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The phase-space structure of zero-temperature quarkyonic matter is a Fermi sphere of quark matter surrounded
by a shell of nucleonic matter. We construct a quasiparticle model of quarkyonic matter based on the constituent
quark model, where the quark and nucleon masses are related by mQ = mN/Nc, and Nc is the number of quark
colors. The region of occupied states is for quarks kQ < kF /Nc and for nucleons kF < kN < kF + �. We first
consider the general problem of quarkyonic matter with hard-core nucleon interactions. We then specialize to a
quasiparticle model where the hard-core nucleon interactions are accounted for by an excluded volume. In this
model, we show that the nucleonic shell forms past some critical density related to the hard-core size and for
large densities becomes a thin shell. We explore the basic features of such a model and argue this model has the
semiquantitative behavior needed to describe neutron stars.
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I. INTRODUCTION

The concept of quarkyonic matter was introduced to ad-
dress the following paradox that arises in the large number of
colors, Nc, limit of QCD [1]: When the nucleon density, nN ,
of zero-temperature matter is parametrically large compared
to the QCD scale, nN � �3

QCD, we would naively expect that
the interactions of quarks would be weak, and we would
transition to an almost free gas of quarks. However, the
confining potential of QCD is at finite density attenuated only
by particle-hole pairs of quarks, and these contributions are
suppressed by 1/Nc. In the large-Nc limit, the Debye screening
length therefore diverges, rDebye ∼ √

Nc → ∞ [1]. Matter is
confined and we expect that the effect of interactions is large.

The apparent paradox can be resolved in the following
way: There is a Fermi sea of quarks formed at asymptotic
density that may be treated as an almost free gas of quarks.
Near the Fermi surface, long-distance interactions of quarks
are important. Quark excitations can bind into nucleons and
condense to make a Fermi surface of nucleons. Particle-hole
excitations near this Fermi surface are bound into mesons.
The system’s essential feature is it is a Fermi sea of quarks
surrounded by a Fermi shell of nucleons. Such a description is
expected to be valid until parametrically high baryon densities
where the Debye screening length is of order the QCD scale,
kF ∼ √

Nc�QCD [1]. If one includes the effect of finite tem-
perature, then the thermal excitations would be mesons and
glueballs.

The concept of quarkyonic matter leads to a fundamentally
new way to conceptualize a transition from nucleonic matter
to quark matter. In the traditional way of thinking one imag-
ines that there are two different phases of matter, and a phase
transition between them. Either one has entirely quark matter
or nucleonic matter. In first-order phase transitions, there can
of course be different regions of space in these different

phases, but in each of the regions it is either entirely quark
matter or nucleonic matter. For a first-order phase transition,
this will lead to a soft equation of state, since in the region
of the mixed phase, the pressure remains constant while the
energy density changes.

The transition for quarkyonic matter involves a mixed
phase in momentum space. There is no requirement that the
pressure be the same from the two separated regions of nucle-
ons and quarks, and therefore as the energy density changes
corresponding to different portions of quarks and nucleons,
the pressure will change. Therefore, quarkyonic matter need
not have a soft equation of state.

One might object that there need be a phase transition
between nuclear matter and quarkyonic matter, but even this
need not be the case, since quarks and nucleon degrees of
freedom are dual to one another. In effect, the treatment of
quarkyonic matter is simply realizing different approxima-
tions for the same degrees of freedom corresponding to differ-
ent kinematic regions. Of course, a true phase transition would
occur at finite temperature, since at large Nc, the transition
between lower- but finite-T matter, which has no baryons in it
because the baryon mass is of order (NcmQ) ∼ Nc�QCD, and
baryonic matter that has baryons by virtue of a larger Fermi
energy, EF � Nc�QCD [1]. Here we are, however, considering
matter that is at very low T and has a finite baryon number
density. We cannot of course rule out the possibility that
there may be a very weak first-order or second-order phase
transitions at zero T and finite density, but the existence of
quarkyonic matter by itself does not require this in the region
where the baryon density is nN � �3

