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We calculate the leading-twist, helicity-independent generalized parton distributions (GPDs) of the proton,
at finite skewness, in the Nambu–Jona-Lasinio (NJL) model of quantum chromodynamics (QCD). The NJL
model reproduces low-energy characteristics of QCD, including dynamical chiral symmetry breaking (DCSB).
The proton bound-state amplitude is solved for using the Faddeev equation in a quark-diquark approximation,
including both dynamical scalar and axial vector diquarks. GPDs are calculated using a dressed nonlocal
correlator, consistent with DCSB, which is obtained by solving a Bethe-Salpeter equation. The model and
approximations used observe Lorentz covariance, and as a consequence the GPDs obey polynomiality sum rules.
The electromagnetic and gravitational form factors are obtained from the GPDs. We find a D term of −1.08
when the nonlocal correlator is properly dressed, and 0.85 when the bare correlator is used instead, suggesting
that within this framework proton stability requires the constituent quarks to be dressed consistently with DCSB.
We also find that the anomalous gravitomagnetic moment vanishes, as required by Poincaré symmetry.
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I. INTRODUCTION

Generalized parton distributions (GPDs) appear in the cal-
culation of hard exclusive reactions such as deeply virtual
Compton scattering (DVCS) and deeply virtual meson pro-
duction (DVMP). Factorization [1–3] allows the amplitudes
of these processes to be broken down (up to power-suppressed
corrections) into the convolution of a hard scattering kernel
and a soft matrix element of quark and/or gluon fields which
contains the GPDs.

GPDs are Lorentz-invariant functions of four variables,
including the renormalization scale, that describe many in-
teresting properties of hadrons. They encode spatial light
cone distributions of partons through two-dimensional Fourier
transforms [4]. Additionally, their Mellin moments encode
the electromagnetic and gravitational properties of hadrons—
allowing, in the latter case, for such properties to be studied
through hard exclusive reactions, in lieu of the impossibility of
graviton-exchange experiments. The gravitational properties
shed light on the way that mass and angular momentum are
distributed among the quarks and gluons within the hadron,
thus directly addressing deep questions about the mass [5,6]
and spin [7] decompositions of the proton.

In light of these considerations, calculations of proton
GPDs are highly desired. It is vital that any model calcu-
lation observe the symmetries and low-energy properties of
quantum chromodynamics (QCD), so that the qualitative and
quantitative effects of these phenomena manifest in the GPDs
themselves. For instance, the relationship between Mellin
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moments and electromagnetic and gravitational form factors
is a consequence of Lorentz covariance [8], and the magnitude
of the gravitational form factors has an intimate relationship
with dynamical chiral symmetry breaking (DCSB) [9,10]. For
this reason, we use the Nambu–Jona-Lasinio (NJL) model of
QCD to perform calculations of proton GPDs.

The NJL model is an effective model of quark interac-
tions based on a four-fermion contact interaction [11–13].
It successfully incorporates several low-energy aspects of
QCD, most notably (approximate) chiral symmetry and its
dynamical breaking. The breaking of chiral symmetry dresses
the quarks, causing them to propagate with a large effective
mass M ≈ 400 MeV, as is described by the gap equation.
Moreover, confinement can be simulated in the NJL model
through use of proper time regularization [14–16]. The NJL
model has been used to successfully describe many properties
of both mesons [10–12,16,17] and baryons [16,18–20].

A particular aspect of proton structure we will empha-
size is the presence of diquark correlations. Quark-diquark
correlations have had considerable success in modeling the
properties of baryons [16,21–23], and the presence of diquark
correlations is also borne out by such evidence as the Q2

dependence of flavor-separated form factors [24] and an ap-
proximate meson-baryon supersymmetry [25]. We will thus
calculate the proton’s GPDs in a dynamical quark-diquark
model.

