronted with kaonic atom
data and found to reproduce the 1N absorption fractions
from bubble chamber experiments [1–3], after adding a phe-
nomenological K− multinucleon optical potential [22].

Here we compare results for the free-space as well as
Pauli blocked K−N amplitudes. The Pauli blocking effect is
accounted for directly in the BCN and P models by restricting
the nucleon momentum in the intermediate meson-nucleon
loops of the unitarized amplitude to be larger than the Fermi
momentum kF .

The free-space and Pauli blocked K− p (top panel) and
K−n (bottom panel) amplitudes obtained from the BCN (left)
and P (right) models are shown in Fig. 5, where we have
defined:

FK−N = − 1

4π

mN√
s

tK−N→K−N , (4)

with tK−N→K−N being the two-body t matrix.
The K− p amplitudes are strongly energy dependent in both

models due to the subthreshold resonance �(1405). The BCN
free-space K− p amplitude is smaller in magnitude than that of
the P model at subthreshold energies. When the Pauli blocking
effects are taken into account both models yield similarly
reduced K− p amplitudes for the two considered densities.
As the density increases, the resonant structures associated
with the �(1405) shifts above threshold. As a consequence,
the free-space K− p interaction which is repulsive at threshold
becomes attractive in the medium.

The energy dependence of the mildly attractive K−n am-
plitudes is less pronounced for both models. The real part of
the K−n amplitude in the BCN model tends to decrease with
decreasing energies below threshold, contrary to the P model.
The imaginary part of the K−n amplitude at threshold in the
BCN model is larger than in the P model, however, further
below threshold the amplitudes are very similar to each other
in both models. The Pauli blocked amplitudes decrease again
in magnitude with increasing density.

In Fig. 6, we compare the absolute values of the free-space
(dotted) and Pauli blocked (solid) BCN t matrices for channels
K− p → �0π0, �+π−, �−π+ as functions of relative density
ρ/ρ0, calculated for energy shift δ

√
s corresponding to BK− =

0 MeV and pK− = 0 MeV/c. It is to be noted that the
density dependence of the free-space amplitudes stems from
the relation between the energy

√
s and density in Eq. (3).

The peak in the free-space I = 0 �0π0 channel comes from
the �(1405) resonance and it is placed around 0.5ρ0, which
corresponds to δ

√
s ∼ −20 MeV. The different position of

the peak for the differently charged channels is due to the
interference between I = 0 and I = 1 amplitudes, which is
absent in �0π0, and of different sign for �+π− and �−π+.
The medium modification of the amplitudes causes the peaks
of the t matrices to shift toward lower densities, 0.1 − 0.2ρ0.
Moreover, the absolute values of the Pauli blocked t matrices
decrease in magnitude with respect to the free-space ones for
larger densities.
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FIG. 5. The comparison of free-space (black) and Pauli blocked K− p (top) and K−n (bottom) amplitudes at two different densities: 0.3ρ0

(red) and ρ0 (green), calculated in the BCN (left) and P (right) models.

It is to be noted that self-energy insertions in terms of
hadron-nucleon potentials for the intermediate baryons are not
included in the in-medium amplitudes employed here. The
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FIG. 6. Absolute values of �0π 0 (black), �+π− (red), and
�−π+ (green) free-space (dotted), and Pauli blocked (solid) BCN
model t matrices as functions of relative density ρ/ρ0, printed for
energy shift corresponding to BK− = 0 MeV and pK− = 0 MeV/c.

self-energy effects are known to partly compensate for the
Pauli upward shift of the amplitudes, moving them closer to
the free-space ones [31]. In this respect, the medium effects
discussed in this work might be somehow modified. It will be
worth employing in-medium amplitudes, which incorporate
baryon as well as meson self-energy insertions, as soon as they
become available for the BCN and P models. Being aware of
this limitation, in the present work we will always refer to
our in-medium effects as those associated to Pauli blocking
correlations only.

III. RESULTS

In this section, we present the K−N and K−NN optical
potentials and absorption branching ratios, calculated within
the formalism described in Appendices A and B and using the
K−N scattering amplitudes derived from the BCN and P chiral
models.

First, we tested our model using the free-space amplitudes
of Ref. [32], which were used in similar calculations in
Ref. [29]. We reproduce the result of Ref. [29] for the K−N
imaginary potential. In the case of the K−NN imaginary
potential, we reproduce their result only if we adopt their
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FIG. 7. The real (left) and imaginary (right) parts of the K−N (dotted), K−NN (dashed), and total (solid) optical potentials as a function of
relative density ρ/ρ0, calculated for BK− = 0 MeV and pK− =0 MeV/c using the free-space (black) and Pauli blocked (red) BCN amplitudes.

prescription for the meson propagator of Eq. (20), which
is modified by the effect of short-range correlations and a
monopole form factor at each vertex. In the absence of these
modifications, the resulting K−NN imaginary potential be-
comes twice as deep. Let us mention that the short-range cor-
relations implemented in Ref. [29] for all exchanged mesons
were obtained following the phenomenological procedure of
Ref. [33] to deal with NN correlations. However, here we
are not facing a pure NN interaction problem but a transition
from a NN pair to a Y N pair, the later probably having milder
short-range correlations. Given this uncertainty, in the present
work we have adopted a practical approach which consists
in letting the form factor [Eq. (B8)] to account for these
effects in an effective way. We have found that the results of
the pion-exchange diagrams calculated with the short-range
correlations of Ref. [29], Eq. (20), can be mimicked by
our model employing a cut-off value �c = 900 MeV. The
kaon-exchange diagrams, being of shorter-range due to the
higher mass of the kaon, are more affected by correlations and
require a somewhat softer cut-off value. Therefore, our results
will be presented in bands, obtained employing form factors
with cut-off values in the range �c = 800–1200 MeV, aiming
in this way to account for the uncertainty tied to short-range
baryon-baryon correlation effects.

Finally, we note that we do not consider the contribution
from the �(1385) resonance to K− absorption since for low-
energy kaons it was found to be small in comparison with that
coming from the �(1405) [29].

A. K−N and K−NN optical potentials in nuclear matter

First, we present results calculated with a cut-off value
�c = 1200 MeV. In Fig. 7 we demonstrate the importance
of employing Pauli blocked amplitudes. The real (left) and
imaginary (right) parts of the K−N, K−NN , and total K−
optical potential (K−N + K−NN) are presented as functions
of the relative density ρ/ρ0, calculated for BK− = 0 MeV
and pK− = 0 MeV/c using the free-space (black) and Pauli
blocked (red) K−N amplitudes derived from the BCN model.