QCD. It is amusing to note
that the Fermi momenta of ordinary nuclear matter for Nc = 3
is of order kF ∼ �QCD, so that the density of nuclear matter is
parametrically of order �3

QCD.
In the large-Nc limit, it is very easy to see that the transition

from nucleonic matter to quarkyonic matter can generate a
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very hard equation of state. This was seen explicitly in a
model constructed in Ref. [2]. For ordinary nuclear matter,
kF ∼ �QCD. In the additive quark parton model this would
correspond to a very small Fermi momenta for quarks, kQ ∼
kF /Nc. The density of nucleons is initially of order �3

QCD.
However, the baryon density of quarks is very small nQ ∼
k3

Q ∼ �3
QCD/N3

c . If we change the density by of order one
(nQ ∼ �3

QCD) by introducing quarks, then the change in the
quark density implies that kQ → Nc(�QCD/Nc). This means
changing the baryon density associated with quarks by of
order one generates an order Nc change in Fermi momenta for
the quark and a corresponding rapid increase in the pressure.
The degrees of freedom are rapidly changing from nonrela-
tivistic to relativistic degrees of freedom.

This hardness of the equation of state is precisely what
is needed to describe the properties of neutron stars. In a
number of analyses, it was argued that at a few times nuclear
density the sound velocity becomes of the order of or exceeds
v2

s � 1/3 (measuring sound velocity in units of the velocity of
light) [3–9]. The interpolation procedure advocated by Kojo
and colleagues [4] is a procedure that can be motivated from
the quarkyonic matter hypothesis.

In this paper, we consider the effect of hard-core nucleonic
interactions on the formation of a shell of nucleonic matter
within quarkyonic matter. In the next section we consider a
set of simple mean-field models composed of a noninteracting
Fermi sphere of quarks and gas of nucleons with hard-core
interactions. We argue that a maximum in the sound velocity
signals the transition from nucleonic matter to quarkyonic
matter. In the following section we discuss how to imple-
ment such hard-core interactions for nucleons as an excluded
volume gas of free nucleons, where the volume excluded is
the hard core of nucleons. We next construct a quasiparticle
model of an excluded volume gas of nucleons on a Fermi shell
together with a gas of quarks within the additive quark parton
model. In this model, we show that at low density, matter is
composed of nucleons but makes a transition to quarkyonic
matter at some density of order the hard-core density. We
compute the thickness of the shell and show that it is a thin
shell when the total baryon density of quarks and nucleons is
large compared to the hard-core density. Finally, we compute
the sound velocity as a function of baryon number density.

II. MEAN-FIELD MODEL

A. The nucleon contribution

We first consider nucleonic matter. We postulate a relation-
ship between the baryon number chemical potential and the
density:

μN − M = κ
M

N2
c

{(
1 − nN

N/n0
)−γ − 1

}
, (1)

where γ > 1 and M denotes nucleon mass. In this equation,
the baryon number chemical potential is μN , the nucleon mass
is M, Nc is the number of colors, nN

N is the baryon density
contained in nucleons, n0 is the hard-core limiting density of
this theory, and there are two dimensionless parameters γ and
κ which need to be determined phenomenologically. The −1

term on the right-hand side of this equation guarantees that
μN → M as nN

N → 0. (If we were to use this expression at
densities of the order of that of nuclear matter, then we would
no doubt want to include low-density corrections in order to
match onto previous nuclear matter calculations.)

The quantity μN − M measures the kinetic energy plus
interaction energies of nucleons. The parameter n0 is the
density at which this energy diverges, corresponding to a
limiting hard-core density of nucleons. In reality, in any
realistic model, this should get cut off when this energy is
of the order of the nucleon mass or when n0 − nN

N ∼ 1/N2/γ
c .