II. PROTON GPDs IN A DYNAMICAL
QUARK-DIQUARK MODEL

Generalized parton distributions (GPDs) are defined
through the matrix elements of bilocal light cone correla-
tors. The leading-twist, helicity-independent quark GPDs of
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FIG. 1. Diagrams contributing to the body GPDs of the proton
within the static approximation for the interaction kernel. On the left
is the direct quark diagram, and on the right is the diquark diagram.
The (red) dot signifies an elementary vertex, and the (purple) blob a
composite vertex.

a hadron are defined through

V q
λλ′ =

∫
dκ

2π
e2ix(Pn)κ〈p′λ′|ψ (−nκ )n/[−nκ, nκ]ψ (nκ )|pλ〉,

(1)

where [x, y] is a Wilson line from y to x, p and p′ are the
initial and final momenta, and λ and λ′ are the initial and final
helicities (if applicable). The GPDs themselves are obtained
by decomposing V q

λλ′ in terms of linearly independent Lorentz
structures. For a spin-half hadron such as the proton, we have

V q
λλ′ = ū(p′, λ′)

[
n/ H (x, ξ , t ) + iσ n�

2MN
E (x, ξ , t )

]
u(p, λ), (2)

where P = p+p′
2 , � = p′ − p, ξ = −2(�n)/(Pn), t = �2,

and n is a lightlike vector defining the light front. The GPDs
H (x, ξ , t ) and E (x, ξ , t ) are Lorentz-invariant functions of the
Lorentz-invariant arguments x, ξ , and t . Similar correlators
are defined for helicity-dependent and helicity-flip GPDs, as
well as for gluon GPDs.

The proton can be considered as a bound state of three
constituent quarks, which are dressed amalgamations of more
elementary current quarks (and, in QCD, gluons). The bound
state amplitude can be found by solving the Faddeev equation.
It has been found in many model calculations [21] that two of
the three quarks are often bound in a diquark correlation that
is either isoscalar and Lorentz scalar, or isovector and Lorentz
axial vector. We will consider these configurations specifically
in the calculations to follow.

A set of “body GPDs” (named in analogy to the “body
form factors” in Ref. [16]) can be found by calculating the
distribution of these dressed quarks within the proton. In
momentum space, an operator of the form 	δ(n[xP − k])
is placed on each of the dressed quark lines, with 	 = n/
(times an isospin structure) for the helicity-independent body
GPDs. Within the quark-diquark approximation, the quark can
be within or outside of the diquark correlation, or possibly
within the interaction kernel that binds the proton. Within the
approximations considered in this work, the latter does not
contribute to the GPDs. The diagrams that do contribute are
depicted in Fig. 1.

Since GPDs describe the structure of hadrons in terms
of current quarks, the body GPDs are not by themselves
sufficient. Dressed quarks are not current quarks, but contain
current quarks as a more elementary substructure. One can
address this by dressing the bilocal operator defining the
light cone correlator, or, equivalently, one can combine the
body GPDs of the proton with the GPDs of the dressed

= ⊗

FIG. 2. Diagrammatic depiction of the convolution equation. The
large (purple) blob signifies a nonelementary GPD operator, while
the small (red) dot signifies an elementary operator.

constituent quarks using a convolution formula. Such a con-
volution equation would also have applicability to describing
the nonelementary vertex in the diquark diagram of Fig. 1.

Since it is of central importance to this work, we will first
consider how GPD convolution is to be done. We will then
explore the (body) GPDs and transition GPDs of the diquarks,
and subsequently the GPDs of the dressed constituent quarks.

A. The convolution equation

Let us consider a hadron X to contain a composite con-
stituent Y . The insertion of a bilocal operator onto Y can be
expanded in terms of the substructure of Y , as depicted in
Fig. 2. Since Y is in general off its mass shell, the composite
operator (rightmost diagram in Fig. 2) is a function of the ini-
tial and final virtuality of Y . In specific cases where there is no
functional dependence on virtuality (or when the dependence
on virtuality can be safely neglected), a convolution formula
holds for the GPDs HX,i(x, ξ , t ) of X :

HX,i(x, ξ , t ) =
∑

j

∫
dy

|y| hY/X,i j (y, ξ , t ) HY, j

(
x

y
,
ξ

y
, t

)
. (3)

The indices i and j label the multiplicity of GPDs appearing
in front of the available Lorentz structures for X and Y ,
respectively. HY, j (x, ξ , t ) are the GPDs of an on-shell Y . The
functions hY/X,i j (y, ξ , t ) are the body GPDs, which are defined
by using a Lorentz structure 	 j associated with the GPD
HY, j (x, ξ , t ) in place of n/ in the elementary bilocal operator.

When the constituents of Y (which we call Z for
concreteness) also have nonelementary substructure, one
can simply apply Eq. (3) consecutively. It is possible
to show that GPD convolution is associative, that is,
(hY/X ⊗ hZ/Y ) ⊗ HZ = hY/X ⊗ (hZ/Y ⊗ HZ ), so the consecu-
tive applications of Eq. (3) can be done in either order.

