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Basis light-front quantization for a chiral nucleon-pion Lagrangian
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We present the first application of the basis light-front quantization method to a simple chiral model of the
nucleon-pion system as a relativistic bound state for the physical proton. The light-front mass-squared matrix of
the nucleon-pion system is obtained within a truncated basis. The mass and the corresponding light-front wave
function (LFWF) of the proton are computed by numerical diagonalization of the resulting mass-squared matrix.
With the boost-invariant LFWF, we calculate the probability density distribution of the pion’s longitudinal
momentum fraction and the Dirac form factor of the proton.
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I. INTRODUCTION

Developing a relativistic methodology that is broadly ap-
plicable to nuclear physics is important for studying high-
momentum transfer experiments on nuclear targets in exclu-
sive, nearly exclusive, or inclusive processes [1–3]. One of
the promising methods for such investigations is the basis
light-front quantization (BLFQ) approach [4].

BLFQ is a nonperturbative, ab initio method, which treats
relativistic quantum field theory via the Hamiltonian approach
within the light-front (LF) formalism. The BLFQ approach
complements other nonperturbative methods for treating rela-
tivistic field theories, such as the discretized light-cone quanti-
zation [5], the Dyson-Schwinger and Bethe-Salpeter equation
(see, e.g., Refs. [6–10]), and lattice gauge theory (see, e.g.,
Ref. [11] and the references therein), etc.

BLFQ has been shown to be a promising tool in a
range of applications [12], such as the electron anomalous
magnetic moment [13,14], the positronium spectrum [15],
and the heavy quarkonium structure and radiative transitions
[16–20]. More recently, BLFQ has been applied successfully
to the properties of the light mesons [21], which are then
extended to experiment-relevant scales by perturbative QCD
evolution [22]. This Hamiltonian approach has also been
extended to a nonperturbative scattering framework through
time-dependent BLFQ (tBLFQ) [23,24].

BLFQ employs the LF formalism [25,26], where physical
systems are quantized at fixed LF time x+ = t + z [15,27].
The structure and dynamics of the systems are characterized
by the Hamiltonian formalism. The LF vacuum has a simple
structure since the Fock vacuum is an exact eigenstate of
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the full normal-ordered Hamiltonian [28,29]. This provides
access to the Fock-space expansion of the physical states in
the LF field theory and thereby generates physical intuition
for their underlying structures [28,29].

BLFQ also takes the advantage of the developments in ab
initio nonrelativistic quantum many-body theories, such as the
no-core shell model (NCSM) [30–32], and the rapidly devel-
oping supercomputing techniques (algorithms and hardwares)
(see, e.g., Ref. [33] and references therein). In BLFQ, the
LF mass-squared operator of a hadron system in the basis
representation becomes a sparse matrix whose dimensions
are controlled by truncations that respect the relativistic sym-
metries. By matrix diagonalization, the eigenvalues produce
the mass sprectum, while the resulting eigenfunctions are the
light-front wave functions (LFWFs) that encode the hadronic
properties. The LFWFs can be boosted to a general Lorentz
frame for calculating, e.g., form factors and scattering pro-
cesses [28].

The LF quantization approach to treat a chiral model of
the nucleon-pion (Nπ ) system was first proposed by Miller
[34,35] in investigating the Nπ scattering and the nucleon-
nucleon scattering via perturbation theory. In this work, we
will present the first nonperturbative treatment of the same
chiral model via the BLFQ method. In particular, we consider
a physical proton as the relativistic bound state of the Nπ

system. Via the BLFQ approach, we obtain the LF mass-
squared matrix of the Nπ system within a truncated basis. We
compute the proton’s mass and the corresponding LFWF by
numerical diagonalization of the mass-squared matrix. Based
on the LFWF, we evaluate the probability density distribution
of the pion’s longitudinal momentum fraction and the Dirac
form factor of the proton.

The outline of this paper is the following. We begin by
introducing our adopted Lagrangian density in Sec. II. Then,
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in Sec. III, we introduce the elements of BLFQ, such as the
derivation of the LF Hamiltonian density, our choice of the
basis construction and truncation schemes, the derivation of
the mass-squared matrix element in the basis representation,
and the formalism for obtaining additional observables. In
Sec. IV, we present the results for the proton’s mass, the
proton’s LFWF, the probability density distribution of the
pion’s longitudinal momentum fraction and the Dirac form
factor of the proton. We conclude in Sec. V, where we also
discuss our future plans. Some necessary mathematical details
are presented in the Appendices.

II. THEORY I: LAGRANGIAN DENSITY
OF THE CHIRAL MODEL

We start with the Nπ Lagrangian density (cf. Eqs. (2.1) and
(2.2) in Ref. [34])

L′
total = 1

4

(
F

gA

)2

Tr(∂μU∂μU †)

+ 1

4
M2

π

(
F

gA

)2

Tr(U + U † − 2) + L′
Nπ , (1)

where L′
Nπ denotes the nonlinear representation of the Nπ

interaction:

L′
Nπ = N̄

{
γμi∂μ − MN− 1

1 + (π )2
( gA

2F

)2

[
gA

2F
γμγ5�τ · ∂μ �π

+ 1

4F 2
γμ�τ · �π × ∂μ �π

]}
N. (2)

N denotes the nucleon field operator. We set F ≡ gA fπ with
gA = 1.25 being the tree-level axial-vector coupling constant
and fπ being the pion decay constant (set as 93 MeV in this
work). Mπ denotes the pion mass (taken to be 137 MeV in this
work). The unitary operator U corresponds to the definition of
the pion field (more details are available in Refs. [34–36]). In
this work, we choose U as

U = (U −1)† = 1 + iγ5�τ · �π gA

2F

1 − iγ5�τ · �π gA

2F

= 1 + iγ5
gA

F
�τ · �π − 1

2

(
gA

F

)2

π2 + O
( g3

A

F 3

)
, (3)

where �τ denotes the Pauli matrices τa (a = 1, 2, 3), while �π
represents the pseudoscalar pion fields πa (a = 1, 2, 3).

BLFQ works with the LF Hamiltonian formalism. In de-
riving the LF Hamiltonian density, special care needs to
be taken with the nucleon-field operator. In particular, we
need to separate the nucleon-field operator into a dynamical
component and a kinematic component and then to eliminate
the kinematic component in favor of the dynamical compo-
nent using the solution of the constraint equation (see, e.g.,
Ref. [23]). The dynamical component is then treated as the
independent field available for quantization and the kinematic
component is its dependent field.

In the following, we try to address the difficulty arising
from the decomposition of the nucleon-field operator in the
starting Lagrangian [Eqs. (1) and (2)]. Our goal is to find

a numerically practical approach for solving the constraint
equation [34,35] [see Eq. (19) below]. To this end, we pro-
cess the Lagrangian density of the chiral model by a chiral
transformation. The details are described as follows.

We first manipulate the factor 1
4F 2 and obtain

L′
Nπ = N̄

{
γμi∂μ − M− 1

1 + (π )2
( gA

2F

)2

[
gA

2F
γμγ5�τ · ∂μ �π

+
(

gA

2F

)2

γμ�τ · �π × ∂μ �π
]}

N

+ N̄

{
1

1 + (π )2
( gA

2F

)2

[
g2

A − 1

4F 2
γμ�τ · �π × ∂μ �π

]}
N .

(4)

We then transform/redefine the nucleon field (cf.
Refs. [34,35]) as

N = U − 1
2 χ, (5)

where χ denotes the transformed nucleon field. The unitary
operator U − 1

2 is

U − 1
2 = (U

1
2 )† = 1 − iγ5�τ · �π gA

2F√
1 + (π )2

( gA

2F

)2
. (6)

The following identities hold:

U ± 1
2 γμ = γμU ∓ 1

2 , (7)

i∂μU − 1
2 = RμU − 1

2 , (8)

where we define

Rμ ≡ 1

1 + (π )2
( gA

2F

)2

[
gA

2F
γ5�τ · ∂μ �π+

(
gA

2F

)2

�τ · �π × ∂μ �π
]
.

(9)

Applying the transformation Eq. (5) and the identities
Eqs. (7) and (8) to Eq. (4), we obtain the transformed Nπ

interaction Lagrangian density as

LNπ = χ̄[γμi∂μ − MNU †]χ

+ g2
A − 1

4F 2
χ̄

{
1

1 + (π )2
( gA

2F

)2 [γμ�τ · �π × ∂μ �π ]

}
χ.

(10)

Note that the first term of Eq. (10) is of the linear represen-
tation of the chiral symmetry used by Gürsey [36] and Miller
[34,35], while the second nonlinear term is proportional to the
Weinberg-Tomozawa [37,38] contact term.