The real part of the K−NN potential calculated with free-
space amplitudes is repulsive in the whole density region.
The depth of the corresponding imaginary K−NN potential
increases with the density and reaches ∼−80 MeV at ρ0.
The K−NN absorption starts to be dominant over the K−N
absorption for ρ > 0.9ρ0. The total absorptive K− potential
with free-space amplitudes is deeper than the corresponding
real part in the entire density region.

When the Pauli blocking effect is taken into account,
the absorptive K−N and K−NN potentials are reduced by
approximately one half at saturation density with respect to
the free-space potentials. The minimum of the Pauli blocked
K−N absorptive potential is reached at a lower density since,
as can be seen in Fig. 6, the resonant �(1405) structure in
the Pauli blocked K− p → �π amplitudes has also moved
to lower densities. The density dependence of the real K−
single-nucleon potential changes its shape due to medium
effects, which is also explained by the shifting of the Pauli
blocked amplitudes. As for the real part of the K−NN po-
tential, we find that the repulsive contribution is reduced by
approximately one half. In general, a repulsive real K−NN
potential is in line with most of the phenomenological K−
multinucleon optical potentials consistent with kaonic atom
data and 1N absorption fractions at threshold [22]. The total
real and imaginary Pauli blocked K− potentials are of similar
size around saturation density. Our results show that the Pauli
correlations in the amplitudes have a pronounced effect on
the K− absorption and should not be neglected. From now
on we will present mainly the results calculated with the Pauli
blocked amplitudes.

It is to be noted that in the expression for the K−N (see
Appendix A) and K−NN (see Appendix B) potentials we
approximate the nucleon momentum �k by an average Fermi
momentum, 〈k〉 = √

3/5kF , which allows us to factorize the
K−N t matrices out of the integral. Since the K− p ampli-
tudes are significantly energy dependent (see Fig. 5) and
their argument

√
s depends on the nucleon momentum, one

might argue that such approximation is not well justified.
Therefore, we have calculated the single- and two-nucleon
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FIG. 8. The real (solid) and imaginary (dashed) parts of the K−N (left) and K−NN (right) optical potentials as a function of relative density
ρ/ρ0, calculated for BK− = 0 MeV, pK− = 0 MeV/c, and 〈k〉 = √

3/5kF (black) using the Pauli blocked BCN amplitudes compared with two
extreme cases for the nucleon momentum �k = 0 (green) and �k = kF (red) in the expression for

√
s.

K− potentials considering two extreme cases for the nucleon
momentum, �k = 0 and �k = kF , in

√
s [see Eq. (3)] to analyze

the effect of averaging the nuclear Fermi motion. The results
are shown in Fig. 8. The K− potentials evaluated with an
average nucleon momentum lie between the two extreme lines
and the difference between potentials calculated for �k = 0 and
�k = kF is up to 10 MeV at ρ0. This result suggests that a
potential obtained by integrating over all possible values of
nucleon momenta �k in Eq. (3) would most likely be very close
to the potential evaluated with an average nucleon momentum.

A comparison of the K− potentials obtained within the
BCN and P models for BK− = 0 MeV and pK− = 0 MeV/c
is presented in Fig. 9. Both models yield qualitatively very
similar K− potentials. The imaginary parts overlap up to
∼0.4ρ0. At ρ0, the BCN model is less absorptive by about
20 MeV than the P model, this difference being equally shared
by the K−N and K−NN contributions. As for the real part

of the optical potential, we observe that the K−NN term is
repulsive and of similar magnitude in both models. On the
other hand, the P model yields a deeper real K−N potential
than the BCN model, reaching a difference of about 20 MeV
around saturation density.

Next, we consider the effect of a finite value of the K−
binding energy BK− and the kaon momentum pK− . In Fig. 10,
we present a comparison of the K−N, K−NN , and total K−
optical potentials calculated for BK− = 50 MeV at ρ0, which
probes center-of-mass K−N energies

√
s down to 100 MeV

below threshold (see Fig. 4), and three values of kaon mo-
mentum pK− = 0 MeV/c (black), 100 MeV/c (green), and
200 MeV/c (red) at ρ0 within the BCN model. First, we focus
on the case of pK− = 0 MeV/c (black). In the right panel,
we observe that the imaginary K−N and K−NN potentials for
the binding energy BK− = 50 MeV are shallower than those
obtained for BK− = 0 MeV (see Fig. 9). This is because the
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FIG. 9. Comparison of the real (left) and imaginary (right) parts of the K−N (dotted), K−NN (dashed), and total (solid) optical potentials
as a function of relative density ρ/ρ0, calculated for BK− = 0 MeV and pK− = 0 MeV/c using the Pauli blocked amplitudes within the BCN
(black) and P (red) models.
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BK− = 50 MeV case explores the K− p → �π amplitudes at
energies deeper below the K−N threshold, i.e., further away
of the resonant peak and closer to the π� threshold (see
Fig. 4). The K−N imaginary potential decreases faster with
the density then the K−NN absorptive potential. As a results,
the K−NN imaginary potential becomes deeper than the K−N
potential at ρ > 0.8ρ0. The depth of the total K− absorptive
potential obtained for BK− = 50 MeV is reduced by more than
one half at ρ0 with respect to the BK− = 0 MeV case. The
real part of the K−NN optical potential (left panel) becomes
substantially reduced when a finite antikaon binding energy
is employed. On the other hand, the total real K− potential,
which is dominated by the K−N contribution, is little affected.
When a finite value of the kaon momentum is taken into
account the real and imaginary K− potentials decrease in mag-
nitude as the value of the momentum increases. This happens
because the nonzero value of pK− causes a downward energy
shift (see Fig. 4), thus probing a lower energy region where the
K−N amplitudes are smaller (see Fig. 5). The effect is most

pronounced around ρ0. Similar trends in the behavior of the
K− potentials are observed also for BK− = 0 MeV and finite
values of kaon momentum. The potentials calculated with the
P model (not shown in the figure) exhibit the same features.

In Fig. 11 we plot the K− two-nucleon annihilation contri-
butions into different final states as functions of the relative
density ρ/ρ0, calculated for pK− = 0 MeV/c in the case of
BK− = 0 MeV (black) and 50 MeV (red) within the BCN
model. The left panel shows the K−NN absorptive potential
corresponding to the Y p (Y = �,�0, �−) channels and the
right panel that of the Y n (Y = �,�0, �−, �+) ones. The
K−NN absorptive contributions are, in general, significantly
reduced when BK− is increasing from 0 to 50 MeV, except
for the K−nn → �−n case, which also gives the smallest
contribution. This is due to the fact that this absorption process
involves pure isospin I = 1 K−n amplitudes only, much more
moderate in size and less energy dependent than the �(1405)
dominated isospin I = 0 ones which play an important role in
the other channels.
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FIG. 11. Respective contributions to the K−NN absorptive potential corresponding to �(�)p (left) and �(�)n (right) final states,
calculated for pK− = 0 MeV/c and BK− = 0 MeV (black) and 50 MeV at ρ0 (red) using the Pauli blocked BCN amplitudes.
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FIG. 12. Ratio of K− single-nucleon (K−N) and two-nucleon (K−NN) absorptive potentials to the total K− absorptive potential as a
function of relative density ρ/ρ0, calculated for BK− =0 MeV (black), BK− =50 MeV (thick red) with pK− =0 MeV/c, and for BK− =50 MeV
and pK− =200 MeV/c at ρ0 (thin red) using the BCN (left) and P (right) Pauli blocked amplitudes. The gray band denotes the region of
densities probed in experiments with low-energy K−.