In Sec. II C, we will observe that the dressed quark GPD
has no functional dependence on virtuality, allowing use of
Eq. (3) without caveats. The GPD of an off-shell diquark
does depend on virtuality in general, but the use of a pole
approximation for the diquark propagator requires replacing
vertices sandwiched between the propagators by their on-shell
form for consistency.

B. Diquark body GPDs

In order to determine the diquark diagram contribution to
the proton body GPDs, we must determine the body GPDs
of the diquarks themselves. We have both scalar and axial
vector diquarks to consider, in addition to the transition GPD
between the two diquark species.
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In this work, we use a pole approximation for the diquark
propagators, i.e., we take

τ (p) ≈ τpole(p) = 1

p2 − M2
dq + i0

, (4)

which is the dominant contribution to the propagator. Such
approximations are ubiquitous in the baryon modeling lit-
erature [23,26–44]. The operators �(x, ξ , t, v, v′) defining
the diquark GPDs in general depend on the initial and final
virtualities:

v = p2 − M2
dq, v′ = p′2 − M2

dq. (5)

However, this operator is always found sandwiched between
propagators in the form:

τ (p′)�(x, ξ , t, v, v′)τ (p). (6)

The pole approximation is in effect a truncated Laurent series
expansion, in v (or v′) which is truncated above v−1 (v′−1).
When multiplying truncated series expansions, the product
must be truncated at the order of the approximation, meaning
that any order-v (order-v′) terms in �(x, ξ , t, v, v′) must be
discarded. In other words, consistency with the pole approx-
imation requires neglecting the functional dependence of the
GPD vertex on virtuality. Thus, we replace the expression in
Eq. (6) with

τ (p′)�(x, ξ , t, v, v′)τ (p) ≈ τpole(p′)�(x, ξ , t, 0, 0)τpole(p),
(7)

and proceed to consider on-shell diquark GPDs.

1. Scalar diquarks

An on-shell scalar diquark has only a single GPD1 which
is identical for up and down quarks since the scalar diquark
is isoscalar. If one evaluates the far-right triangle diagram in
Fig. 2 with a scalar Bethe-Salpeter vertex, the matrix element
decomposition is simply

V q
s = Hq

s (x, ξ , t ). (8)

The corresponding body GPD for the distribution of scalar
diquarks within the proton is then found by evaluating the
right diagram in Fig. 1 with (kn)δ(n[xP − k]) as the vertex.
This body GPD can be combined with Hq

s (x, ξ , t ) via Eq. (3)
to obtain the scalar diquark diagram contribution to the proton
body GPDs.

The scalar diquark is isoscalar, so makes equal contribu-
tions to the up and down body GPDs. Additionally, since it
contains the proton’s valence down quark, diagrams with a
spectator scalar diquark only contribute to the up quark body
GPD (which can still contain a down current quark).

1In principle, an off-shell scalar diquark has an additional T-odd
GPD, but it is suppressed by the virtuality and, within the pole
approximation, should be neglected.

2. Axial vector diquarks

The axial vector diquark has five on-shell GPDs. The
relevant Lorentz decomposition is [45]

V q
a,λ′λ = −(εε′∗)Hq

1a + (ε′∗n)(ε�) − (εn)(ε′∗�)

2(Pn)
Hq

2a

+ (ε�)(ε′∗�)

2M2
Hq

3a − (ε′∗n)(ε�) + (εn)(ε′∗�)

2(Pn)
Hq

4a

+
[

M2(εn)(ε′∗n)

(Pn)2
+ 1

3
(εε′∗)

]
Hq

5a, (9)

where the functional dependence on x, ξ , and t has been
suppressed for compactness.

One can obtain an off-shell version of this by not including
the polarization vectors in the calculation of V q

a,λ′λ. There
appears to be an ambiguity in this, since, prior to stripping the
polarization vectors, the identities (εp) = (ε′∗ p′) = 0 can be
used to rewrite (for instance) (ε�) in terms of (εP). However,
within the pole approximation, the axial vector diquark prop-
agators are transverse, thus enforcing the similarity relations
pμ ≈ 0 and p′ν ≈ 0. We may use these similarity relations to
rewrite the uncontracted correlator V q,μν

a,λ′λ with � as the only
uncontracted momentum, giving us

V q,μν

a,λ′λ = −gμνHq
1a + nν�μ − nμ�ν

2(Pn)
Hq

2a + �μ�ν

2M2
Hq

3a

− nν�μ + nμ�ν

2(Pn)
Hq

4a +
[

M2nμnν

(Pn)2
+ 1

3
gμν

]
Hq

5a.