Overall, we obtain the transformed total Nπ Lagrangian
density (cf. Eqs. (2.1) and (2.2) in Ref. [34]) as

Ltotal = 1

4

(
F

gA

)2

Tr(∂μU∂μU †)

+ 1

4
M2

π

(
F

gA

)2

Tr(U + U † − 2) + LNπ , (11)
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where LNπ is shown in Eq. (10). Note that L′
total [Eq. (1)]

and [after the chiral transformation Eq. (5)] Ltotal are invariant
when Mπ = 0 under the chiral transformation [34,35]

N → eiγ5�τ ·�a N (or χ → eiγ5�τ ·�aχ ), (12)

U → e−iγ5�τ ·�a U e−iγ5�τ ·�a. (13)

As an example, up to the terms with the two-pion processes
(or, up to the order of g2

A/F 2), Eq. (11) takes the following
form:

Ltotal = 1

2
∂μ �π · ∂μ �π − 1

2
M2

π �π · �π + χ̄ [γμi∂μ − MN ]χ

+ i
gA

F
MN χ̄ [γ5�τ · �π ]χ + 1

2

(
gA

F

)2

MN χ̄ �π · �πχ

+ g2
A − 1

4F 2
χ̄[γμ�τ · �π × ∂μ �π]χ + O

(
g3

A

F 3

)
. (14)

In this initial work, we include only the terms up to the order
of gA

F in Ltotal. The inclusion of higher-order terms in Ltotal

(e.g., those proportional to g2
A/F 2) will be an effort of a future

work.

III. THEORY II: BLFQ APPROACH TO
A CHIRAL LAGRANGIAN

In this section, we demonstrate the methodology of treating
the chiral Lagrangian via the nonperturbative BLFQ approach.
Some of the ideas can also be found in our recent work [39].
We begin by obtaining the Hamiltonian density. Then we
present the details of solving the mass spectra and LFWFs. We
also present the method for calculating selected observables.

A. Hamiltonian dynamics

The dynamical Nπ system can be evaluated from the
eigenvalue equation

PμPμ|�〉 = M2|�〉, (15)

where Pμ is the four-vector operator of the energy-
momentum. In the LF coordinates, the mass-squared operator,

HLC ≡ P2 = PμPμ = P+P− − (P⊥)2, (16)

is analogous to the Hamiltonian in nonrelativistic quantum
mechanics. The details of the LF conventions and notations
in this work can be found in Ref. [27]. Since P+ and (P⊥)2

are kinematical, the P−,

P− = (P⊥)2 + M2

P+ , (17)

is also referred to as LF Hamiltonian that generates the
LF time-evolution (dynamics). P− is obtained from the La-
grangian via a Legendre transformation.

HLC can be numerically evaluated in a chosen set of
basis states as in BLFQ. In principle, the set of basis states
has infinite dimension. In practice, one limits the basis size
by introducing truncation scheme(s). The resulting finite-
dimensional eigenvalue problem can be evaluated numerically
as a function of cutoff(s) in the truncation scheme(s). By
extrapolation to the continuum limit, the physical observables
can be obtained. Alternatively, as is frequently the case in
an effective field theory, one selects a truncation to match a
limiting scale in the theory. For example, we can view the
present effort as the application of an effective field theory
valid on a scale below the scale where quark and gluon
dynamics are essential.

B. LF Hamiltonian density by Legendre transformation

Applying the standard Legendre transformation (see, e.g.,
Refs. [23,34]), the LF Hamiltonian density can be obtained
as

P− = 1

2
∂⊥πa · ∂⊥πa + 1

2
M2

ππaπa + χ
†
+

(p⊥)2 + M2
N

p+ χ+︸ ︷︷ ︸
kinetic energy for free pion and nucleon

+ χ
†
+[−γ ⊥ · i∂⊥ + MN ]

1

p+ MN

[
−iγ5

gA

F
�τ · �π

]
χ+ + χ

†
+MN

[
iγ5

gA

F
�τ · �π

]
1

p+
[
γ ⊥ · i∂⊥ + MN

]
χ+︸ ︷︷ ︸

one-pion emission and absorption

+O(
g2

A/F 2), (18)

where χ denotes the nucleon field. It can be decomposed as χ± = �±χ , with �± being the Hermitian projection operators
defined according to Eq. (A12) in Ref. [34]. χ+ is the dynamical component of the nucleon field. It is related to the kinematic
component of the nucleon field, χ−, by the constraint equation:

χ− = 1

p+ γ 0

[
γ ⊥ · p⊥ + MN

(
1−iγ5

gA

F
�τ · �π

)]
χ+. (19)

Note that in this prototype work that mainly focuses on demonstrating the BLFQ approach to the proton, we retain only the
terms up to the order of gA/F as for the interaction terms, which correspond to the processes of single-pion emission/absorption.
Higher-order terms, such as the π2 terms (cf. Refs. [34,35]), are expected to be corrections to the current calculation and will be
the topic of a future work.
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C. Basis representation: Construction and
truncation schemes

1. Symmetries

The BLFQ methodology of constructing the basis for
carrying out the matrix eigenvalue solution of the LF
mass-squared operator HLC is discussed in Refs. [4,15,23]. In
particular, we need to pay specific attention to the symmetries
of the LF Hamiltonian P−. These symmetries are as follows:
(1) the translational symmetry in the longitudinal direction,
which results in the conservation of the total longitudinal
momentum P+; (2) the rotational symmetry in the transverse
direction, which means that the projection of the total angular
momentum is conserved; (3) the conservation of net fermion
number; and (4) the transverse boost invariance. In this work,
we take the neutron and proton masses to be the same (= MN )
and also take the masses of the charged and neutral pions to
be the same (= Mπ ). By doing this, the Ltotal respects isospin
symmetry and the isospin projection of the constituent system
is conserved. We construct the LF basis set according to these
symmetries.

2. Single-particle basis

We start with constructing the single-particle basis. In
the longitudinal direction, we employ the discretized plane-
wave basis {|p+〉}. In particular, we constrain a particle in
a longitudinal box of length x+ = L and apply the periodic
(antiperiodic) boundary condition to the boson (fermion). The
longitudinal momentum is discretized as

p+ = 2π

L
j, (20)

with j = 1, 2, 3, · · · for the boson and j = 1
2 , 3

2 , 5
2 , · · · for the

fermion. Note that we exclude the “zero modes” ( j = 0) for
the bosons (pions in this work). The purpose of neglecting
such zero modes is to avoid introducing a counterterm that
would be required to manage the divergence at p+ = 0 arising
from the kinetic energy term in our LF Hamiltonian (see, e.g.,
Appendix B).

It is useful to define the longitudinal momentum fraction
x in terms of the total longitudinal momentum P+ as the
Bjorken variable

x ≡ p+

P+ = j

K
, (21)

where the dimensionless parameter K is related to P+ via the
relation P+ = 2π

L K .
In the transverse direction, we employ the two-dimensional

harmonic oscillator (2DHO) basis. As explained in the Ap-
pendix A, the 2DHO basis in the momentum representation
can be labeled by the radial number n and the angular quantum
number m. Adopting the 2DHO basis in the transverse direc-
tion provides us with means to ensure the transverse boost
invariance of the LF kinematics [4,28], as discussed further in
Sec. III E below.

In addition to the momentum space, we also have the the
spin and isospin degrees of freedom for the Nπ model. The
single-particle basis can thus be classified according to the

following set of quantum numbers:

|α〉 = |x, n, m, s, t〉, (22)

where s denotes the helicity and t denotes the projection of the
isospin of the particle. It is understood that the nucleons are
of spin 1

2 and isospin 1
2 , while pions are of spin 0 and isospin

1. The orthonormality relation of the single-particle basis is

〈x, n, m, s, t |x′, n′, m′, s′, t ′〉 = δx,x′δn,n′δm,m′δs,s′δt,t ′ . (23)

Note that we present the form of the single-particle basis
Eq. (22), as well as its orthonormality relation Eq. (23), for
the brevity in the notation/discussion in Secs. III C 2 and
III C 3. In practice, we take the single-particle basis for the
pion field as

|α〉 = |x, n, m, λ〉, (24)

where we omit the unneeded helicity label for the pion field
and denote its isospin projection as λ for clarity [see, e.g.,
Eq. (30)]. The nucleon field basis still bears the form of
Eq. (22).

3. Multiparticle basis

The multiparticle basis is constructed as a direct product of
the single-particle bases (⊗|α〉). According to the symmetries
of P− for the Nπ system, we require the quantum numbers
for all the constituent particles (labeled by i) in the retained
multiparticle basis states to satisfy the following relations:∑

i

p+
i = P+,

∑
i

mi +
∑

i

si = MJ ,∑
i

ti = Tz,
∑

i

ni
f = Nf . (25)

The first identity requires all the basis states to have the same
total longitudinal momentum. It is equivalent to∑

i

ji = K or
∑

i

xi = 1, (26)

according to Eqs. (20) and (21) for the fixed box-length L and
the total longitudinal momentum P+. The second identity in
Eq. (25) states the conservation of the projection of the total
angular momentum MJ , which is produced by the helicity s
and the projection of the orbital angular momentum m of each
constituent particle. (Note that the total angular momentum
J is, however, not a good quantum number in the LF basis
states.) The third identity in Eq. (25) states that the projection
of the total isospin Tz or, equivalently, total charge of the
system is conserved. The last identity in Eq. (25) refers to the
conservation of the net fermion number Nf , where ni

f = 1 for
a nucleon and ni

f = 0 for each pion.

4. Truncation scheme

We apply three truncations in this work. First, the number
of Fock sectors for the Nπ system is truncated at the nucleon
plus one-pion sector

|Nphys〉 = a|N〉 + b|Nπ〉, (27)

with the amplitudes a = 〈N |Nphys〉 and b = 〈Nπ |Nphys〉. It is
also possible to include higher Fock sectors, e.g., |Nππ〉.
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However, we would postpone this to future work. According
to the Fock sector truncation Eq. (27), we have the net fermion
number Nf = 1 for all the basis states.