We will take n0 to be generically of the order of a few times
the density of nuclear matter. This limiting value corresponds
to the ordinary large Nc counting for nucleon interactions.
However, at densities corresponding to nuclear matter densi-
ties, the Fermi momenta of nucleons is of order � ∼ �QCD,
so that kinetic energies and interaction energies are of order
�2/M ∼ �/Nc ∼ M/N2

c , so this expression has the correct
behavior at low-density regime where nN

N � n0.
We are going to be interested in this model for densities

approaching the hard-core density n0 which is where the
expression begins to get singular. The singularity at this
density will eventually be tempered by the inclusion of quark
degrees of freedom. We will do this in the spirit of quarkyonic
matter where a quark contribution is included additively to
the nucleon contribution. We will eventually discuss how to
do this in a way consistent with the Pauli exclusion principle,
but this comes later.

At low densities we could modify our model with a
power of nN

N so that we could get the proper low-density
limit corresponding to a nonrelativistic ideal Fermi gas, but
for the generic considerations here, we will not make this
modification. Note that at low densities in this theory

limnN
N →0 (μN − M ) ∼ κγ

M

N2
c

nN
N

n0
. (2)

This gives a sound velocity at low density of

v2
s = nN

N

μN dnN
N/dμN

∼ κγ

N2
c

nN
N

n0
. (3)

If we take a κγ ∼ 1 for nN
N/n0 ∼ 0.25, then this gives a

reasonable sound velocity of v2
s ∼ 0.03. Some tuning of κ

can of course be done to match this on to a more reasonable
low-density equation of state.

This relationship between μ and nN
N has a singularity at

nN
N → n0. It is reminiscent of the relationship the entropy and

temperature in Hagedorn models,

S/S0 ∼ (Tc − T )−α, (4)

where S is the entropy and T the temperature. There is one
big difference: The relationship of the extensive quantities
nN

N to the intensive quantity μN is reversed relative to that
of the extensive S intensive T . This reversal is essential. The
Hagedorn model, can be justified at large Nc. When quark and
gluon degrees of freedom are included the Hagedorn limiting
temperature plays the role of a phase transition temperature
corresponding to the entropy density becoming of order N2

c T 3.
In our case there is no phase transition but in fact a rapid
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change in μN − M going from order 1/Nc to of order Nc. This
is precisely the opposite limit for a phase transition since the
pressure and chemical potential rise rapidly while the density
approaches a constant hard-core density (the energy density
for our case does not change so much since it is already
dominated by the nucleon mass.). When quark degrees of
freedom are included we will see that this behavior arises as
one makes a transition to a quark Fermi gas.

We can construct the energy density using the thermody-
namic relationship

dεN
N

dnN
N

= μN = M + κ
M

N2
c

{(
1 − nN

N/n0
)−γ − 1

}
(5)

or

εN
N − MnN

N

n0M
= κ

(γ − 1)N2
c

{(
1 − nN

N/n0
)1−γ + (1 − γ )nN

N/n0
}
.

(6)
We can construct the pressure from

dPN
N

dμN
= nN

N . (7)

Using

nN
N

n0
= 1 −

{
(μN − M )N2

c

κM
+ 1

}−1/γ

, (8)

the sound velocity is therefore (ignoring a small term that
vanishes in large Nc)

v2
s = γ

nN
N/n0

1 − nN
N/n0

{
1 + N2

c

κ

(
1 − nN

N/n0
)γ

}−1

. (9)

Note that the sound velocity diverges as one approaches the
hard-core density. This will be cured by adding quarks.

Another interesting feature of this mean-field theory is
that the chemical potential, μN , is more singular than the
energy per particle as one approaches the hard-core density.
This is because the nucleon density is saturating and the
thermodynamic identity dε/dn = μ. It seems that this ob-
servation would make it difficult to realize a quasiparticle
model with this singularity. In the next section we will show
how this is resolved in an excluded volume theory of nucleon
interactions. In an excluded volume theory, one imagines
nucleons have hard cores and that they propagate freely in
the volume exclusive of that occupied by the hard cores of
nucleons [10–12].