(10)

The Lorentz structures above can be used to calculate the
body GPDs for the distribution of axial vector diquarks within
the proton, provided the substitution P �→ k is made, and the
structures are then multiplied by (kn)δ(n[xP − k]).

The axial vector diquark is isovector, meaning it comes in
uu, ud , and dd varieties. The isospin algebra necessary to
determine the weights with which diagrams involving axial
vector diquarks enter into up and down quark body GPDs has
previously been done, with the results in Eqs. (102) and (103)
of Ref. [16].2

3. Diquark transition GPDs

Lastly, there are scalar-to-axial and an axial-to-scalar tran-
sition GPDs. For scalar → axial vector transitions, the corre-
lator takes the form

V q
sa = 1

(Pn)

1

Ms + Ma
iεP�nεHq

sa(x, ξ , t ). (11)

Hermiticity and time reversal properties can be used to show
that Hq

sa(x, ξ , t ) = Hq
sa(x,−ξ, t ) and that the axial vector →

scalar transition GPD satisfies Hq
as(x, ξ , t ) = −Hq

sa(x, ξ , t ).
Neglecting virtuality dependence (as required by the pole
approximation), there remains one GPD in the off-shell case,

2Although Ref. [16] is about form factors, the isospin algebra is the
same, and the relevant isospin factors are also the same.
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FIG. 3. Diagrammatic depiction of the Bethe-Salpeter equation
for the bilocal light cone operator defining leading-twist GPDs.

since stripping the polarization vector ε from V q
sa can still only

produce a single unique Lorentz structure.
As for the axial vector diquark, the isospin weights for the

transition diagrams can be found in Eqs. (102) and (103) of
Ref. [16].

C. Dressed quark GPDs

In order to calculate any hadronic matrix element within
the NJL model, one must dress the operator in question.
This dressing is a result of DCSB, and is just as necessary
for bilocal light cone correlators and GPDs as it is for the
electromagnetic current and form factors. Failing to dress the
operator defining GPDs will result in its Mellin moments
reproducing the incorrect electromagnetic and gravitational
form factors [10,46]. The need for dressing arises because
the GPDs appear in a bilocal correlator of current quark
fields, while a hadron in the NJL model is constructed from
composite dressed quarks. Dressing of the operator essentially

amounts to describing the dressed quark in terms of an ele-
mentary current quark substructure.

The bilocal operator defining the leading-twist GPDs is
dressed according to a Bethe-Salpeter equation (BSE), which
is depicted in the Hartree-Fock approximation3 by Fig. 3.
One can see this by considering Mellin moments of the
bilocal operator, which define local operators that each obey
a BSE that is also depicted by Fig. 3. At leading twist, these
local operators are traceless and accordingly do not receive
contributions from operators inserted on the four-point vertex.
Due to the uniqueness of the inverse Mellin transform, the
bilocal operator is likewise dressed according to Fig. 3.

This BSE holds for both up and down quarks, and the NJL
interaction kernel mixes these equations. It is most straight-
forward to solve the decoupled BSEs for the isoscalar and
isovector GPDs HI (x, ξ , t ), defined as

HI=0(x, ξ , t ) = Hu(x, ξ , t ) + Hd (x, ξ , t ), (12a)

HI=1(x, ξ , t ) = Hu(x, ξ , t ) − Hd (x, ξ , t ), (12b)

and analogously for EI (x, ξ , t ), which appear in Lorentz de-
compositions of the operators n/δ(n[xP − k]) and n/τ3δ(n[xP −
k]), respectively.