According to the Fock sector truncation Eq. (27), the LF
basis set in this work is

{|ξ 〉} = {|ξN 〉} ⊕ {|ξNπ 〉}. (28)

For the |N〉 sector, the LF basis set is

{|ξN 〉} = {|xN , nN , mN , sN , tN 〉}, (29)

with xN = 1 due to the conservation of the longitudinal mo-
mentum. For the |Nπ〉 sector, the LF basis set is

{|ξNπ 〉} = {|xN , nN , mN , sN , tN ; xπ , nπ , mπ , λ〉}. (30)

Note that xπ �= 0 since we exclude the zero mode of the pion
field in the longitudinal direction. Due to the conservation of
the total longitudinal momentum, we also have xN + xπ = 1
and 0 < xN < 1 for the |Nπ〉 sector.

Second, we cut off the total longitudinal momentum for the
many-body basis state as

K = Kmax, (31)

which makes the number of the longitudinal modes finite [40].
The longitudinal continuum limit can be approached at the
limit of Kmax → ∞ for a given box length L.

Third, we truncate the number of the modes in the trans-
verse direction for the many-body basis states by restricting
the number of maximal excitation quanta, Nmax, as∑

i

(2ni + |mi| + 1) � Nmax, (32)

where i denotes the constituent particles. By taking
Nmax → ∞, the continuum limit in the transverse direction is
realized.

5. UV and IR cutoffs

The 2DHO basis parameters are related, intrinsically, to
the ultraviolet (UV) and infrared (IR) cutoffs of the model
space [41,42]. In the momentum space, the UV and IR cutoffs
can be, respectively, approximated by the basis truncation
parameter Nmax and the basis strength b as

p⊥
max ≈ b

√
2Nmax, (33)

p⊥
min ≈ b/

√
2Nmax. (34)

6. Factorization

The application of the 2DHO single-particle basis in the
transverse direction with Nmax truncation admits an exact
factorization of the LFWF into “intrinsic” and “center-of-
mass” components [15,32,43,44]. Taking advantage of this
factorization, the spurious center-of-mass excitation due to the
adoption of the 2DHO single-particle basis can be eliminated
by the use of a Lagrange multiplier term as explained below
(Sec. III E). The analogous factorization scheme has been
adopted in the studies of nuclear structure (cf. Refs. [32,44]),
where the three-dimensional harmonic oscillator basis is
adopted.

D. Mode expansions

The pion field can be expressed in terms of the creation and
annihilation operators [15,23]

πa(x) =
∑
k+

λ=1∑
λ=−1

1√
2Lk+

∫
d2k⊥

(2π )2
[a(k, λ)εa(λ)e−ikx

+ a†(k, λ)εa
∗(λ)eikx], (35)

where we make it explicit that we are discretizing the longi-
tudinal momenta and we introduce the following polarization
vectors for the isospin degree of freedom of the pseudoscalar
pion field πa (a = 1, 2, 3):

ε(+1) = 1√
2

(1, i, 0)T , ε(0) = (0, 0, 1)T ,

ε(−1) = 1√
2

(1,−i, 0)T , (36)

with ε†(λi )ε(λ j ) = δλi,λ j and ε(−λ) = ε∗(λ). The subscript
“a” also indicates the component of the polarization vector
ε(λ). λ denotes the projection of the isospin of the physical
pions, i.e., π± and π0. The commutation relation, in terms of
the discretized longitudinal momentum [Eq. (21)], is

[a(k, λ), a†(k′, λ′)] = (2π )2δ(2)(k⊥ − k′
⊥)δλ,λ′δk+,k′+ . (37)

Similarly to the pion field, the nucleon field can be repre-
sented with the creation and annihilation operators

χ+(x) =
∑
p+

∑
s,t

1√
2L

ζ (s)T (t )
∫

d2 p⊥

(2π )2
[b(p, s, t )e−ipx

+ d†(p,−s,−t )eipx], (38)

where

ζ

(
+1

2

)
= (1, 0, 0, 0)T , ζ

(
−1

2

)
= (0, 1, 0, 0)T , (39)

T

(
+1

2

)
= (1, 0)T , T

(
−1

2

)
= (0, 1)T . (40)

With the discretized longitudinal momentum [Eq. (21)], the
anticommutation relations are

{b(p, s, t ), b†(p′, s′, t ′)} = (2π )2δ(2)(p⊥ − p′
⊥)δs,s′δt,t ′δp+,p′+ ,

(41)

{d (p, s, t ), d†(p′, s′, t ′)} = (2π )2δ(2)(p⊥ − p′
⊥)δs,s′δt,t ′δp+,p′+ .

(42)

Note that with our limited Fock space [Eq. (27)], the indepen-
dent field for the antinucleon is not included.

The anti/commutation relations for the equal light-front
time fields are

[πa(x), πb(y)]x+=y+ = − i

4
ε(x− − y−)δ(2)(x⊥ − y⊥)δab,

(43)

{χ+(x), χ†
+(y)}x+=y+ = 1

2
γ 0γ +δ(x− − y−)δ(2)(x⊥ − y⊥).

(44)
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ε(x) = θ (x) − θ (−x) is the antisymmetric step function,
where the step function is

θ (x) = 0 for x � 0; θ (x) = 1 for x > 0. (45)

The relations ∂ε(x)
∂x = 2δ(x) and |x| = xε(x) hold. For the

representation of the gamma matrices in this work, we follow
the convention in Ref. [27].

The creation and annihilation operators in terms of the
2DHO basis with the momentum fraction weighted variables
(see definitions in Appendix A) are

a(x, k⊥, λ) = 1√
x

∑
n,m

�m
n

(
k⊥
√

x

)
α(x, n, m, λ), (46)

b(x, p⊥, s, t ) = 1√
x

∑
n,m

�m
n

(
q⊥
√

x

)
β(x, n, m, s, t ), (47)

with the anti/commutation relations

[α(x, n, m, λ), α†(x′, n′, m′, λ)] = δx,x′δn,n′δm,m′δλ,λ′ , (48)

{β(x, n, m, s, t ), β†(x′, n′, m′, s′, t ′)} = δx,x′δn,n′δm,m′δs,s′δt,t ′ .

(49)

E. Mass-squared operator

The adoption of the 2DHO single-particle basis in the
transverse direction allows spurious center-of-mass excitation
for the mass spectrum. In order to eliminate the states with
spurious center-of-mass excitation in the BLFQ approach, we
follow Ref. [15] and introduce a Lipkin-Lawson Lagrange
multiplier term [45,46] to the mass-squared operator HLC

[Eq. (16)]. The modified mass-squared operator is

H = HLC + �(Hc.m. − 2b2I ), (50)

where � > 0 is the Lagrangian multiplier. The intrinsic mo-
tion in the solutions is not influenced by this Lawson term
(Hc.m. − 2b2I ) due to the factorization of the LFWF in the
2DHO basis with Nmax truncation. The mass spectrum of the
intrinsic motion is only determined by the intrinsic part of the
LFWF below the scale 2�b2. The center-of-mass motion is
governed by

Hc.m. = (P⊥)2 + b4(R⊥)2, (51)

where the center-of-mass momentum and coordinate in the
transverse direction are, respectively,

P⊥ =
∑

i

p⊥
i , R⊥ =

∑
i

xir
⊥
i . (52)

In terms of momentum fraction weighted variables, these
center-of-mass variables are

P⊥ =
∑

i

√
xiq

⊥
i , R⊥ =

∑
i

√
xis

⊥
i . (53)

Hc.m. satisfies the eigenequation

Hc.m.|ÑM̃〉 = (2Ñ + |M̃| + 1)2b2|ÑM̃〉, (54)

where |ÑM̃〉 is the eigenvector that corresponds to the eigen-
value EÑM̃ = (2Ñ + |M̃| + 1)2b2. Based on Eq. (54), it is easy
to see that the states with center-of-mass excitation (i.e., states

with Ñ �= 0 and/or M̃ �= 0) are lifted in the spectrum; only
the states with the lowest center-of-mass mode (i.e., states
with Ñ = M̃ = 0) remain without a shift [47]. In general,
the spectrum of H is a set of equally spaced approximate
copies1 (named as subspectra), with the spacing characterized
by 2�b2 for every additional excitation quanta in the center-
of-mass degree of freedom. In practice, we choose � to
be sufficiently large such that the subspectra with different
center-of-mass modes are well separated.

Making use of the LF Hamiltonian density P− [Eq. (18)]
and the mode expansions for the pion and nucleon fields
[Eqs. (35) and (38)], we calculate the mass-squared operator
[Eq. (16)] as

HLC = P+ (
P−

KEN
+ P−

KEπ
−P−

int

)︸ ︷︷ ︸
P−

−(P⊥)2, (55)

where P−
KEN

and P−
KEπ

denote the contributions from a free
nucleon and a free pion, respectively. P−

int denotes the Nπ -
interaction term (only for one-pion processes) in this work.
The detailed expressions of P+P−

KEN
, P+P−

KEπ
, and P+P−

int are
shown in Appendix B.