B. Including a contribution from quarks

Let us add a contribution to the energy density from quarks
so that

εN = εN
N

(
nN

N

) + εN
Q

(
nN

Q

)
, (10)

where the nucleon contribution to the nucleon density nN
N plus

that of quarks nN
Q satisfies

nN = nN
N + nN

Q. (11)

Minimizing the energy with respect to nN
Q or nN

N at fixed nN

gives

dεN
Q

dnN
Q

= dεN
N

dnN
N

. (12)

Using the general thermodynamic relation between chemical
potential and derivative of energy density with respect to
density,

dεN

dnN
= μ. (13)

Let us define
dεN

Q

dnN
Q

= dεN
N

dnN
N

≡ μ̄. (14)

We can now use the minimization condition to relate μN and
μ as follows:

μ = dεN

dnN
= dεN

N

dnN
N

dnN
N

dnN
+ dεN

Q

dnN
Q

dnN
Q

dnN

= dεN
N

dnN
N

(
1 − dnN

Q

dnN

)
+ dεN

Q

dnN
Q

dnN
Q

dnN

= dεN
N

dnN
N

= μN = μ̄. (15)

Therefore the energy density, density, and pressure from both
the quarks and the nucleon should be evaluated at equal
chemical potential and is simply the sum of two terms: one
from quarks and one from nucleons. The sound velocity is

v2
s = nN

N + nN
Q

μN
(
dnN

N/dμN + dnN
Q/dμN

) . (16)

Note that at nuclear matter baryon densities, the quark contri-
bution to the energy density and baryon number density will
be of order 1/N3

c and in the spirit of the large Nc expansion
may be ignored. The physics is totally dominated by nucleon
degrees of freedom, and the energy density and sound velocity
are determined by that of ordinary nuclear matter. However,
at high densities when nN

N → n0, the degrees of freedom
are those of quarks and will be the result of quark matter
computations.

We have computed the sound velocity for mean-field equa-
tions of state of the type above for typical values of γ ∼ 1
and κ ∼ 1, The generic result is that at densities much larger,
nN � n0, the sound velocity approaches 1/3. It rapidly rises
from a very small value to a value of order 1 at densities
somewhat below that of the hard-core density. For large values
of γ and κ , the sound velocity approaches 1/3 from below,
and for values of order 1 it exceeds 1/3 and approaches
it from above with a maximum near the hard-core density.
For very small values of γ and κ , the sound velocity at
maximum exceeds 1, and these models are unphysical. This
is presumably an artifact of treating nucleons using a singular
hard-core interaction.

In Fig. 1, we plot the sound velocity as a function of
the total baryon density for the case γ = 1.5 and with hard-
core density n0 = 0.6 fm−3 	 3.75ρ0, where ρ0 denotes the
normal nuclear matter density. This is only an example, and if
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FIG. 1. A plot of the sound velocity vs. the baryonic density
of matter. We have chosen γ = 1.5 and hard-core density nN

0 to be
0.6 fm−3.

one wanted to use the mean-field equations of state to describe
properties of neutron stars, then tuning would certainly be
needed. Note the characteristic maximum in the sound veloc-
ity that occurs near the hard-core density as matter transitions
from dominantly nuclear matter to a mixture quark matter and
nuclear matter.

Now in reality, the situation will be more complicated. In
these considerations, we have ignored interactions between
nucleons and quarks, and such simple results are not ob-
tained. The equation of state for quarks also for low quark
density should show significant deviation from an ideal gas of
constituent quarks. However, we will see that ignoring such
possible interactions leads to a simple model with the char-
acteristics needed for the phenomenology of the equations of
state that describe neutron stars.