We find the following solutions for the dressed quark
GPDs:

HI (x, ξ , t ) = δ(1 − x) + H ′
I (x, ξ , t ) + δI,0DQ(x, ξ , t ), (13a)

EI (x, ξ , t ) = −δI,0DQ(x, ξ , t ), (13b)

H ′
I=0,1(x, ξ , t ) = Nc

4π2

1

|ξ |
Gω,ρt (1 − x2/ξ 2)

1 + 2Gω,ρ�VV (t )
E1

(
x

ξ
, t

)
�(|ξ | − |x|), (13c)

DQ(x, ξ , t ) = − Nc

π2

x

|ξ |
GπM2

1 − 2Gπ�SS (t )
E1

(
x

ξ
, t

)
�(|ξ | − |x|), (13d)

where

E1(z, t ) = E1

(
4M2 − t (1 − z2)

4�2
UV

)
− E1

(
4M2 − t (1 − z2)

4�2
IR

)
, (13e)

and E1(z) = ∫ ∞
1 dt t−1e−zt is the exponential integral func-

tion. These solutions are exact, and do not contain any explicit
functional dependence on the quark virtuality, despite the
quark being off-shell in general. This is a consequence of
the interaction that produces the dressing being a contact
interaction.

It is worth remarking on the limit ξ → 0 in Eqs. (13e).
It can be shown that the integral of H ′

I (x, ξ , t ) over x is
independent of ξ when ξ > 0, and that all higher Mellin
moments contain an overall factor ξ , and thus vanish when
ξ → 0. From the uniqueness of the Mellin transform, we
infer that when ξ → 0, H ′

I (x, ξ , t ) is proportional to a Dirac

3This approximation is standard for NJL model calculations
[11–13], and excludes diagrams with more than one loop.

delta distribution. This was also found in Ref. [46], where
it was remarked that even in the zero-skewness limit the
GPD contains a “hidden ERBL region” at x = 0. This hidden
ERBL region persists through GPD convolution, meaning that
numerical results at ξ = 0 for hadron GPDs in the NJL model
will necessarily be missing the delta distribution in the hidden
ERBL region.

D. Support region

The support region in x of the GPDs and body GPDs
is determined during the course of evaluating the relevant
diagrams. Each diagram’s contribution is nonzero only when
the delta function δ(n[xP − k]) is picked up by the integration
over k. We find in particular that

−|ξ | � x � max(1, |ξ |), (14)
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except in the case of the GPDs of dressed quarks, for which
|x| < |ξ |, as is explicitly noted by the presence of step func-
tions in Eqs. (13e). The condition |ξ | � 1 holds for any on-
shell particle by virtue of kinematics, which would strengthen
Eq. (14) to x ∈ [−|ξ |, 1]. However, it is possible to have
|ξ | > 1 for off-shell particles. To see this, consider that

ξ = (np) − (np′)
(np) + (np′)

. (15)

For an on-shell particle, (np) ∝ Ep + pz is strictly non-
negative, so the constraint |ξ | � 1 follows from the triangle
inequality. On the other hand, off-shell particles are not re-
quired to satisfy any such constraint, and in fact (np) can be
negative. Thus ξ is not constrained in general.

Since we consider off-shell particles in using the convolu-
tion formula Eq. (3), we leave the support region in Eq. (14) as
general as possible. In particular, since y ≈ 0 is present in the
integral, the off-shell constituent Y can have arbitrarily large
skewness. We also find in numerical calculations using Eq. (3)
that having support at x > 1 for HY (x, ξ , t ) is necessary for
HX (x, ξ , t ) to satisfy polynomiality (see Sec. III).

III. PROTON GPD RESULTS

Several variations of the NJL model exist. In Ref. [16],
the electromagnetic properties of the proton were found to
be well- described within a two-flavor variant of the model.
We thus use the model variant described in Ref. [16], includ-
ing the numerical values for the model parameters and the
approximations described therein, to calculate the helicity-
independent, leading-twist proton GPDs.

We begin by presenting results for the GPDs Hq(x, ξ , t )
and Eq(x, ξ , t ) at two skewness values, and at a model renor-
malization scale of μ2 = M2 = 0.16 GeV2. In Fig. 4 we have
ξ = 0, while in Fig. 5 we consider a moderate ξ = 0.5.