F. Observables

In terms of the LF basis set {|ξ 〉} [Eq. (28)], the matrix
of the modified mass-squared operator for the Nπ system
[Eq. (50)] can be constructed. By solving the eigenequation
(via numerical matrix diagonalization)

H |�i〉 = M2
i |�i〉, (56)

we obtain the eigenmass Mi and the corresponding eigenvec-
tor

|�i〉 ≡
∑

ξ

Ci(ξ ) |ξ 〉, (57)

with Ci(ξ ) = 〈ξ |�i〉 being the LF amplitude corresponding
to the basis state |ξ 〉. The summation is taken over the LF
basis set {|ξ 〉}. The LFWF2 is made up by the LF amplitudes
{〈ξ |�i〉}. For computational efficiency, we limit the summa-
tion in Eq. (57) to basis states of a specified symmetry as
discussed above in Sec. III C 3. Separate calculations are then
performed to obtain solutions of each desired symmetry.

1. Probability density distribution of the pion’s longitudinal
momentum fraction

The probability to find a constituent pion of the longitudi-
nal momentum fraction xπ in our Nπ model can be computed
based on the LFWF, which is

f̃π (xπ ) ≡
∑′

C∗(ξ )C(ξ ), (58)

1The copies are not exact numerical copies since the addition of
available quanta to the center-of-mass motion means the loss of
available quanta in the relative motion.

2In principle, the application of the Fock-sector truncation requires
the renormalization of the LFWF (see, e.g., Ref. [14]). We defer this
study to a future effort.
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where it is understood that xN = 1 − xπ according to the
conservation of the longitudinal momentum. The primed sum
in Eq. (58) denotes that (1) the sum is over all the quantum
numbers except xπ , (2) the sum includes only states with
a pion, and (3) the sum is performed for the amplitudes
corresponding to a selected mass eigenstate so that the index i
is suppressed.

Correspondingly, we can also define the probability to find
a constituent proton of the longitudinal momentum fraction
xN as f̃N (xN ) for xN �= 1.3 The following identity holds:

f̃π (xπ ) = f̃N (xN ). (59)

In this work, we rescale f̃π (xπ ) by 1/Kmax, which is the
resolution in the longitudinal direction. The probability den-
sity distribution of the pion’s longitudinal momentum fraction
is hence defined as

fπ (xπ ) ≡ Kmax · f̃π (xπ ). (60)

According to fπ (xπ ), we compute various related mo-
ments. The zeroth moment is

I (0)
π ≡

∫ 1

0
fπ (xπ )dxπ . (61)

I (0)
π denotes the total probability to find the physical proton as

a composite system of the bare nucleon and pion. On the other
hand, the probability to find the bare nucleon is

Z2 ≡
∑

|〈Nbare|p〉phys|2 = 1 − I (0)
π . (62)

The first moment is

I (1)
π ≡

∫ 1

0
xπ fπ (xπ )dxπ , (63)

which presents the average longitudinal momentum carried by
the pion. The second-moment with respect to the longitudinal
momentum carried by the pion is

I (2)
π ≡

∫ 1

0
x2
π fπ (xπ )dxπ , (64)

which is related to the fluctuation of the pion’s longitudinal
momentum fraction in our model.

2. Dirac form factor

In the LF coordinates, the Dirac form factor can be com-
puted as [48]

F1(Q2) = 1

2P+ 〈P′,↑|J+(0)|P,↑〉, (65)

where the upward arrows denote the initial and final states
with the projections of the total angular momenta being + 1

2 .
P and P′ are the momenta of the initial and finial states,
respectively. q = P′ − P is the momentum carried by the

3Recall that the zero mode of the pion field is excluded and we have
f̃π (xπ = 0) = 0 throughout this work.

probing virtual photon. Adopting the Drell-Yan frame, we
have

q = (q+, q−, q⊥) =
(

0,− q2

P+ , q⊥
)

, (66)

P = (P+, P−, P⊥) =
(

P+,
M2

P+ , 0

)
, (67)

q2 = −2Pq = −(q⊥)2 ≡ −Q2, (68)

where Q2 is referred to as the squared transverse momentum
transfer in the following. In principle, the Dirac form factor
(or, more generally, observables) should be frame indepen-
dent due to the Lorentz invariance. In practice, however, the
Lorentz symmetry is broken by the Fock-sector truncation
in our model [49–51].4 The frame dependence of the Dirac
form factor could hence serve as a measure of the Lorentz
symmetry violation, which will be the topic of a future work.

In our current model, the Fock-sector expansion for the
physical proton can be schematically written as

|pphys〉 = ap|p〉 + apπ0 |pπ0〉 + anπ+ |nπ+〉, (69)

where ap, apπ0 , and anπ+ schematically represent the am-
plitudes since each term on the right-hand side of Eq. (69)
represents a sum over the basis states with corresponding
individual amplitudes. Hence, there are three different classes
of contributions to the Dirac form factor of the physical
proton: (1) the virtual photon couples to the current of the
bare proton |p〉, which results in F p

1, f (Q2); (2) the virtual
photon couples to the current of the bare proton when dressed
by charge-neutral π0, which results in F pπ0

1, f (Q2); and (3) the
virtual photon couples to the current of π+, which results in
F nπ+

1,b (Q2). The Dirac form factor for the physical proton is
hence

F1(Q2) = F p
1, f (Q2) + F pπ0

1, f (Q2) + F nπ+
1,b (Q2), (70)

where the subscripts f and b denote the contributions to
F1(Q2) from the fermionic current and the bosonic current,
respectively. The detailed expression of F1(Q2) is shown in
Appendix C.

3. Proton’s r.m.s. charge radius

The proton’s r.m.s. charge radius
√

〈r2
p,E 〉 can be calculated

from the following expression [52]:〈
r2

p,E

〉 = − 6
dGE (Q2)

dQ2

∣∣∣∣
Q2→0

, (71)

where GE (Q2) denotes the Sachs electric form factor

GE (Q2) = F1(Q2) − Q2

4M2
N

F2(Q2). (72)

4In this work, higher Fock sectors, such as |Nππ〉, are omitted
in Eq. (27). As the higher Fock sectors are systematically included
in our model, the Lorentz symmetry can be dynamically restored,
through which we anticipate that the Dirac form factor gradually
becomes frame independent.
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FIG. 1. Model space dependence of the mass spectrum of the Nπ system computed via the BLFQ approach. The masses of the lowest 30
eigenstates are plotted as functions of Nmax. The basis strength is fixed as b = 250 MeV for the purpose of demonstration. Kmax is set to be
97/2 for good convergence. The dashed black line (at 1075.272 MeV) shows the continuum threshold of the Nπ system. The ground state
(bound) is identified as the physical proton, of which the mass is renormalized to Mproton = 938.272 MeV in the FSDR scheme. The ground
states for all choices of model spaces (labeled by Nmax) are joined by the dashed red line to guide the eye.

By modification, we relate
√

〈r2
p,E 〉 to the slope of the

proton Dirac form factor F1(Q2) at vanishing Q2 as

dF1(Q2)

dQ2

∣∣∣∣
Q2→0

= −1

6

〈
r2

p,E

〉 + 1

4M2
N

F2(0). (73)

Note that this slope is negative for the proton. In this work,
we take F2(0) = 1.7928 (in units of nuclear magneton μN )
[53] for the proton when extracting the r.m.s. charge radius
according to Eq. (73). Refining this approach will be a future
research effort.

IV. RESULTS AND DISCUSSIONS

In this work, we adopt the Fock-sector dependent renor-
malization (FSDR) [54–57] scheme. We numerically diago-
nalize the matrix of the modified mass-squared operator H
[Eq. (50)] using an iterative process in which the bare nu-
cleon mass is tuned in the matrix elements within the single-
nucleon sector. This process continues until the square-root
of the eigenvalue of the ground state (identified as a physical
proton) matches the mass of the physical proton (taken as
938.272 MeV in this work).

According to the FSDR scheme, the mass counterterm is
introduced only to the single-nucleon sector. We expect the
mass counterterm to compensate for the mass correction due
to the radiative processes: The quantum fluctuation from the
single-nucleon sector to the Nπ sector and back again. On
the other hand, the nucleon mass in the Nπ sector remains
as the physical value until a future effort would renormalize

it with the inclusion of a higher Fock sector. In the FSDR
procedure, we fix the pion mass as 137 MeV.

A. Mass spectrum of the Nπ system

As an illustration of how we solve the proton as the
relativistic bound state of the Nπ system, we present in
Fig. 1 the mass spectrum of the lowest 30 states of the Nπ

system as a function of the model space (scaled by Nmax, b,
and Kmax). We set Kmax = 97/2 (for good convergence) and
b = 250 MeV (for the simple purpose of demonstration). The
Lagrangian multiplier in Eq. (50) is set to be � = 300 MeV in
this demonstration, such that no state with center-of-mass ex-
citation is present in Fig. 1: According to the Lipkin-Lawson
method [Eq. (50)], the eigenenergy of the lowest state with the
center-of-mass excitation is 1238.272 MeV.

For each Nmax, we fit the ground state eigenvalue to be
938.272 MeV, which we identify as the physical proton.
The corresponding wave function is identified as the proton
LFWF, which is boost invariant. The other states lie above
the threshold of the continuum (dashed black line in Fig. 1),
which is the sum of the physical pion and nucleon masses
adopted in this work (i.e., 1075.272 MeV); they represent the
Nπ scattering states. As Nmax increases (i.e., as more basis
states are added), a better representation of the scattering
states of the Nπ system will emerge. This can be inferred from
the increasing level density of the scattering states as Nmax

increases. We defer detailed investigation of the continuum
states, such as the convergence of sum rules (cf. Ref. [58]), to
a later effort.
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TABLE I. Basis parameters employed to obtain the proton’s
LFWFs. We take the proton r.m.s. charge radius to be

√〈r2
p,E 〉 =

0.879 fm [59] in this case. The corresponding UV and IR cutoffs of
the 2DHO basis as defined in Eqs. (33) and (34) are also presented.
Kmax is set to be 97/2 for good convergence.