Now let us focus on the remaining contributions to the
�N final states in the case of BK− = 0 MeV. We first notice
that the �N channels are dominated by pion exchange, with
the � hyperon emitted from the kaon absorption vertex and
the virtual pion absorbed in a Yukawa-type NNπ vertex. The
reason lies in the fact that the kaon-exchange mechanism
involves a Yukawa �NK vertex which has a much reduced
strength with respect to the pionic one, as noted already in
Ref. [28]. This pion-exchange dominance explains why the
contributions of the �+n and �− p channels are much larger
than the �0 p and �0n ones, since a factor of 2 = (

√
2)2

already comes from the larger Yukawa coupling of charged
pions versus that of neutral ones. The remaining difference
is to be found in the relative strengths of the K− p → π�

amplitudes. As seen in Fig. 6, the dominant amplitude at
normal nuclear matter density is that to the �+π− state,
followed by �0π0 and finally by �−π+. This explains the
different relative size of the dominant �+n and �− p channels
in the K−NN absorption.

Our results are qualitatively very similar to those found
in Ref. [29], although there are some quantitative differ-
ences. Our absorptive widths to neutral hyperon final states
(�p, �0 p, �n, and �0n) are roughly 20% smaller, the �+n
contribution is very similar and we find a smaller �− p
strength by about a factor two. Overall, as seen in Fig. 9,
our total K−NN absorptive potential is −38 MeV at normal
nuclear matter density, about 20% smaller in size than the
value found in Ref. [29]. These differences are mainly due
to the fact that we are employing Pauli blocked amplitudes as
well as different K−N interaction models.

The ratios of K− single-nucleon and two-nucleon absorp-
tion widths to the total K− width in nuclear matter are
shown in Fig. 12 as functions of the relative density ρ/ρ0,
calculated for pK− = 0 MeV/c, in the case of BK− = 0 MeV
(black) and 50 MeV (red) within the BCN (left panel) and P
(right panel) models. The ratios for pK− = 200 MeV/c and
BK− = 50 MeV at ρ0 (thin red lines) are shown for compari-

son. The relative strength of the K− single-nucleon absorption
decreases with density, while that of the two-nucleon term
increases. Finally, the absorption of K− on two nucleons
prevails. This is due to the reduction of phase space for the
K−N → πY absorption channels in the vicinity of the π�

threshold. We find similar results for both chiral models. For
BK− = 0 MeV, the two ratios cross each other at or slightly
above ρ0, differently to what is found in Ref. [29] where
these ratios do not cross at all, not even up to the density
of 0.2 fm−3 explored there. The reason is found again in
that we employ Pauli blocked amplitudes. As seen in Fig. 6,
the K− p → �π Pauli blocked amplitudes show the �(1405)
resonant structure at lower densities, while at higher densities
their magnitude is substantially smaller than the free-space
ones, thereby producing a reduced one-nucleon absorption
ratio. The crossing occurs at lower density when a finite
value of the K− binding energy BK− = 50 MeV is considered,
and is shifted even more for pK− = 200 MeV/c. For both
models, the K− single-nucleon and two-nucleon absorption
fractions at 0.3ρ0 are close to 80% and 20%, respectively,
and there is a tiny difference between the ratios calculated
for BK− = 0 MeV and 50 MeV at ρ0 or for pK− = 0 MeV/c
and pK− = 200 MeV/c at ρ0 in the region of experimentally
probed densities (gray band). Such behavior is consistent with
bubble chamber data [1–3] as well as with findings obtained
in the K−-bound state calculations with the phenomenological
K− multinucleon potential [26]. Conversely, in Ref. [29] the
1N- and 2N-absorption ratios at ρ ∼ 0.3ρ0 are around 90%
and 10%, respectively.

Finally, in Fig. 13 we present the uncertainty (gray
band) in the K−NN potential due to the range of cut-off
values (�c = 800–1200 MeV) used in the form factor of
Eq. (B8), calculated for BK− = 0 MeV and pK− = 0 MeV/c
using the Pauli blocked BCN amplitudes. When the lower
cut-off value is used the depth of the imaginary potential
decreases whereas the magnitude of the repulsive real poten-
tial increases.
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B. Comparison with experimental values of mesonic
and nonmesonic absorption ratios

Next, we present various ratios of single-nucleon
(mesonic) and two-nucleon (nonmesonic) absorption widths,
calculated within the BCN and P models. The ratios are
calculated at 0.3ρ0 and 0.5ρ0 and compared with available
experimental data. We consider 0.3ρ0 as the density region
relevant for absorption of low-energy K− on 12C and 0.5ρ0 as
a limiting density probed in experiments with low-energy K−.
Moreover, since the K−NN potential is dependent on the cut-
off value �c, we evaluate the branching ratios as averages of
the ratios calculated for �c = 800 MeV and �c = 1200 MeV.
The corresponding errors permit to reach the boundary values
obtained for the two cut-offs.

In Table II we show the 2N-absorption branching ratios
into different final states. Similarly to the results shown

TABLE II. Primarya-interaction branching ratios (in %) for the
K− two-nucleon absorption in nuclear matter, calculated with the
BCN free-space and Pauli blocked amplitudes for BK− = 0 MeV
and pK− = 0 MeV/c. The errors denote the uncertainty due to the
cut-off dependence.

0.3ρ0 0.5ρ0

BCN Free space Pauli Free space Pauli

�n/K− 2.7 ± 0.5 1.9 ± 0.3 3.6 ± 0.5 2.8 ± 0.4
�p/K− 1.4 ± 0.2 1.6 ± 0.3 2.6 ± 0.3 2.5 ± 0.3
�0n/K− 2.6 ± 0.3 2.1 ± 0.3 3.7 ± 0.4 3.0 ± 0.3
�0 p/K− 1.3 ± 0.2 1.6 ± 0.2 2.5 ± 0.3 2.6 ± 0.3
�−n/K− 0.12 ± 0.01 0.12 ± 0.01 0.19 ± 0.01 0.25 ± 0.02
�− p/K− 5.7 ± 0.8 4.2 ± 0.6 7.9 ± 0.9 5.4 ± 0.6
�+n/K− 2.8 ± 0.4 3.8 ± 0.5 5.6 ± 0.6 6.4 ± 0.7

aSecondary interactions of the primary particles created in the ab-
sorption process were not considered.

in Fig. 11, the �+n and �− p are the dominant channels,
followed by the neutral hyperon ones (�n, �p, �0n, and
�0 p). The presented values can by easily compared with
experimental data as recent and future experiments aim at
providing separate measurements of these ratios.