To help understand the results, we first give the relation-
ships that the GPDs have to more familiar observables. For
instance, we have the forward limit relation Hq(x, 0, 0) =
q(x). Additionally, Mellin moments of the GPDs are related
to the electromagnetic form factors (EMFFs)∫

dx Hq(x, ξ , t ) = F q
1 (t ),

∫
dx Eq(x, ξ , t ) = F q

2 (t ),

(16)

where Fi(t ) = ∑
q eqF q

i (t ), and to the gravitational form fac-
tors (GFFs)∫

dx xHq(x, ξ , t ) = Aq(t ) + ξ 2Cq(t ), (17a)

∫
dx xEq(x, ξ , t ) = Bq(t ) − ξ 2Cq(t ). (17b)

An angular momentum form factor Jq(t ) = 1
2 [Aq(t ) +

Bq(t )] can also be defined, and is related to Ji’s sum rule [8].
The x and t dependence of the GPDs in both Figs. 4 and

5 can be seen to differ between the up and down quarks. This
is due to the presence of multiple isospin-dependent effects.
Among these is the presence of diquark correlations, whose
effects can be most easily seen in the nonskewed GPDs.

FIG. 4. Proton GPD results at the model scale (μ2 =
0.16 GeV2), and ξ = 0, as a function of x and t . Transparent
(orange) surfaces are up quark distributions, opaque (blue) are down
quark.

At zero skewness (ξ = 0), there is a peak in Hq(x, 0, t )
for each fixed-t slice (see the top panel of Fig. 4). The
location for this peak can be quantified by the average momen-
tum fraction 〈〈xq(t )〉〉 = Aq(t )/F q

1 (t ). In the forward limit,
〈〈xu(0)〉〉 = 0.34 ≈ 〈〈xd (0)〉〉 = 0.32. Each down quark thus
carries about the same momentum on average as each up
quark. Were only scalar diquarks present, we would expect
〈〈xu(0)〉〉  〈〈xd (0)〉〉, since a (dressed) down quark would
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FIG. 5. Proton GPD results at the model scale (μ2 =
0.16 GeV2), and ξ = 0.5, as a function of x and t . Surfaces
have the same meaning as in Fig. 4.

only be found within the diquark, thus giving the down
quark a lower effective mass. However, axial vector diquark
configurations are also present, and (due to how the recoupling
coefficients work out) the down quark is more often alone
than in the axial vector diquark. Thus, the difference between
〈〈xu(0)〉〉 and 〈〈xd (0)〉〉 is softened by the presence of axial
vector diquarks.
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FIG. 6. The super-ratio Sd (x, t )/Su(x, t ) for several values of x.

Finite t is a novel aspect of GPDs that elaborates the
roles of different diquark species further. High −t acts as a
filter that selects for configurations where the probed parton
was already carrying most of the hadron’s momentum. One
can accordingly observe in Fig. 4 that increasing −t moves
the peaks of both GPDs to higher x. The down quark peak
migrates further than the up quark, with 〈〈xu(−2 GeV2)〉〉 =
0.45 and 〈〈xd (−2 GeV2)〉〉 = 0.50. This occurs because axial
vector diquark configurations fall more slowly with −t , so at
large −t the down quark becomes sampled more often outside
a diquark.

Despite 〈〈xd (t )〉〉 exceeding 〈〈xu(t )〉〉 at large −t , the down
quark GPD still falls faster than the up quark GPD with
increasing −t , as seen previously in measurements of the
flavor-separated electromagnetic form factors [24]. We define
the ratio Sq(x, t ) = Hq(x, 0, t )/Hq(x, 0, 0), which character-
izes how quickly an x slice of a quark GPD falls with −t .
The super-ratio Sd (x, t )/Su(x, t ) then characterizes how much
faster the down quark GPD falls with −t than the up quark
GPD.

Such a super-ratio is plotted in Fig. 6 for several values of
x. We find at all x values that the down quark GPD falls more
steeply than the up quark GPD, but that the steepness itself
varies as a function of x. In particular, the relative steepness
of the down quark falloff is less extreme at large x than at
small x. Since the steeper down quark falloff is a consequence
of diquark correlations, this suggests that diquark correlations
dominate at small x, and one is more likely to observe a direct
quark outside the diquark correlation when x is close to 1.

The other GPD, Eq(x, ξ , t ), does not correspond to a
familiar observable in the forward limit, but can be understood
by its relationships to the form factors F q

2 (t ), Bq(t ), and Jq(t ).
Unlike Hq(x, ξ , t ), the peaks for Eq(x, ξ , t ) are at lower x for
the up quarks than down quarks for all values of t . (This can
be clearly seen in the lower panel of Fig. 4). This occurs due
to axial vector diquarks having a larger impact on Eq(x, ξ , t )
than scalar diquarks.