Nmax Kmax b (MeV) IR (MeV) UV (MeV)

6 97
2 157.169 45.371 544.450

7 97
2 222.582 59.488 832.827

8 97
2 228.871 57.218 915.483

B. Choices of the model space parameters
for the proton’s LFWFs

To compute the observables such as the probability density
distribution of the pion’s longitudinal momentum fraction
fπ (xπ ) and the proton’s Dirac form factor F1(Q2), we de-
termine the model space parameters (Nmax, b, Kmax) in our
calculations as following. For each Nmax, (1) we determine the
mass counterterm by fitting proton mass (938.272 MeV) via
the FSDR procedures; (2) we choose b by fitting the proton’s
r.m.s. charge radius

√
〈r2

p,E 〉 (adopted to be either 0.879 fm
[59] or 0.840 fm [60] in view of the proton radius puzzle);
(3) we select a sufficiently large Kmax for good convergence;
(4) finally, we restrict the 2DHO basis parameters such that
the IR/UV cutoffs of the basis space [Eqs. (33) and (34)] are
consistent with a scale assumed to be reasonable for the chiral
effective field theory we investigate.

In Tables I and II, we present the basis parameter settings,
along with the corresponding IR and UV cutoffs of the
basis space. The parameter settings in Table I (Table II) are
obtained with the choice of

√
〈r2

p,E 〉 = 0.879 (0.840) fm. It
is worth noting that, for obtaining smaller

√
〈r2

p,E 〉, larger
basis strength b is required: For example, we have b =
157.169 MeV for the choice of Nmax = 6 in Table I, while
b is 201.858 MeV for the same Nmax in Table II. This can
be understood from the fact that 1/b scales the typical length
scale of the 2DHO basis, which is directly related to the
characteristic size of the system.

We attempted calculations with Nmax � 5 but were un-
successful in obtaining both the physical mass and the pro-
ton r.m.s. charge radius. We also exclude the choices with
Nmax � 9, since the UV cutoffs of such basis spaces are well
above 1 GeV, which seems to be a reasonable UV limit for our
chiral effective field theory.

TABLE II. Basis parameters employed to obtain the proton’s
LFWFs. We take

√〈r2
p,E 〉 = 0.840 fm. The corresponding UV and

IR cutoffs of the 2DHO basis as defined in Eqs. (33) and (34) are
also presented. Kmax is set to be 97/2 for good convergence.

Nmax Kmax b (MeV) IR (MeV) UV (MeV)

6 97
2 201.858 58.271 699.257

7 97
2 259.175 69.267 969.743

8 97
2 262.096 65.524 1048.385

FIG. 2. The quantities fπ (xπ ) (solid lines), xπ fπ (xπ ) (dashed
lines), and x2

π fπ (xπ ) (dot-dashed lines) as functions of the model
space and the pion’s longitudinal momentum fraction xπ . Nmax labels
the model space applied to compute the proton’s LFWF: The ma-
genta, black, and blue lines denote the model spaces with Nmax = 6,
7, and 8, respectively. For panel (a), the LFWFs are computed based
on the parameter settings in Table I, where b is fitted according to
the choice of

√〈r2
p,E 〉 = 0.879 fm. For panel (b), the LFWFs are

computed based on the parameter settings in Table II, where b is
fitted according to the choice of

√〈r2
p,E 〉 = 0.840 fm.

C. Probability density distribution of pion’s longitudinal
momentum fraction

In Fig. 2, we present the quantities fπ (xπ ), xπ fπ (xπ ),
and x2

π fπ (xπ ) as functions of the model space (labeled by
Nmax) and the pion’s longitudinal momentum fraction xπ . The
detailed definitions of these quantities are in Sec. III F 1. For
Fig. 2(a) [Fig. 2(b)], the LFWFs are computed based on the
parameter settings in Table I (Table II). Recall that the model
space parameters in Table II are obtained by fitting to a smaller√

〈r2
p,E 〉, where the spatial extension of the proton is more

restricted (correspondingly, a larger UV cutoff is needed).
We find that fπ (xπ ) peaks at approximately xπ ≈

0.40 (0.45) for the calculation with Nmax = 6 (8) in both
Fig. 2(a) and Fig. 2(b). These peak positions indicate that,
at the low momentum scale in this work (discussed below),
the longitudinal momentum fraction carried by the constituent
pion is more relativistic than naïve expectations (xπ ≈ 0.2).

In addition, we note that (1) the peak value increases
with the model space dimensions (scaled by Nmax) for the
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TABLE III. The zeroth-, first-, and second-moments of the pion’s
longitudinal momentum fraction. The model space parameters to
calculate the LFWFs are shown in Table I, where the proton’s√〈r2

p,E 〉 is fitted to 0.879 fm.

Nmax I (0)
π I (1)

π I (2)
π

6 0.144 0.068 0.039
7 0.254 0.120 0.068
8 0.285 0.138 0.080

calculations with a given choice of
√

〈r2
p,E 〉 and (2) the peak

value of fπ (xπ ) are sensitive to the choice of
√

〈r2
p,E 〉: Those

peak values in Fig. 2(b) are larger than their counterparts
in Fig. 2(a). For example, at Nmax = 7, the computed peak
value of fπ (xπ ) with the choice of

√
〈r2

p,E 〉 = 0.879 fm is
about 0.42, while the peak value computed with the choice of√

〈r2
p,E 〉 = 0.840 fm is about 0.50. These features of fπ (xπ )

can be partly understood from the UV cutoff of the 2DHO
basis: the peak value increases as the UV cutoff increases
(Tables I and II).

In Figs. 2(a) and 2(b), we also present the results of
xπ fπ (xπ ) and x2

π fπ (xπ ). As expected from the properties of
fπ (xπ ) discussed above, the peak positions are about the same
for the model spaces with same Nmax, though respective peak
values are different.

We remark that the current fπ (xπ ) results (and other related
quantities), are calculated with the point-particle assumption,
i.e., the constituent particles are treated as pointlike, struc-
tureless particles. While including higher-order terms in the
Lagrangian is necessary to improve the current calculations,
it will also be important to account for the quark and gluon
distributions within our constituent fields in order to enhance
agreement with experiment at intermediate momentum trans-
fers (e.g., Q2 ≈ 4.0 GeV2 or higher).

Utilizing these distribution functions [ fπ (xπ ), xπ fπ (xπ ),
and x2

π fπ (xπ )], we calculate the zeroth-, first-, and second-
moments of the pion’s longitudinal momentum fraction
(shown in Tables III and IV). In principle, individual moments
can be viewed as the integrated area between the profile of the
corresponding distribution function and the x axis in Figs. 2(a)
and 2(b). Physically, as explained in Sec. III F 1, I (0)

π and I (1)
π

represent the probability of the |Nπ〉 sector and the average
longitudinal momentum fraction carried by the constituent
pion, respectively. I (2)

π is related to the quantum fluctuation
of the pion’s longitudinal momentum fraction.

TABLE IV. The zeroth-, first-, and second-moments of the pion’s
longitudinal momentum fraction. The model space parameters to
calculate the LFWFs are shown in Table II, where the proton’s√〈r2

p,E 〉 is fitted to 0.840 fm.

Nmax I (0)
π I (1)

π I (2)
π

6 0.206 0.098 0.056
7 0.303 0.145 0.083
8 0.328 0.161 0.094

TABLE V. Fock-sector probabilities [Eq. (69)] computed from
the proton’s LFWFs. The model space parameters to calculate the
LFWFs are shown in Table I, where the proton’s

√〈r2
p,E 〉 is fitted to

0.879 fm.

Nmax |ap|2 |anπ+ |2 |apπ0 |2

6 0.856 0.096 0.048
7 0.746 0.169 0.085
8 0.715 0.190 0.095

We note that the moments shown in Tables III and IV
present the same patterns as those of the peak value of the
fπ (xπ ). For example, we find that (1) for the calculations
with a given choice of

√
〈r2

p,E 〉, the resulting I (0)
π increases

with the model space dimensions (scaled by Nmax), and (2)
for a given Nmax, I (0)

π increases for the calculation based on
the LFWF fitted to a smaller

√
〈r2

p,E 〉. The same is true for
I (1)
π and I (2)

π . These features of the moments result directly
from the properties of fπ (xπ ) and could also be interpreted
in terms of the sensitivity to the UV cutoff of the model space
representation of the LFWFs.

D. Probabilities of Fock sectors

Based on the proton’s LFWFs, we compute the proba-
bility of each Fock sector according to Eq. (69), as shown
in Tables V and VI. For each model space (Tables I and
II), we find that the probability of the bare proton sector
(|ap|2) dominates, while the probability of the |nπ+〉 sector
(|anπ+|2) is twice of that of the |pπ0〉 sector (|apπ0 |2) due to the
isospin symmetry [61]. We also checked the normalization of
the Fock sector expansion, i.e., |ap|2 + |anπ+|2 + |apπ0 |2 = 1.
(Note that there are nominal offsets from this sum in the data
in Tables V and VI due to round-off.) We find that the Fock-
sector probabilities are sensitive to the choice of the proton’s√

〈r2
p,E 〉. For the choice of smaller

√
〈r2

p,E 〉 (i.e., 0.840 fm),
the resulting |ap|2 becomes less dominant (while |anπ+|2 and
|apπ0 |2 becomes more important).