Let us now discuss the results for kaon absorption obtained
in the recent counter-experiment of the AMADEUS collab-
oration that measured K− multinucleon absorption fractions
impinging low-energy K− produced at the DA	NE collider
on a carbon target [9,10]. They obtained the ratio of branching
ratios

R = BR(K− pp → �p)

BR(K− pp → �0 p)
= 0.7 ± 0.2(stat.)+0.2

−0.3(syst.), (5)

for “quasifree” production of �(�0)p pairs. These processes
correspond to the direct emission of �(�0)p pairs and hence
we can calculate their strength directly within our formalism.
The corresponding ratios calculated using the BCN (left) and
P (right) free-space (black lines) and Pauli blocked (red lines)
amplitudes are plotted in Fig. 14 as functions of relative
density ρ/ρ0. The AMADEUS experimental value including
error bar is shown for comparison. The lines denote the ratios
calculated for the cut-off value �c = 1200 MeV and the bands
denote the uncertainty due to lower values of �c. The free-
space ratio is similar to that obtained in Ref. [29]. The Pauli
blocking has a pronounced effect on the ratio, decreasing its
value close to or below 1 for both chiral models, bringing it
within the error bar of the experimental ratio at 0.15–0.3ρ0.
Considering the K− binding energy BK− = 50 MeV at ρ0

further decreases the ratio R in the region of experimentally
accessible densities. Finally, we have checked that the nonzero
value of kaon momentum has a negligible effect on the ratio
R in the region of experimentally relevant densities.

In the same experiment of Ref. [10], it was argued that the
ratio of Eq. (5) for the K− pp → �p, �0 p processes would
be similar to the ratio for K− p absorption into �π0 and �0π0

final states, given by

R∗ = BR(K− p → �π0)

BR(K− p → �0π0)
. (6)

The argument for the similarity of the two ratios relies in
assuming that the most important contribution for both 2N-
absorption processes comes from π0 exchange, on the basis
of the dominance of the �(1405) resonance for the K− pp →
�0 p channel and that of the �0(1385) resonance in the case of
K− pp → �p [10]. However, we must note that �0(1385) res-
onance couples to K− p in a p-wave, making its contribution
to antikaon absorption negligible, as was shown in Ref. [29].
According to our model and also Ref. [28], the most important
contribution to the K− pp → �0 p channel comes indeed from
π0 exchange due to the enhanced effect of the �(1405). On
the other hand, the process K− pp → �p proceeds mainly
through the K− exchange mechanism, dominated again by the
�(1405) and not by the �0(1385) resonance. Thus Eq. (10)
in Ref. [10] is questionable.

In Fig. 15, we show our result for the ratio R∗ as a
function of the relative density ρ/ρ0, calculated using the
free-space (black) and Pauli blocked (red) amplitudes derived
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FIG. 14. The ratio of branching ratios for the K− pp → �p and K− pp → �0 p channels as a function of relative density ρ/ρ0, calculated
for pK− = 0 MeV/c and BK− = 0 MeV and 50 MeV at ρ0 using the free-space (black) and Pauli blocked (red) BCN (left) and P (right) model
amplitudes. Color bands denote the uncertainty due to different cut-off values �c = 800–1200 MeV. The dashed vertical lines denote the
region of densities probed in experiments with low-energy K− including the experimental value of the ratio with corresponding error bar (gray
rectangle).

from the BCN (left) and P (right) models. In the region of
experimentally relevant densities (gray band), the ratio R∗ of
mesonic rates to �π0 and �0π0 final states calculated with
Pauli blocked amplitudes turns out to be again smaller than
the free-space ratio for both interaction models, being of the
order of 0.2 or lower. This is substantially different from the
ratio R of nonmesonic processes to �0 p and �0 p channels
presented in Fig. 14. It is to be noted that the ratio R∗ diverges
for BK− = 50 MeV around saturation density since we are
approaching π� threshold (see Fig. 4). We have checked that
the nonzero value of kaon momentum has again a negligible

effect on the ratio R∗ in the region of experimentally relevant
densities.

In Table III we present primary-interaction branching ra-
tios for mesonic and nonmesonic K− absorption into different
final states, calculated for pK− = 0 MeV/c and BK− = 0 MeV
using the free-space and Pauli blocked BCN amplitudes at
0.3ρ0 and 0.5ρ0. The branching ratios from bubble chamber
experiments [1,3], corrected for secondary interactions of the
primary particles created in the absorbing nucleus, are listed
in column “Expt.” The mesonic branching ratios calculated
using the Pauli blocked amplitudes are in better agreement
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FIG. 15. The ratio of branching ratios for the K− p → �π 0 and K− p → �0π 0 channels as a function of relative density ρ/ρ0, calculated
for pK− = 0 MeV/c and BK− = 0 MeV and 50 MeV at ρ0 using the free-space (black) and Pauli blocked (red) BCN (left) and P (right) model
amplitudes. The gray band denotes the region of densities probed in experiments with low-energy K−.
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TABLE III. Primary-interaction ratios (in %) for mesonic and nonmesonic absorption of K− in nuclear matter, calculated with free-space
and Pauli blocked amplitudes in the BCN model for BK− = 0 MeV and pK− = 0 MeV/c. The errors denote the uncertainty due to the cut-off
dependence. The experimental data corrected for primary interaction are shown for comparison.