Another novel aspect of GPDs is finite skewness. We
emphasize that a fully covariant calculation is necessary for a
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correct description at finite skewness, particularly in the
ERBL region, where |x| < |ξ |. A popular non-covariant
method to calculate GPDs is the overlap representation using
a truncated light front basis expansion [47]. The truncation
in particular is not invariant under the full Lorentz group
[48,49], and moreover leads to missing terms in the overlap
representation of the ERBL region, since the GPD in the
ERBL region is generated by the overlap of Fock states with
different numbers of partons.

Since the calculations done in this work are fully covariant,
we are able to obtain self-consistent results at finite skewness,
including in the ERBL region. In Fig. 5, GPD results are
shown for ξ = 0.5. The most immediately striking feature are
the jump discontinuities at x = ±ξ . These discontinuities are
inherited from the dressed quark GPDs given in Eqs. (13e),
and are not present if the quark GPDs are not dressed. These
jump discontinuities are characteristic of effective model cal-
culations with constant dressed quark mass, and have been
observed in other model GPD calculations [50–52]. These
discontinuities appear to present a problem for factorization
of the DVCS amplitude, but factorization is not expected to
apply at the model scale of μ2 = 0.16 GeV2, and evolution
of the model GPDs to a scale where QCD factorization is ex-
pected to apply removes the discontinuities (as we will see in
Fig. 7).

Another striking feature of Fig. 5 is the drastic difference
in the x dependence of the up and down GPDs in the ERBL
region, where |x| < |ξ |. In this region, the dressed quark
GPD is no longer trivial, and accordingly it is possible to
find (for instance) a down current quark inside a dressed up
quark.

At large −t , the down quark GPD Hd (x, ξ , t ) is dominated
by DQ(x, ξ , t ) in the ERBL region. This happens because
the down quark body GPD falls faster, due to the domi-
nance of scalar diquark configurations, causing Hd (x, ξ , t )
to be dominated by the current down quarks found within
dressed up quarks. Moreover, the GPD for a current quark
to appear within a dressed quark of the opposite flavor
goes as 1

2 [HI=0(x, ξ , t ) − HI=1(x, ξ , t ) + DQ(x, ξ , t )], where
HI=0(x, ξ , t ) ≈ HI=1(x, ξ , t ) because of the nearly degenerate
masses of the ρ and ω mesons. Thus, DQ(x, ξ , t ), which is
an odd function of x and is negative for x > 0, dominates the
ERBL region of Hd (x, ξ , t ) at large −t .

Many of the peculiar model features are washed out
by GPD evolution. In Fig. 7, we present results of evolv-
ing the model scale GPDs to μ2 = 4 GeV2. Leading-order
evolution kernels [53] were used along with a zero-mass
variable flavor number scheme. The jump discontinuities at
x = ±ξ are removed, and the shape of DQ(x, ξ , t ) is no
longer clearly visible in the ERBL region. Since the jump
discontinuities disappear at Q2 above the model scale, the
model scale discontinuities do not present a problem for fac-
torization at scales where QCD factorization is expected to be
relevant.

Polynomiality and form factors

An especially remarkable property of GPDs is polynomi-
ality, which ensures that the sth Mellin moment of a GPD

FIG. 7. Proton GPD results at the an evolved scale (μ2 =
4 GeV2), and ξ = 0.5, as a function of x and t . Surfaces have the
same meaning as in Fig. 4.

is a polynomial in ξ of order s or less.4 For the helicity-
independent GPDs of spin-half particles, the polynomials

4This is true for the gluon GPD if the Ji convention [54] is used. If
the Diehl convention [55] is used, this is true instead of the (s − 1)th
Mellin moment.
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FIG. 8. Electromagnetic and gravitational form factors of the
proton as extracted from the leading-twist, helicity-independent
GPDs.

are even in ξ .5 Polynomiality is a consequence of Lorentz
covariance, with the reality of the coefficients following from
Hermiticity of the bilocal operator and the evenness of the
polynomial from time reversal symmetry of its matrix ele-
ment. Since we have observed complete Poincaré covariance
throughout the calculation, our model GPDs exhibit polyno-
miality.

Of particular interest are the cases s = 1, which reproduce
partonic contributions (without charge weights) to electro-
magnetic form factors (EMFFs), and s = 2, which give gravi-
tational form factors (GFFs). These relationships are given in
Eqs. (16) and (17).