With the choice of the proton’s
√

〈r2
p,E 〉 to be either 0.879

fm or 0.840 fm, we find that the total probability of a physical
proton consisting of a bare nucleon and a single pion is
within the range of [0.144,0.285] (Table III) or the range
[0.206,0.328] (Table IV). Correspondingly, the probability of
the |nπ+〉 sector is within the range of [0.096,0.190] (Table V)
or the range of [0.137,0.218] (Table VI), while the probability
of the |pπ0〉 sector is within the range of [0.048,0.095] (Ta-

TABLE VI. Fock-sector probabilities [Eq. (69)] computed from
the proton’s LFWFs. The model space parameters to calculate the
LFWFs are shown in Table II, where the proton’s

√〈r2
p,E 〉 is fitted to

0.840 fm.

Nmax |ap|2 |anπ+ |2 |apπ0 |2

6 0.794 0.137 0.069
7 0.697 0.202 0.101
8 0.672 0.218 0.109
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FIG. 3. The computed Dirac form factor F1(Q2) of the proton as
a function of the squared transverse momentum transfer Q2 and of
the model space. Nmax labels the model space applied to compute the
proton’s LFWF: The brown dashed line, the red solid line, and the
blue dot-dashed line denote results based on the model spaces with
Nmax = 6, 7, and 8, respectively. The experimental results (black)
[63], along with the corresponding error bars, are also presented for
comparison. For panel (a), the LFWFs are computed based on the
parameter settings in Table I, where b is fitted according to the choice
of

√〈r2
p,E 〉 = 0.879 fm. For panel (b), the LFWFs are computed

based on the parameter settings in Table II, where b is fitted according
to the choice of

√〈r2
p,E 〉 = 0.840 fm.

ble V) or the range of [0.069,0.109] (Table VI). These results
compare well with the studies of the pion cloud effects by the
cloudy bag model [61,62]. However, it is also worth noting
that the correct size of the pion cloud effects would not be
sufficient to obtain the electromagnetic form factors, as will
be discussed below.

E. Proton’s Dirac form factor

We apply the boost-invariant LFWFs (computed based on
the parameter settings in Table I) to calculate the proton’s
Dirac form factor. In Fig. 3, we present the proton’s Dirac
form factor F1(Q2) [Eq. (70)] as a function of the squared
transverse momentum transfer Q2 [Eq. (68)] and of the model
space (labeled by Nmax) with parameters listed in Tables I
and II.

In computing the proton’s LFWFs, we tune b for each
choice of Nmax such that the LFWFs produce the adopted√

〈r2
p,E 〉 values (along with the physical proton’s mass). This

can be seen from the agreement between the slopes of F1(Q2)
results and the experimental result in the vicinity of the origin.

The results of F1(Q2) with the same Nmax in Fig. 3(a) and
Fig. 3(b) are similar, except for the different rates of decrease
with increasing Q2. In the limit of vanishing Q2, we find
F1(0) = 1 for all of the results, which indicates the conser-
vation of charge. This also shows a proper normalization of
the proton’s LFWFs: The normalization is precise to at least
eight significant figures in the current work. In the limit of
Q2 → ∞, the F1(∞) is equal to the probability of the bare
proton sector |ap|2 [Eq. (69), Tables V and VI].

For the present application, we expect our calculation to
be valid only for small momentum scale Q2 < m2

π (where
the point-particle assumption should be reasonable). Indeed,
we find from Fig. 3 that the computed F1(Q2) deviates
significantly from the experimental results as Q2 increases.
While the restricted Fock-sector truncation [Eq. (69)] may
be one reason, the major drawback is the simplicity of
our current chiral model. As reported in the review [53],
inclusion of the vector mesons and also the �-resonance
state of pion and nucleon can increase the range of agree-
ment up to about Q2 = 0.16 GeV2. To achieve the agree-
ment for even higher Q2, more fundamental degrees of
freedom (quarks and gluons) need to be included (e.g.,
Ref. [64]).

V. CONCLUSIONS AND OUTLOOK

We apply, for the first time, the BLFQ approach [4] to
study a chiral model for the nucleon-pion (Nπ ) system via a
nonperturbative, Hamiltonian approach. We consider a model
problem, where a physical proton is treated as the relativistic
bound state of the Nπ system.

Starting from the Lagrangian density for the chiral model
of the Nπ system (cf. Refs. [34,35]), we proceed with the
Legendre transformation to obtain the corresponding LF
Hamiltonian density. In this work, we keep only the Fock sec-
tors |N〉 and |Nπ〉. Correspondingly, we restrict the interaction
terms in the LF Hamiltonian density and keep only the terms
that correspond to the single-pion emission and absorption
processes.

We then show our choice of the construction and truncation
schemes of the LF basis. In particular, we employ the dis-
cretized plane-wave basis in the longitudinal direction and the
two-dimensional harmonic oscillator basis in the transverse
direction. Besides the basis sets in momentum space, we also
discuss our choice of the basis set in spin and isospin degrees
of freedom. We prune our basis according to the symmetries
of the Hamiltonian for our chosen system.

We construct the matrix of the mass-squared opera-
tor within the LF basis representation, where we regulate
the center-of-mass excitation by the Lipkin-Lawson method
[45,46]. Incorporating the FDSR [54–57] scheme, we obtain
the mass spectrum of the proton and the corresponding boost-
invariant LFWF by solving the eigenvalue problem of the
mass-squared operator.

We first illustrate the mass spectrum of the Nπ system in
the BLFQ approach. The mass spectrum includes both the
bound and scattering states. We present the lowest 30 states
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as a function of the model space, which is determined by the
truncation parameters (Nmax and Kmax), basis strength (b), and
the current choice of Fock sectors. We find that the eigenvalue
of the ground state produces the physical proton mass for
each model space with proper choice of the mass counterterm.
The remaining 29 states represent the scattering states of the
Nπ system. By increasing the model-space dimensionality, a
better representation of the continuum could be obtained for
the current Nπ system.

We then show our solution of the selected observables, i.e.,
the probability density distribution of the pion’s longitudinal
momentum fraction fπ (xπ ), the quantities relating to fπ (xπ ),
and the proton’s Dirac form factor F1(Q2). To this end, we
compute the proton’s LFWFs in a sequence of model spaces
(determined by Nmax, Kmax, and b) where both the proton’s
mass and its r.m.s. charge radius are fitted to respective experi-
mental values. We select to fit the proton’s r.m.s. charge radius
to be either 0.879 or 0.840 fm, in view of the proton radius
puzzle (see e.g., Refs. [52,60] and the references therein). We
find that the longitudinal momentum fraction carried by the
constituent pion is more relativistic that naïve expectations at
the low momentum scale. In addition, the fπ (xπ ) results are
sensitive to the choice of the proton’s r.m.s. charge radius. We
will defer the efforts of improving the fπ (xπ ) calculations to
future works.

The same sets of the proton’s LFWFs are applied to
compute the proton’s Dirac form factor F1(Q2). We study the
proton’s Dirac form factor F1(Q2) as a function of the squared
transverse momentum transfer Q2 and the model space. For all
choices of model space, the results of F1(Q2) agree well with
the experimental results when the momentum scale is small
Q2 < m2

π . As Q2 increases, our results of F1(Q2) deviate from
the experimental results. We argue this is mainly because of
the simplicity of the chiral model in this work: both species of
the constituent particles (nucleons and pions) are assumed to
be pointlike particles.

This work can lead to a number of pathways for further
research. We attempt to connect the current chiral model to
the modern chiral effective theory (see, e.g., Refs. [65–67] and
references therein). This work is currently ongoing. After this
connection is accomplished, we plan to extend the current cal-
culation to incorporate systematically the contributions from
higher Fock sectors, where we will examine the basis-space
dependence as well as the convergence of the Fock-sector
expansion. We expect such investigations to be demanding
in computing power. To address this difficulty, we plan to
incorporate the technology of high performance computing
(see Ref. [33] and references therein).

The current framework can also be straightforwardly ex-
tended to investigate more nucleonic observables of experi-
mental interest, such as the generalized parton distribution,
the transverse momentum distribution, and various types of
form factors (especially, the nucleon axial form factors that
are of high current interest for neutrino physics [68–70]).
In addition, this framework can be extended to study more
complicated nuclear systems, such as the deuteron, where the
role of the relativistic dynamics is important but still unclear.
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APPENDIX A: 2DHO BASIS

The generating operator for the 2DHO basis can be ex-
pressed as [15]

P�
+ = (p⊥)2

2p+ + 1

2
�2 p+(r⊥)2 = 1

2
�

[
(p⊥)2

xP+�
+ xP+�(r⊥)2

]
,

(A1)

where the oscillator energy � is related to the energy scale of
the 2DHO basis set as

b =
√

P+�. (A2)

In the following, we refer to b as the basis strength.
For the convenience in evaluating integrals involving the

2DHO basis, one can further introduce the momentum frac-
tion weighted variables [47] as

q⊥ ≡ p⊥
√

x
, s⊥ ≡ √

xr⊥, (A3)

where the canonical commutator [s⊥
i , q⊥

j ] = iδi j (i, j = 1, 2)
holds. The generating operator of the 2DHO basis in terms of
the conjugate variables (s⊥, q⊥) can be rewritten as

P�
+ = 1

2
�

[(
q⊥

√
P+�

)2

+ (
√

P+�s⊥)2

]
. (A4)

In the momentum representation, the 2DHO wave function is

〈q⊥|nm〉 = �m
n (q⊥)

= 1

b

√
4πn!