BCN 0.3ρ0 0.5ρ0 Expt. [3]

Mesonic ratio Free- space Pauli Free- space Pauli 4He 12C

�+π−/K− 19.6 ± 0.6 28.8 ± 0.7 22.3 ± 0.9 28.6 ± 1.0 31.2 ± 5.0 29.4 ± 1.0
�−π 0/K− 6.2 ± 0.2 5.7 ± 0.1 4.3 ± 0.2 5.5 ± 0.2 4.9 ± 1.3 2.6 ± 0.6
�−π+/K− 21.9 ± 0.6 14.8 ± 0.4 16.5 ± 0.7 9.6 ± 0.3 9.1 ± 1.6 13.1 ± 0.4
�0π−/K− 6.2 ± 0.2 5.7 ± 0.1 4.4 ± 0.2 5.6 ± 0.2 4.9 ± 1.3 2.6 ± 0.6
�0π 0/K− 18.1 ± 0.5 19.2 ± 0.5 17.6 ± 0.7 16.6 ± 0.6 17.7 ± 2.9 20.0 ± 0.7
�π 0/K− 3.8 ± 0.1 3.5 ± 0.1 2.9 ± 0.1 3.6 ± 0.1 5.2 ± 1.6 3.4 ± 0.2
�π−/K− 7.6 ± 0.2 7.0 ± 0.2 5.8 ± 0.2 7.5 ± 0.3 10.5 ± 3.0 6.8 ± 0.3

Total 1N ratio 83.3 ± 2.4 84.6 ± 2.2 73.9 ± 3.9 77.1 ± 2.8 83.5 ± 7.1 77.9 ± 1.6

R± = (�+π− )
(�−π+ ) 0.9 1.9 1.4 3.0 3.5 ± 1.0 2.24 ± 0.12

Rpn = (�+π− )+(�−π+ )
(�−π0 )

6.7 7.7 9.0 7.0 9.0 ± 4.0 16.3 ± 4.0

Nonmesonic ratio Free-space Pauli Free-space Pauli 76% CF3Br + 24% C3H8 [1]

(�p + �n + �0 p + �0n)/K− 8.0 ± 1.2 7.2 ± 1.1 12.4 ± 1.6 10.9 ± 1.4 14.1 ± 2.5a

(�− p + �−n)/K− 5.8 ± 0.8 4.3 ± 0.6 8.1 ± 0.9 5.6 ± 0.6 7.3 ± 1.3a

�+n/K− 2.8 ± 0.4 3.8 ± 0.5 5.6 ± 0.6 6.4 ± 0.7 4.3 ± 1.2a

(�0 p + �0n)/K− 3.9 ± 0.5 3.7 ± 0.5 6.2 ± 0.7 5.6 ± 0.6 –
Total 2N ratio 16.7 ± 2.4 15.4 ± 2.2 26.1 ± 3.0 22.9 ± 2.8 25.7 ± 3.1a

aMultinucleon capture rate.

with experimental data than the free-space ratios, especially
in the case of �+π− and �−π+ final states. The values of
the calculated �π branching ratios shown in Table III are
consistently related to the behavior of the Pauli blocked am-
plitudes shown in Fig. 6. The magnitude of the Pauli blocked
�+π− amplitude around 0.3ρ0 is the largest, followed by
�0π0 and finally by �−π+. The magnitudes of the free-space
amplitudes are in different order at this density. Consequently,
the ratio R± between the �+π− and �−π+ final states gets
enhanced by about a factor of two when employing Pauli
blocked amplitudes and is in much better agreement with
the experiment. The nonmesonic ratios calculated with Pauli
blocked amplitudes presented at the bottom of Table III show
reasonable agreement with available experimental data as
well. It is to be noted that the quoted experimental fractions
correspond to global K− multinucleon absorption ratios [2],
thus including K− absorption on three and more nucleons
which are not considered in our calculations. We assume that
the 3N and 4N absorption processes are less important than
the 2N absorption ones.

Next, we compare the K−NN absorption fractions with
directly measured values, uncorrected for the effect of sec-
ondary interactions, obtained in absorption of low-energy
K− on 4He in bubble chamber experiments [4]. We should
then consider the effect of final state interaction, mainly the
�N − �N conversion processes, in our results. A proper
microscopic quantum-mechanical evaluation of these effects
would require the consideration of higher-order diagrams
implementing the multiple scattering of �N and �N states,
coupled by a realistic Y N interaction, as well as the possibility
of rescattering and conversion on secondary nucleons. This is

out of the scope of the present work. Instead, we implement
� − � conversion corrections by simply reshuffling strength
from channels with �−, �0, and �+ hyperons into channels
with a � baryon, a procedure commonly followed in previous
experimental works [3,4]. In Table IV, we present the two-
nucleon absorption fractions calculated for BK− = 0 MeV
and pK− = 0 MeV/c at two different nuclear matter densities
within the BCN model. The fractions implement the �-�
conversion using two different prescriptions [4]. In column
(a) we consider 60% for �+-� conversion, 22.5% for �−-�
conversion, and 72% for �0-� conversion. In column (b) we
take a 50% conversion probability for all �’s. In the upper half
of Table IV, we observe that the two-nucleon absorption ratios
for the respective channels produce results that, in general,
are very close to or in agreement with the experimental data.
The total two-nucleon ratio is consistent with the experimental
data, especially for the value obtained at 0.3ρ0. It is to be
noted that the total 2N ratio is also compatible with the
latest result of the AMADEUS collaboration [10] on K−
two-nucleon absorption in carbon, BR(K−2NA → Y N ) =
[16 ± 3(stat.)+4

−5(syst.)]%. In the lower half of Table IV, we
present branching ratios for the total �+, �−, �0, and �

production stemming from both K− single- and two-nucleon
absorption. The branching ratios including � − � conversion
show very good agreement with experimental data. Moreover,
the total �+ and �− ratios tend to favor option (b) for the
� − � conversion rate.

We are aware that a direct comparison of our nuclear matter
results with the 4He data has limitations since some of the
effects studied here, like Pauli blocking, must be handled in
a way that takes into account the finite size of the nucleus.
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TABLE IV. Primary-interaction ratios (in %) for nonmesonic and total K− absorption in nuclear matter and corresponding ratios corrected
for �-� conversion with different conversion rates: (a) 60% for �+-�, 22.5% for �−-�, and 72% for �0-�; (b) 50% for all �’s, calculated
with the Pauli blocked BCN amplitudes for BK− = 0 MeV and pK− = 0 MeV/c. The errors denote the uncertainty due to the cut-off
dependence. The experimental data are shown for comparison.