III. AN EXCLUDED VOLUME THEORY OF NUCLEAR
INTERACTIONS: NUCLEONS ONLY

In this section, we show how to construct an excluded
volume theory of nuclear interactions [10–12]. In this section,
we will consider a theory of nucleons only, and our purpose
is to show how such a theory generates a singular chemical
potential near the hard-core density and also how the theory
is consistent with various thermodynamic identities. In a later
section we include quarks.

If we have nucleons with a hard-core radius r0 and a hard-
core volume v0 = 4

3πr3
0 , then we can define the hard-core

density as

n0 = 1/v0. (17)

For a system with baryon density n and volume V , the
excluded volume not occupied by baryon cores is

Vex = V (1 − n/n0).1 (18)

1Vex corresponds to the available volume after exclusion of the
occupied volume by the particles from the system volume.

We assume the nucleons are free particles within the excluded
volume so that

nex = n

1 − n/n0
= 2

(2π )3

∫ kF

d3 p. (19)

Here we have assumed two spins and one flavor of nucleons.
The energy density of matter in the excluded volume is

εex = 2

(2π )3

∫ kF

Ep d3 p, (20)

where Ep =
√

p2 + M2. The energy density and the excluded
volume energy density are related by

ε = (1 − n/n0)εex. (21)

The pressure is

P = −dE

dV
, (22)

where E is the total energy and V is the total volume,

P = −ε + n
dε

dn
. (23)

Now define a chemical potential,

μ = dε

dn
, (24)

and an excluded volume chemical potential,

μex = dεex

dnex
. (25)

One can use these identities to verify that the pressure also
can be expressed in terms of excluded volume quantities as

P = −εex + μexnex. (26)

The equality of the two expressions for the pressure require
that

μ = μex − ε/n0

1 − n/n0
. (27)

This can also be written as

μ − M = μex − M − (ε − Mn)/n0

1 − n/n0
. (28)

We can now understand the singularities we had in mean-
field theory. For example, if the system is nonrelativistic,
ε − Mn ∼ k 2

ex ∼ (1 − n/n0)−2/3, then μex − M ∼ k2
F , while

the true chemical potential is singular as μ ∼ (1 − n/n0)−5/3.
This is precisely what we observed in mean-field theory where
the chemical potential is one power more singular as n → n0

than the energy density. It is reassuring to see this occur in our
simple-quasiparticle model. In the next section, we generalize
our excluded volume computation to put quarks in a Fermi
sea and nucleon in a shell of Fermi momenta outside the
Fermi sea. This modifies the exponent of the dependence on
density.
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IV. SHELL EQUATIONS

In this section, we consider nuclear matter in a shell with
momenta greater than that of NckQ, where kQ is the quark
Fermi momentum. Recall that in the additive quark model,
the quark Fermi momenta and nucleon Fermi momenta are
related by kF = NckQ. Our physical picture will be that below
the shell of nucleons there is a filled Fermi sea of quarks.

We let the excluded volume density be

nN
ex = nN

N

1 − nN
N/n0

. (29)

Here nN
ex is the excluded volume nucleon density and nN

N the
nucleon density. The hard-core density is n0. From this we
compute for a shell of nucleons:

nN
ex = 2

3π2

[
(� + kF )3 − k3

F

]
, (30)

where we have assumed the thickness of the shell is �, and
there is one flavor and two spins of nucleons. The baryon
number Fermi momentum kF . The top of the quark Fermi sea
is kQ = kF /Nc, where Nc is the number of colors. The bottom
of the nucleon shell is kF . We will for the time being assume
nonrelativistic quarks and nucleons so that the kinetic energy
contribution to the energy density from the shell is

εN
ex = 1

5π2

1

M

[
(� + kF )5 − k5

F

]
. (31)

The quark contribution to the baryon number density for a
free gas of quarks is

nN
Q = 2

3π2

1

N3
c

k3
F . (32)