(n + |m|)!ρ
|m|e− 1

2 ρ2
L|m|

n (ρ2) eimφ, (A5)

where the transverse momentum in the complex representa-
tion is

q⊥ = bρeiφ, (A6)

with φ = arg q⊥, |q⊥| = bρ. Correspondingly, we have
(q⊥)∗ = bρe−iφ . n, m are the quantum numbers for the radial
part and angular part of the wave function, respectively. They
define the eigenenergy of the corresponding 2DHO wave
function

Enm = (2n + |m| + 1)�. (A7)

L|m|
n (ρ2) denotes the generalized Laguerre polynomial.

The orthonormality relation of the 2DHO basis is

〈nm|n′m′〉 ≡
∫

d2q⊥

(2π )2
�m∗

n (q⊥)�m′
n′ (q⊥) = δn,n′δm,m′ . (A8)
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APPENDIX B: CONTRIBUTIONS TO THE LF HAMILTONIAN

1. Kinetic energy for the Nπ system

The contribution from a free nucleon to the LF Hamiltonian P− is

P−
KEN

=
∑
p+

1
2∑

s=− 1
2

1
2∑

t=− 1
2

∫
d2 p⊥

(2π )2
b†(p, s, t ) b(p, s, t )

(p⊥)2 + M2
N

p+ . (B1)

Substituting Eq. (47) to the above expression, we obtain the analytic expression of the contribution of a free nucleon to the
mass-squared operator HLC [Eq. (55)] in terms of the LF basis:

P+P−
KEN

=
∑
xN

∑
s

∑
t

∑
n1,m1

∑
n2,m2

β†(xN , n1, m1, s, t )β(xN , n2, m2, s, t ) δm1,m2

×
{

b2
[
(2n2 + |m2| + 1)δn1,n2 −

√
n1(n1 + |m1|)δn1,n2+1 −

√
n2(n2 + |m2|)δn2,n1+1

] + M2
N

xN
δn1,n2

}
, (B2)

where we have applied the relation xN = p+
P+ [Eq. (21)] with P+ being the total longitudinal momentum. Note that xN = 1 for

the |N〉 sector and 0 < xN < 1 for the |Nπ〉 sector. When evaluating the integral, we have also made use of the integral identity
Eq. (E5).

The contribution from a free pion to P− is

P−
KEπ

=
∑
k+

1∑
λ=−1

∫
d2k⊥

(2π )2
a†(k, λ) a(k, λ)

(k⊥)2 + M2
π

k+ . (B3)

Analogous to Eq. (B2), we also obtain the expression of the contribution of a free pion to the mass-squared operator HLC

[Eq. (55)]:

P+P−
KEπ

=
∑

xπ

∑
λ

∑
n1m1

∑
n2m2

α†(xπ , n1, m1, λ)α(xπ , n2, m2, λ) δm1,m2

×
{

b2[(2n2 + |m2| + 1)δn1n2 −
√

n1(n1 + |m1|)δn1,n2+1 −
√

n2(n2 + |m2|)δn2,n1+1
] + M2

π

xπ

δn1,n2

}
, (B4)

with xπ = k+
P+ . Note that we have 0 < xπ < 1 in this work.

2. Interaction terms for the Nπ system

To the level of the one-pion processes, the interaction terms in P− can be sorted into the pion-absorption term and the
pion-emission term

P−
int = P−

int;abs + P−
int;em. (B5)

For an incoming nucleon (labeled “2”) that absorbs a pion (carrying momentum k and isospin projection λ) and the outgoing
nucleon (labeled “1”), the term corresponding to one-pion absorption is

P−
int;abs = iMN

gA

F

∑
p+

1

∑
p+

2

∑
k+

1

2π
√

2Lk+ δ(p+
1 |k+ + p+

2 )
∑
s1,s2

∑
t1,t2

∑
λ

∫
d2 p⊥

1√
(2π )2

d2k⊥√
(2π )2

d2 p⊥
2√

(2π )2
δ(2)(p⊥

1 − k⊥ − p⊥
2 )

× b†(p1, s1, t1)a(k, λ)b(p2, s2, t2)

× ζ †(s1)

{
γ ⊥ · p⊥

1 + MN

p+
1

γ5 − γ5
−γ ⊥ · p⊥

2 + MN

p+
2

}
ζ (s2)︸ ︷︷ ︸

spinor kernel

T †(t1)

[∑
a

τaεa(λ)

]
T (t2)︸ ︷︷ ︸

isospinor kernel

, (B6)

where δ(p+
1 |k+ + p+

2 ) is the Kronecker delta for the discretized longitudinal momenta (p+
1 , k+, and p+

2 ), which ensures the
conservation of the longitudinal momentum during the pion absorption. The spinor kernel for different helicity configurations of
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the incoming and outgoing nucleons is

s1 ζ †(s1)
{

γ ⊥·p⊥
1 +MN

p+
1

γ5 − γ5
−γ ⊥·p⊥

2 +MN

p+
2

}
ζ (s2) s2

↑ 1
p+

1
MN − 1

p+
2

MN ↑
↑ 1

p+
1

(p⊥
1 )∗ − 1

p+
2

(p⊥
2 )∗ ↓

↓ 1
p+

1
p⊥

1 − 1
p+

2
p⊥

2 ↑
↓ − 1

p+
1

MN + 1
p+

2
MN ↓

. (B7)

For clarity, we use “↑” and “↓” to denote the values of + 1
2 and − 1

2 , respectively. The isospinor kernel for different isospin
configurations of the incoming and outgoing nucleons is

t1 T †(t1)
[∑

a τaεa(λ)
]
T (t2) t2 λ = t1 − t2

↑ 1 ↑ 0

↑ √
2 ↓ 1

↓ √
2 ↑ −1

↓ −1 ↓ 0

. (B8)

Applying Eqs. (46), (47), and Eq. (A3), we obtain the contribution from the one-pion absorption term to the mass-squared
operator [Eq. (55)]:

P+P−
int;abs = iMN

gA

F

1√
4πK

∑
x1

∑
x2

∑
xk

∑
s1,s2

∑
t1,t2

∑
λ

∑
n1,m1

∑
n2,m2

∑
nk ,mk

√
x1x2 δ(x1|xk + x2)β†(x1, n1, m1, s1, t1) α(xk, nk, mk, λ)

× β(x2, n2, m2, s2, t2) T †(t1)

[∑
a

τaεa(λ)

]
T (t2)

∫
d2q⊥

1

(2π )2

d2q⊥
k

(2π )2

d2q⊥
2

(2π )2
(2π )2δ(2)(

√
x1q⊥

1 − √
xkq⊥

k − √
x2q⊥

2 )

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�m1
n1

∗(q⊥
1 )

[MN
x1

− MN
x2

]
�mk

nk
(q⊥

k )�m2
n2

(q⊥
2 ), for s1 = ↑, s2 = ↑

�m1
n1

∗(q⊥
1 )

[
1√
x1

(q⊥
1 )∗ − 1√

x2
(q⊥

2 )∗
]
�mk

nk
(q⊥

k )�m2
n2

(q⊥
2 ), for s1 = ↑, s2 = ↓

�m1
n1

∗(q⊥
1 )

[
1√
x1

q⊥
1 − 1√

x2
q⊥

2

]
�mk

nk
(q⊥

k )�m2
n2

(q⊥
2 ), for s1 = ↓, s2 = ↑

�m1
n1

∗(q⊥
1 )

[−MN
x1

+ MN
x2

]
�mk

nk
(q⊥

k )�m2
n2

(q⊥
2 ) for s1 = ↓, s2 = ↓

, (B9)

where we have also substituted the identity P+ = 2π
L K . The longitudinal momentum fractions are x1 = p+

1
P+ , x2 = p+

2
P+ , and xk =

p+
k

P+ . The analytic expression of the matrix element P+P−
int;abs in the LF representation can be evaluated applying the identities in

Appendix E.
Note that the one-pion emission contribution to the mass-squared operator is the Hermitian conjugate of the one-pion

absorption term P+P−
int;abs.

APPENDIX C: PROTON’S DIRAC FORM FACTOR

The Dirac form factor for the physical proton [(70)] is

F1(Q2) = F p
1, f (Q2) + F pπ0

1, f (Q2) + F nπ+
1,b (Q2).

Note that q2 is substituted by Q2 according to Eq. (68).
The first contribution is

F p
1, f (Q2) =

∑
tN ,nN ,mN ,sN

C∗(xN , nN , mN , sN , tN )C(xN , nN , mN , sN , tN ), (C1)
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which results from the virtual photon coupling to the current of the bare proton |p〉. Here the basis quantum numbers [according to
Eq. (28)] are shown explicitly for clarity. The subscript “ f ” denotes the contribution from the fermionic current. The summation
in Eq. (C1) is only for the bare proton sector, i.e., xN = 1. In fact, F p

1, f (Q2) is the probability of the bare proton sector, |ap|2
[according to Eq. (69)], and it is independent of Q2.