BCN 0.3ρ0 + �-� conv. 0.5ρ0 + �-� conv. Expt. [4]

Nonmesonic ratio 0.3ρ0 0.5ρ0 (a) (b) (a) (b) 4He

(�N + �0N )/K− 7.2 ± 1.1 10.9 ± 1.4 10.5 ± 1.5 11.3 ± 1.6 16.0 ± 0.2 16.9 ± 2.1 11.7 ± 2.4
(�−N )/K− 4.3 ± 0.6 5.6 ± 0.6 3.4 ± 0.4 2.2 ± 0.3 4.4 ± 0.5 2.8 ± 0.3 3.6 ± 0.9
�+n/K− 3.8 ± 0.5 6.4 ± 0.7 1.5 ± 0.2 1.9 ± 0.3 2.6 ± 0.3 3.2 ± 0.4 1.0 ± 0.4
(�0N )/K− 3.7 ± 0.5 5.6 ± 0.6 1.0 ± 0.1 1.9 ± 0.2 1.6 ± 0.2 2.8 ± 0.3 2.3 ± 1.0

Total 2N ratio 15.4 ± 2.2 22.9 ± 2.8 15.4 ± 2.2 22.9 ± 2.8 16.4 ± 2.6

Total ratio

�+/K− 32.6 ± 0.2 35.0 ± 0.3 13.0 ± 0.1 16.3 ± 0.1 14.0 ± 0.1 17.5 ± 0.1 17.0 ± 2.7
�−/K− 24.8 ± 0.1 20.8 ± 0.1 19.21 ± 0.04 12.39 ± 0.03 16.1 ± 0.1 10.40 ± 0.05 13.8 ± 1.8
�0/K− 28.7 ± 0.1 27.7 ± 0.2 8.03 ± 0.04 14.3 ± 0.1 7.76 ± 0.05 13.9 ± 0.1 10.8 ± 5.0
�/K− 14.0 ± 0.3 16.5 ± 0.4 59.7 ± 0.1 57.0 ± 0.2 62.1 ± 0.1 58.2 ± 0.2 58.4 ± 5.7
�+/�− 1.31 ± 0.01 1.69 ± 0.2 0.68 ± 0.01 1.31 ± 0.01 0.87 ± 0.01 1.69 ± 0.2 1.2 ± 0.2

However, we believe that such comparison is still meaningful
as it provides indications that can be useful for guiding future
studies performed directly in finite nuclei. In addition, it
serves as a consistent check of the calculated ratios, thereby
strengthening the validity of our microscopic model.

IV. CONCLUSIONS

We have developed a microscopic model for the K− ab-
sorption on two nucleons in symmetric nuclear matter. The
K− two-nucleon absorption process has been described within
a meson-exchange picture, employing the K−N scattering am-
plitudes derived from chiral coupled-channels meson-baryon
interactions, namely the P and BCN models. Contrary to a
similar calculation [29], we have taken into account the Pauli
blocking effect in the K−N amplitudes.

We have derived the K− optical potential as a function
of nuclear matter density, including K−NN (nonmesonic) as
well as K−N (mesonic) absorption processes. Both contri-
butions are substantially affected by the Pauli correlations
due to the dominance of the subthreshold �(1405) resonance
in the K−N amplitudes. The Pauli blocked amplitudes reduce
the depth of the absorptive potentials to about one half with
respect to the potentials obtained with free-space amplitudes
at saturation density. At lower densities, within the 0.15-0.3ρ0

region relevant for low-energy antikaon absorption in nuclei,
the reduction amounts to 25%. This result is observed in
both interaction models, P and BCN, used in our calculations.
Moreover, we have obtained very similar K−N and K−NN
optical potentials with both chiral models. The absorptive K−
potentials agree with each other up to 0.4ρ0. We have also
derived the real part of the K−NN optical potential for the
first time. It is mildly repulsive in the whole density region
probed. Next, we explored the dependence of the K− potential
on a kaon momentum as well as the uncertainty in the K−NN
potential due to different values of the cut-off parameter used
in our approach.

We have calculated single-nucleon and two-nucleon
antikaon absorption fractions, as well as several branching
ratios, which have been compared with data from old
bubble chamber and recent counter experiments. At typical
densities for absorption of low energy antikaons, we find
1N- and 2N-absorption fractions close to 80% and 20%,
respectively, in agreement with bubble chamber experiments.
The single-nucleon absorption fraction decreases with density
(energy) and crosses the two-nucleon fraction at or below
the saturation density. The obtained single-nucleon branching
ratios into various hyperon-pion channels are in very good
agreement with old bubble chamber data. This is only
achieved when the Pauli blocked amplitudes are employed,
as they substantially enhance the �+π− over the �−π+ rate.
Consequently, we obtain R± = 1.9 at 0.3ρ0, which is close
to the experimental observations [1,3]. The total two-nucleon
absorption fraction amounts to 15% at 0.3ρ0, which compares
very well with 4He bubble chamber results [6] as well as
with the AMADEUS data [10]. After incorporating the effect
of �-� conversion, our calculated two-nucleon branching
ratios into several final states are in good agreement with raw
bubble chamber data [6].

Finally, we have compared the primary K− pp absorption
rates into �p and �0 p final states with the recent measure-
ments of the AMADEUS collaboration for the “quasifree”
production of �(�0)p pairs [10]. Using the free-space am-
plitudes, we obtained a value of around 1.1 for the ratio
R = BR(K− pp → �p)/BR(K− pp → �0 p), at the edge of
the acceptable measured range 0.7 ± 0.2(stat.)+0.2

−0.3(syst.). The
Pauli blocking effect reduced the calculated ratio to be close
or below 1 for the experimentally accessible densities, well
within the experimental errors. This again shows the im-
portance of Pauli correlations in the medium. We have also
noticed that the K− pp → �p and K− pp → �0 p processes
are both dominated by the �(1405) resonance. This, together
with the fact that the KN� Yukawa coupling is relatively
small, makes the K− pp → �0 p process to be essentially
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driven by π exchange, while K exchange dominates the
K− pp → �p channel. This observation prevents from re-
lating the ratio R to the ratio for mesonic processes R∗ =
BR(K− p → �π0)/BR(K− p → �0π0), which in our model
amounts to be around 0.2 or smaller at the experimentally
relevant densities.

In summary, the results produced within our microscopic
model for K−NN absorption are in very good agreement with
available experimental data. The model seems appropriate to
be tested in future applications, such as self-consistent cal-
culations of kaonic atoms and K−-nuclear quasibound states,
and the predicted results await further confrontation with new
experimental data.
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APPENDIX A: K− SINGLE-NUCLEON
OPTICAL POTENTIAL

Here we present details of the derivation of the K−N
optical potential in nuclear matter. The K−N self-energy
corresponding to Fig. 1 reads


K−N (p) = i |tK−N→πY |2
∫

d4q

(2π )4
UY N (p − q)

1

q2 − m2
π + iη

,

(A1)

where q = (q0, �q ) is the pion four-momentum, mπ is the
pion mass, p = (p0, �pK− ) is the kaon four-momentum, t
denotes the K−N → πY (Y = �, �) t matrix, and UY N is the
hyperon-nucleon Lindhard function defined as:

UY N (p − q) = ν

∫
d3k

(2π )3

mN

EN

mY

EY

θ (kF − |�k|)
p0 − q0 + EN (�k) − EY (�k + �pK− − �q ) + iη

. (A2)

Here ν = 2 is the spin degeneracy factor and EN (EY ) and mN (mY ) are the nucleon (hyperon) energy and mass, respectively, �k
is the nucleon momentum and kF is the nucleon Fermi momentum in nuclear matter of density ρ, with ρ = 2k3