The EMFFs of the proton were previously calculated
within the NJL model (see, e.g., Ref. [16]), but the GFFs have
not been calculated. In Fig. 8, we present numerical results
for the EMFFs and GFFs extracted from the GPDs calculated
in this work. Since pion loops have not been included in
this calculation, our EMFFs should be compared to the “bse”
results from Ref. [16].

There are several constraints that the form factors must
obey due to symmetries and conservation laws. Charge and
momentum conservation require F1(0) = 1 and A(0) = 1, re-
spectively, and our results satisfy these relations. Conservation
of angular momentum gives the Ji sum rule [8] 1

2 [A(0) +
B(0)] = 1

2 , or equivalently (when combined with momentum
conservation) B(0) = 0, a statement otherwise known as the
vanishing of the anomalous gravitomagnetic moment. We find
that indeed B(0) = 0 within our results, and remark that this

5GPDs that are odd in ξ exist, even at leading twist. H4(x, ξ , t ) and
H̃3(x, ξ , t ) for spin-one targets are such examples [55]. The matrix
element of the bilocal correlator must be time reversal invariant,
and, if it is possible to construct T-odd Lorentz structures in its
decomposition, the Lorentz-invariant function multiplying it must
likewise be T-odd (i.e., odd in ξ ) for the product of both to be T-even.

is an inevitable consequence of observing Lorentz covariance
throughout the calculation.

The remaining static observables F2(0) and C(0) are not
constrained by symmetries or conservation laws. The first of
these gives the anomalous magnetic moment of the proton.
Empirically, F2(0) = κp = 1.793, but we underestimate this,
finding F2(0) = 1.39. It was observed in Ref. [16] that pertur-
batively introducing a pion cloud can significantly close the
gap between the calculated and model values. The second of
these, C(0), is commonly known as the “D term” [51], and
is constrained neither by symmetries nor by experiment.6 We
find C(0) = −1.08.

The form factor C(t ) has been interpreted as describing
the distribution of forces within hadrons [9] and the fact
that C(0) < 0 is understood as an important stability cri-
terion. Since C(0) is not constrained by any symmetries,
it is possible for operator dressing to change its value, in
contrast to A(0) or F1(0). In Ref. [10], Cπ (t ) was found to
change by a factor of ≈3 from dressing the quark-graviton
vertex, and introducing the dressing was necessary to satisfy
a low-energy pion theorem. In a similar vein, we find that
dressing the nonlocal correlator via the BSE depicted in
Fig. 3 is necessary for proton stability. If the bare nonlocal
operator is used to calculate the proton GPDs, then we obtain
C(0) = 0.85 > 0, at stark odds with the apparent stability of
the proton.

To understand the necessity of operator dressing for ob-
serving proton stability, we reiterate that dressing can be seen
as accounting for the elementary current quark substructure
of the three dressed quarks that compose the proton. In the
absence of dressing, we would be attempting to describe the
proton as being made of three current quarks, which would not
be accurate, and would account for only the leading Fock state
of the proton. That we get C(0) > 0 in this case tells us that
a hypothetical hadron with the mass and quantum numbers
of the proton that is made of only three elementary current
quarks would not be mechanically stable in this framework.

Since the NJL model contains only quarks and C(0) is
not constrained by any symmetries, it is possible that C(0)
may change significantly with the introduction of gluons.
Therefore, our finding of C(0) = −1.08 should at best be
interpreted as a prediction for the quark contribution to the
D term, rather than for the overall D term of the proton.

IV. SUMMARY AND OUTLOOK

We have calculated the helicity-independent, leading-twist
GPDs of the proton at finite skewness, in a confining version
of the NJL model. Dressing of nonlocal operator defining the
light cone correlator—which happens as a result of DCSB—
was necessary for sensible results to be obtained, including a
negative D term compatible with the stability of the proton.
The Lorentz covariance of the model and all approxima-
tions made ensured that polynomiality and sum rules relating

6There does exist, however, a recent model-dependent phenomeno-
logical extraction of the quark contribution from JLab Hall B data
[56,57].
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to charge, energy-momentum, and angular momentum
conservation were all obeyed, giving the vanishing of the
anomalous gravitomagnetic moment as a corollary.

It will be possible in future work to apply the same
formalism to the helicity-dependent and helicity-flip GPDs
of the proton. Moreover, the Lagrangian can be generalized
to include immersion in a finite-density medium, allowing
predictions of GPDs in nuclear matter and predictions for a
generalized EMC effect.
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