Unfortunately, at small kQ as the quark density becomes
nonzero, there is too-rapid a rise with kQ to generate a
physically acceptable sound velocity. We had to modify the
very low density quark Fermi distribution in a way so that
we maintain the proper behavior for large Fermi momenta,
kQ � �QCD, and that then the density is that for free particles.
For small kQ, we make the density approach zero as k2

Q. This
effectively increases the density of states for very low quark
densities. In this region of course nonperturbative effects
are important, and it is difficult to a priori determine the
relationship between density and quark Fermi momentum, so
this modification should be taken as a reasonable guess that
allows for a nonsingular transition to quarkyonic matter. We
take

ñN
Q = 2

3π2

[(
k2

Q + �2) 3
2 − �3]. (33)

This corresponds to modifying the density of states by 1 →√
k2

Q + �2/kQ. Here � is a parameter of order � ∼ �QCD.
The equation for the baryon number density lets us com-

pute � as

� =
(

3π2

2
nN

ex + k3
F

)1/3

− kF . (34)

We will analytically derive relations for the energy density
in the nonrelativstic limit. (In the numerical results we soon

present, we will use relativistic expression for the energy
densities.) The nucleon energy density is

εN
ex = 1

5π2

1

M

[(
3π2

2
nN

ex + k3
F

) 5
3

− k5
F

]
, (35)

with

εN
N = εN

exVex/V = εN
ex

(
1 − nN

N/n0
)
. (36)

For the quarks, we find, using the modified density of states,

εN
Q = N2

c

π2

1

M

{
1

5

(
k2

Q + �2
)5/2 − 1

3
�2

(
k2

Q+ �2
)3/2 + 2

15
�5

}
.

(37)

Note that when the quark density is of the order of the nucleon
density, then kinetic energies are of comparable magnitude.

We must extremize the energy density

ε = εN
Q + εN

N , (38)

with respect to quark and nucleon densities subject to the
constraint that the total baryon number is held fixed.

We now compute the relativistc expressions for the energy
density. We first do this for the case of the naive free particle
density of states and then later modify the density of qaurks
states as described above. For the relativistic case with ideal
gas of quarks, the energy density can be summarized as

ε = 4

(
1 − nN

N

n0

)∫ kF +�

kF

d3k

(2π )3
[(NcmQ)2 + k2]

1
2

+ 4Nc

∫ kF /Nc

0

d3k

(2π )3

(
m2

Q + k2
) 1

2 , (39)

where flavor symmetry is considered. Minimizing the energy-
density functional with respect to nucleon density for a fixed
total baryon density at dnN = dnQ + dnN

N = 0 we can obtain
the energy density at the minimum. The minimum of the
energy-density functional at a certain baryon density is the
energy density at that baryon density. The chemical potential
μ then can be found as:

μ = ∂εmin

∂nN
, (40)

where εmin is the energy density of the baryons at baryon den-
sity nN obtained though the minimization procedure outlined
above.

Unfortunately, for an ideal gas of quarks, the behavior of
the energy density as k5

F ∼ n5/3
Q generates a singularity when

one computes the sound velocity that involve two derivatives
with respect to nQ. As described above, we need to slow the
rapid turn on of the quark density as a function of kQ as
described above.

If one assigns some nonperturbative gas behavior as con-
sidered in Eq. (33), then the energy density (39) can be
redefined as

ε̃ = 4

(
1 − nN

N

n0

)∫ kF +�

kF

d3k

(2π )3
[(NcmQ)2 + k2]

1
2

+ 2Nc

π2

∫ kF /Nc

0
dkk(�2 + k2)

1
2
(
m2

Q + k2
) 1

2 . (41)
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FIG. 2. v2
s with different nonperturbative IR scale �s for quark degree of freedom (Nc = 3). Each color corresponds to � = 0.3 GeV

(blue), � = 0.2 GeV (red), and � = 0.1 GeV (black). The hard-core density is set as n0 = 2.0ρ0 for left and n0 = 2.5ρ0 for right.

Again, minimizing the energy functional ε̃ we can obtain the
energy density as a function of the baryon density as well as
the corresponding chemical potential and speed of sound.