F /3π2. Taking

an average nucleon momentum value 〈k〉 =
√

3
5 kF in the energy denominators allows us to perform the k-momentum integral

as:

ν

∫
d3k

(2π )3
θ (kF − |�k|) = ρ

2
,

and integrating over the meson energy q0 in Eq. (A1) we obtain


K−N (p) = |tK−N→πY |2 ρ

2

∫
d3q

(2π )3

1

2ωπ

mN

〈EN 〉
mY

EY

1

EK− − ωπ + 〈EN 〉 − EY (〈�k〉 + �pK− − �q ) + iη
, (A3)

with

〈EN 〉 =
√

m2
N + 3

5
k2

F + VN
ρ

ρ0
, (A4)

where we have assumed a nucleon attractive nuclear potential of VN = −50 MeV at saturation density ρ0 = 0.169 fm−3.
By taking the imaginary part of the propagator in Eq. (A3):

1

EK− − ωπ + 〈EN 〉 − EY (〈�k〉 + �pK− − �q ) + iη

= 1

EK− − ωπ + 〈EN 〉 − EY (〈�k〉 + �pK− − �q )
− i πδ[EK− − ωπ + 〈EN 〉 − EY (〈�k〉 + �pK− − �q )], (A5)

i.e., by putting the one-particle one-hole (1p-1h) excitation on-shell, and integrating over �q, we obtain the imaginary part of the
K−N optical potential

ImVK−N→πY (p) = Im
K−N

2EK−
= − 1

2EK−

1

4π

ρ

2
|tK−N→πY |2 q

〈EN 〉
mN mY

EY (q) + ωπ (q)
, (A6)

where we have considered a kaon with energy

EK− = mK− − BK−
ρ

ρ0
, (A7)
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where mK− and BK− are the kaon mass and binding energy at ρ0, respectively. The quantity q denotes the on-shell pion momentum
stemming from the energy conservation

q 2 = [sKN − (m′
Y + mπ )2][sKN − (m′

Y − mπ )2]

4sKN
, (A8)

where sKN = (EK− + 〈EN 〉)2, m′ 2
Y = m2

Y + 3
5 k2

F + p2
K− , and EY (q) =

√
m′2

Y + q 2.

APPENDIX B: K− TWO-NUCLEON OPTICAL POTENTIAL

In this Appendix, we give a detailed description of derivation of the K−NN optical potential in nuclear matter. The K−NN
self-energy corresponding to the 2FL diagrams (a) and (b) shown in Fig. 2 is given by:


2FL
K−NN (p) = − itB1xt∗

B1xVB2N2xVB2N2x

∫
d4q

(2π )4
UB1N1 (p − q)UB2N2 (q)(−�q 2)

1

q2 − m2
x + iη

1

q2 − m2
x + iη

, (B1)

where x denotes the intermediate exchanged meson with mass mx, which can be a kaon, pion or eta meson. The final baryon
attached to the incoming kaon vertex, denoted by B1 is either N or Y and, correspondingly, the baryon B2 emitted from the other
vertex can be Y or N . The two-body t matrix for the K−N1 → B1x channel is denoted by tB1x, the strength of the Yukawa p-wave
type meson-baryon-baryon coupling vertices is given by VB2N2x = α D+F

2 fπ
+ β D−F

2 fπ
, with D + F = 1.26, D − F = 0.33, fπ = 93

MeV, and α, β being SU(3) Clebsch-Gordan coefficients. We note that the trace over spins gives a factor (−4�q 2), employing
a nonrelativistic approximation for the Yukawa vertices. However, the factor 4 does not appear explicitly in Eq. (B1) because
it is implicitly generated by the spin-degeneracy factors ν in the hyperon-nucleon and nucleon-nucleon Lindhard functions, the
former introduced in Eq. (A2) and the later given by

UNN (p − q) = ν

∫
d3 j

(2π )3

m2
N

E2
N

[
θ (kF − |�j|)θ (| �j + �pK− − �q | − kF )

p0 − q0 + EN (�j) − EN (�j + �pK− − �q ) + iη
+ θ (| �j| − kF )θ (kF − |�j + �pK− − �q |)

−p0 + q0 − EN (�j) + EN (�j + �pK− − �q ) + iη

]
.

(B2)

The combination of Lindhard functions contributing to the 2FL diagram (a) in Fig. 2 is UNN (p − q)UY N (q) while that for diagram
(b) is UNN (q)UY N (p − q). We omit the second term in the square brackets in Eq. (B3), the so-called crossed contribution, because
it is much smaller than that of the first term. Further, we apply the same approximations as in Eq. (A3). Then the expression for
the K−NN self-energy coming from either the 2FL(a) or the 2FL(b) diagrams is of the form


2FL
K−NN (p) = tB1xt∗

B1xVB2N2xVB2N2x
ρ2

4

∫
d3q

(2π )3

�q 2 θ (|〈 �j〉 + �pK− − �q | − kF )

p0 + 2〈EN 〉 − EB1 (〈�j〉 + �pK− − �q ) − EB2 (〈�k〉 + �q ) + iη

1

q2
0 − �q 2 − m2

x + iη

× 1

q2
0 − �q 2 − m2

x + iη

(
mN

〈EN 〉
)2 mB1

EB1

mB2

EB2

, (B3)

where q0 = p0 + 〈EN 〉 − EB1 and 〈�j〉 = 〈�k〉 =
√

3
5 kF are the averaged nucleon momenta.

The imaginary part of the 2N-absorption potential is obtained by putting the 2p-2h excitation on-shell, i.e., retaining the
imaginary part of the baryon propagator in Eq. (B4)

1

p0 + 2〈EN 〉 − EB1 (〈�j〉 + �pK− − �q ) − EB2 (〈�k〉 + �q ) + iη
= 1

p0 + 2〈EN 〉 − EB1 (〈�j〉 + �pK− − �q ) − EB2 (〈�k〉 + �q )

− iπδ[p0 + 2〈EN 〉 − EB1 (〈�j〉 + �pK− − �q ) − EB2 (〈�k〉 + �q )]. (B4)

Next, we set p0 → EK− , neglect the angular dependence in the energy denominators and perform an angle average of the Pauli
function θ (|〈 �j〉 + �pK− − �q | − kF ):2

w(�q ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if | �q | < kF − |〈�j〉 + �pK−|
(| �q |+|〈�j〉+�pK− |)2−k2

F

4|〈 �j〉+�pK− || �q | if kF − |〈�j〉 + �pK−| < | �q | < kF + |〈�j〉 + �pK−|
1 if | �q | > kF + |〈�j〉 + �pK−|

, (B5)

2We checked that this approximation is reasonable for low-energy kaons with momentum values up to ∼150 MeV/c.
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where the quantity |〈 �j〉 + �pK−| in the above expression is to be replaced by the corresponding angle-averaged one
√

〈 j〉2 + p2
K− .