The second contribution is

F pπ0

1, f (Q2) =
∑
xN

∑
sN

∑
tN ,λ

∑
n′

N ,m′
N

∑
n′

π ,m′
π

∑
nN ,mN

∑
nπ ,mπ

e(tN )C∗(xN , n′
N , m′

N , sN , tN ; xπ , n′
π , m′

π , λ)

× C(xN , nN , mN , sN , tN ; xπ , nπ , mπ , λ)

〈
n′

N , m′
N ;

xπ√
xN

q⊥
∣∣∣∣nN , mN

〉 〈
n′

π , m′
π ; − xπ√

xπ

q⊥
∣∣∣∣nπ , mπ

〉
. (C2)

F pπ0

1, f (Q2) denotes the contribution from the virtual photon coupling to the current of the bare proton when dressed by charge-
neutral π0. The effective charge factor of the nucleons is

e(tN ) =
{

1 for tN = +1/2

0 for tN = −1/2
. (C3)

The kernel in the last line is the shifted operator, which is defined in Appendix E 2. This kernel, hence F pπ0

1, f (Q2), vanishes as

Q2 → ∞. At the limit of Q2 = 0, F pπ0

1, f (0) = |apπ0 |2, which represents the probability of the |pπ0〉 sector [Eq. (69)].
The third contribution is

F nπ+
1,b (Q2) =

∑
xN

∑
sN

∑
tN ,λ

∑
n′

N ,m′
N

∑
n′

π ,m′
π

∑
nN ,mN

∑
nπ ,mπ

e
(
λ
)
C∗(xN , n′

N , m′
N , sN , tN ; xπ , n′

π , m′
π , λ)

× C(xN , nN , mN , sN , tN ; xπ , nπ , mπ , λ)

〈
n′

N , m′
N ; − xN√

xN
q⊥

∣∣∣∣nN , mN

〉 〈
n′

π , m′
π ;

xN√
xπ

q⊥
∣∣∣∣nπ , mπ

〉
. (C4)

F nπ+
1,b (Q2) denotes the contribution from the virtual photon coupling to the current of π+ that dresses the bare neutron. The

subscript “b” denotes the contribution from the bosonic current. The effective charge factor of the pions is

e
(
λ
) =

⎧⎨⎩ +1 for λ = +1
0 for λ = 0
−1 for λ = −1

. (C5)

Analogously to F pπ0

1, f (Q2), F nπ+
1,b (Q2) vanishes for Q2 → ∞. At the limit of Q2 = 0, F nπ+

1,b (0) = |anπ+|2, which represents the
probability of the |nπ+〉 sector [Eq. (69)].

APPENDIX D: TALMI-MOSHINSKY TRANSFORMATION

The Talmi-Moshinsky (TM) transformation of the 2DHO wave function [Eq. (A5)] is defined via the following relation:

�m1
n1

(q⊥
1 )�m2

n2
(q⊥

2 ) =
∑

NMnm

MN,M,n,m
n1,m1,n2,m2

(x1, x2)�M
N (Q⊥)�m

n (q⊥), (D1)

where the TM bracket is defined as

MN,M,n,m
n1,m1,n2,m2

(x1, x2) ≡ 〈NMnm|n1m1n2m2〉, (D2)

with 2n1 + |m1| + 2n2 + |m2| = 2N + |M| + 2n + |m| and m1 + m2 = M + m. The analytic expression of the TM bracket can
be found in Refs. [15,43,71]. q⊥

1 and q⊥
2 are defined according to Eq. (A3) as

q⊥
1 = p⊥

1√
x1

, q⊥
2 = p⊥

2√
x2

. (D3)

The relative momentum q⊥ and COM momentum Q⊥ are, respectively,

q⊥ =
√

x2q⊥
1 − √

x1q⊥
2√

x1 + x2
, (D4)

Q⊥ =
√

x1q⊥
1 + √

x2q⊥
2√

x1 + x2
. (D5)
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APPENDIX E: SOME INTEGRALS INVOLVING THE 2DHO BASIS

1. Identities

P (k)(n, m) =
∫

d2q⊥

(2π )2
(q⊥)k�m

n (q⊥) = bk+1(−1)n2k

√
(n + k)!

πn!
δk,−m, (E1)

PC (k)(n, m) =
∫

d2q⊥

(2π )2
[(q⊥)∗]k�m

n (q⊥) = bk+1(−1)n2k

√
(n + k)!

πn!
δk,m, (E2)

P (1)(n′, m′; n, m) = 〈n′m′|q⊥|nm〉 = 〈n′m′|q⊥|nm〉 = b δm′,m+1

{√
n + |m| + 1δn,n′ − √

nδn,n′+1, m � 0, n � n′
√

n + |m|δn,n′ − √
n + 1δn′,n+1, m < 0, n � n′ ,

(E3)

PC (1)(n′, m′; n, m) = 〈n′m′|(q⊥)∗|nm〉 = 〈n′m′|(q⊥)∗|nm〉 = b δm,m′+1

{√
n′ + |m′| + 1δn,n′ − √

n′δn′,n+1, m′ � 0
√

n′ + |m′|δn,n′ − √
n′ + 1δn,n′+1, m′ < 0

,

(E4)

〈n′m′|q⊥(q⊥)∗|nm〉 =
∫

d2q⊥

(2π )2

(
�m′

n′ (q⊥)
)∗|q⊥|2�m

n (q⊥)

= b2δm′,m[(2n + |m| + 1)δn′,n −
√

n′(n′ + |m′|)δn′,n+1 −
√

n(n + |m|)δn,n′+1]. (E5)

2. Shifted operator

The shifted operator, in the 2DHO representation, is defined as 〈n′, m′; u⊥ + q⊥|n, m; u⊥〉, where the initial and final transverse
momenta are centered at u⊥ and u⊥ + q⊥, respectively. According to the translational invariance of the 2DHO basis function, it
can be evaluated as

〈n′, m′; u⊥ + q⊥|n, m; u⊥〉 = 〈
n′, m′; u⊥ + 1

2 q⊥∣∣n, m; u⊥ − 1
2 q⊥〉. (E6)

Applying the 2DHO wave function in the complex momentum representation [Eq. (A5)], the shifted operator reads∫
d2u⊥

(2π )2

[
�m′

n′ (u⊥ + q⊥)
]∗

�m
n (u⊥) =

∫
d2u⊥

(2π )2
�m′

n′
∗
(

u⊥ + 1

2
q⊥

)
�m

n

(
u⊥ − 1

2
q⊥

)
=

∑
ν

MN,0,ν,μ

n′,−m′,n,m

(
π

4

)
b√
4π

(−1)N�μ
ν

(
1√
2

q⊥
)

, (E7)

with
μ = m − m′, (E8)

N = n′ + n − ν + 1
2 (|m′| + |m| − |μ|), (E9)

0 � ν � n + n′ + 1
2 (|m′| + |m| − |μ|). (E10)

3. Integrals involving three 2DHO basis functions

∫
d2q⊥

1

(2π )2

d2q⊥
2

(2π )2

d2q′⊥

(2π )2
(2π )2δ2(

√
x1q⊥

1 + √
x2q⊥

2 −
√

x′q′⊥) �m1
n1

(q⊥
1 )�m2

n2
(q⊥

2 )�m′
n′

∗
(q′⊥)

= δm1+m2,m′
1

x′ Mn′,m′,n,0
n1,m1,n2,m2

(x1, x2) P (0)(n, 0), (E11)

where n = n1 + n2 − n′ + 1
2 (|m1| + |m2| − |m1 + m2|) � 0.∫

d2q⊥
1

(2π )2

d2q⊥
2

(2π )2

d2q′⊥

(2π )2
(2π )2δ2(

√
x1q⊥

1 + √
x2q⊥

2 −
√

x′q′⊥) · q′⊥ · �m1
n1

(q⊥
1 )�m2

n2
(q⊥

2 )�m′
n′

∗
(q′⊥)

= δm1+m2,m′−1
1

x′

min[ν,n′+1]∑
N=max[0,n′−1]

MN,m′−1,ν−N,0
n1,m1,n2,m2

(x1, x2) P (1)(n′, m′; N, m′ − 1) P (0)(ν − N, 0), (E12)
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where ν = N + n = n1 + n2 + 1
2 (|m1| + |m2| − |m1 + m2|).∫

d2q⊥
1

(2π )2

d2q⊥
2

(2π )2

d2q′⊥

(2π )2
(2π )2δ2(

√
x1q⊥
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MN,m′+1,ν−N,0
n1,m1,n2,m2

(x1, x2) PC (1)(n′, m′; N, m′ + 1) P (0)(ν − N, 0), (E13)

where ν = N + n = n1 + n2 + 1
2 (|m1| + |m2| − |m′ + 1|).∫

d2q⊥
1

(2π )2

d2q⊥
2

(2π )2
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(x1, x2) P (1)(n,−1)

⎫⎬⎭, (E14)

where ν = N + n = n1 + n2 + 1
2 (|m1| + |m2| − |m′ − 1|) and n = n1 + n2 − n′ + 1

2 (|m1| + |m2| − |m′| − 1) � 0.∫
d2q⊥

1

(2π )2

d2q⊥
2

(2π )2

d2q′⊥
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1
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(x1, x2) PC (1)(n, 1)

⎫⎬⎭, (E15)

where ν = N + n = n1 + n2 + 1
2 (|m1| + |m2| − |m′ + 1|) and n = n1 + n2 − n′ + 1

2 (|m1| + |m2| − |m′| − 1) � 0.
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