Finally, we obtain the following analytic expression for the imaginary part of the K−NN optical potential

ImV 2FL
K−NN (p) = Im
2FL

K−NN

2EK−
= − 1

2EK−
tB1xt∗

B1xVB2N2xVB2N2x
1

2π

ρ2

4

mB1 mB2

EB1 (q) + EB2 (q)

(
mN

〈EN 〉
)2

q

× q 2w(q)F 2
H (q)

1

q2
0 − q2 − m2

x

1

q2
0 − q2 − m2

x

, (B6)

where EB1(2) (q) =
√

m′ 2
B1(2)

+ q2 with m′ 2
B1

= m 2
B1

+ 3
5 k2

F + p2
K− , m′ 2

B2
= m 2

B2
+ 3

5 k2
F , and q is the meson center-of-mass momentum

q2 =
[
sK2N − (

m′
B1

+ m′
B2

)2][
sK2N − (

m′
B1

− m′
B2

)2]
4sK2N

, (B7)

with sK2N = (EK− + 2〈EN 〉)2. Note that we have incorporated a form-factor

FH (q) = �2
C

�2
C + q 2 (B8)

in each of the Yukawa vertices of the K−NN self-energy diagrams, with a cut-off parameter �C = 1200 MeV, a value which is
in line with those employed in the meson-exchange models of the NN (Bonn) and Y N (Jülich) interactions [34,35]. Neglecting
the angular dependence in the energy denominators of Eq. (B3), the real part acquires the following form

ReV 2FL
K−NN (p) = Re
2FL

K−NN

2EK−
= 1

2EK−
tB1xt∗

B1xVB2N2xVB2N2x
ρ2

4

∫ �q 2dq

2π2

(
mN

〈EN 〉
)2 mB1

EB1

mB2

EB2

�q 2w(�q )F 2
H (�q )

× 1

EK− + 2〈EN 〉 − EB1 (〈�j〉 + �pK− − �q ) − EB2 (〈�k〉 + �q)

1

q2
0 − �q 2 − m2

x

1

q2
0 − �q 2 − m2

x

. (B9)

It is to be noted that the contribution to the K−NN self-energy coming from the 2FL diagrams in Figs. 2(c) and 2(d) is zero
due to the null trace over spins, which is related to the fact that there is only one operator �σ in each fermionic loop.

On the other hand, there are non-negligible contributions to the K−NN self-energy coming from 1FL diagrams displayed in
Fig. 3. The self-energy corresponding to the 1FLA-type diagrams [Figs. 3(a) and 3(b)] is of the form


1FLA
K−NN (p) = − itB1x1t

∗
B2x2

VB2N2x1VB1N2x2

∫
d4q

(2π )4
(+2�q 2)

∫
d4 j

(2π )4
GN1 ( j)GB1 ( j + p − q)

×
∫

d4k

(2π )4
GN2 (k)GB2 (q + k)

1

q2 − m2
x1

+ iη

1

q′ 2 − m2
x2

+ iη
, (B10)

where G denotes the in-medium baryon propagator and q′ = j + p − q − k. For these diagrams, the trace over spins gives
the factor (+2�q 2). This is because we have assumed to have small values of the kaon and nucleon momenta ( �pK− , �j, �k ∼ 0)
in the upper meson-exchange line and the remaining vector, −�q, is opposite in sign than that in the upper meson-exchange
line of 2FL diagrams in Figs 3(a) and 3(b). Taking average values for the j and k dependencies in the propagator of meson
x2 allows us to approximate the integrals over these two four-momenta by a factor (−i) times the Y N and NN Lindhard
functions, given by Eqs. (A2) and (B3), respectively. Again, a global factor of 4 will be removed explicitly from Eq. (B10)
because it is already taken into account by the spin degeneracy factors ν in the Lindhard functions. After employing the same
procedure as for the 2FL diagrams we arrive at the following expression for the imaginary K−NN self-energy for 1FLA-type
diagrams:

ImV 1FLA
K−NN (p) = Im
1FLA

K−NN

2EK−
= − 1

2EK−

1

2
tB1x1t

∗
B2x2

VB2N2x1VB1N2x2

1

2π

ρ2

4
q

mB1 mB2

EB1 (q) + EB2 (q)

(
mN

〈EN 〉
)2

q 2w(q)

× FH (q)

q2
0 − q 2 − m2

x1

FH (〈 j〉 + �pK− − q − 〈k〉)

q′ 2
0 − q 2 − 〈 j〉2 − 〈k〉2 − p2

K− − m2
x2

, (B11)
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where q′
0 = EB1 (q) − 〈EN 〉. The real part is of the following form:

ReV 1FLA
K−NN (p) = Re
1FLA

K−NN

2EK−
= 1

2EK−

1

2
tB1x1t

∗
B2x2

VB2N2x1VB1N2x2

ρ2

4

∫ �q 2dq

2π2

(
mN

〈EN 〉
)2 mB1

EB1

mB2

EB2

�q 2w(�q )

× 1

EK− + 2〈EN 〉 − EB1 (〈�j〉 + �pK− − �q ) − EB2 (〈�k〉 + �q )

× FH (�q )

q2
0 − �q 2 − m2

x1

FH (〈 j〉 + �pK− − �q − 〈k〉)

q′ 2
0 − �q 2 − 〈 j〉2 − 〈k〉2 − p2

K− − m2
x2

. (B12)

The expression for the self-energy corresponding to the 1FLB-type diagrams [Figs. 3(c) and 3(d)] is very similar to that
for the 1FLA-type diagrams [Figs. 3(a) and 3(b)], with some differences. First, the four-momentum q′ in the upper meson
exchange line is j + p − q − k and it is now directed toward a Yukawa-type vertex. This means that the trace over spins yields
now a factor (−2�q 2), introducing an overall relative minus sign. There is also a change in the value of q′

0 which becomes
q′

0 = 〈EN 〉 − EB2 (〈k〉 + �q ). Finally, both exchanged mesons in Figs. 3(c) and 3(d) are now the same one, hence the vertices in
Eqs. (B11) and (B12) should be replaced by tB1xt∗

B1xVB2N2xVB2N2x, with x being either a kaon, a pion or an eta meson. Notice that,
due to the spin traces, the 1FL diagrams have acquired an additional factor 1/2 with respect to the 2FL ones. Moreover, the sign
of the 1FLA (1FLB) diagrams is the same (opposite) as that of the 2FL ones.
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