The sound velocity is illustrative and contains qualitative
information about how the stiffness of the equation of state
depends on hard-core density and our scale �. The squared
speed of sound is plotted in Fig. 2 and Fig. 3. If one considers
nonperturbative infrared (IR) scale � = 0.3 GeV with n0 =
2.5ρ0, then the sound velocity rapidly increases to a maximum
which is also approximately the value at the hard-core density
near the onset of the quark degrees of freedom and becomes
moderate after the onset density. Figure 3 is at a somewhat
more realistic core density with more realistic choices for �

which might be more applicable for neutron star phenomenol-
ogy. We have to choose � so that the sound velocity is in a
reasonable range, a higher value of the core density shifts the
maximum to a higher value of nN ∼ n0. The maximum value
of the sound velocity increase as the scale � decreases. �

must be chosen sufficiently large to require v2
s < 1.

V. THE SHELL THICKNESS IN THE THIN-SHELL LIMIT

The shell becomes thin in the region where we can treat the
quarks and nucleon as nonrelativistic but where k3

F � 3π2nN
ex.

Let us evaluate the shell thickness using the naive expression
for the quark density � = 0. The absolute minimum for
nN

N for nN
N is close to n0. This is the limit where � � kF

corresponding to a thin shell for the baryons. As one makes
the transition between nucleon matter and quarkyonic matter,
that is, as the shell begins to form from a Fermi sphere of
nucleon and when the Fermi sphere of quarks forms, the
situation is more complicated, and we will rely on numerical
analysis to handle this region. To this end we compute the
energy density when nex � k3

F .
First, let us compute the energy density of the quarks:

εN
Q = 3

5
nN

Q

k2
F

2M
= 3

10M

(
3π2

2

)2/3

N2
c

(
nN

Q

)5/3 = κN2
c

(
nN

Q

)5/3
.

(42)

Using κ = 3
10M (3π2/2)2/3, we write nN

Q = nN − nN
N and ex-

pand the previous equation to second order in nN
N ,

εN
Q = κN2

c n5/3
N

[
1 − 5nN

N

3nN
+ 5

9

(
nN

N

nN

)2

+ · · ·
]
. (43)
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FIG. 3. v2
s with different nonperturbative IR scale �s for quark degree of freedom (Nc = 3). Each left and right graph is plotted in terms of

the total baryon number density and total energy density, respectively. Each color corresponds to � = 0.6 GeV (black), � = 0.7 GeV (red),
and � = 0.8 GeV (blue). The hard-core density is set as n0 = 4.0ρ0. ε0 = mNρ0, where MN 	 1 GeV.
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Now let us compute the nucleon energy to a simlar accu-
racy,

εN
N = 5

3
κN2

c nN
N

(
nN

Q

)2/3

{
1 + nN

ex

3N3
c nN

Q

}
. (44)

For small nN
N � nN as is true near zero nucleon density, the

total energy density is approximately:

εN ∼ κN2
c n5/3

N

{
1 − 5

9

(
nN

N

nN

)2(N3
c − 1

N3
c

)}
. (45)

This has a maximum near nN
N → 0.

Now let us analyze near the minimum which occurs for
nN

N near to the hard-core density n0. I will consider the case
where nN � n0. In this case there is a singular contribution
from the second term in Eq. (44), that can compensate for
the first term in this equation and the contribution from the
quark energy density. We will evaluate this contribution and
show that higher-order terms in the expansion of Eq. (43) may
be ignored, that is, we are in the thin-shell limit. First, we
evaluate

εN
Q ∼ κN2

c

(
nN − nN

N

)5/3 ∼ κN2
c n5/3

N

[
1 − 5nN

N

3nN
+ 5

9

(
nN

N

nN

)2
]
.

(46)

Similarly,

εN
N ∼ 5

3
κN2

c nN
N n2/3

N

[
1 − 2

3

nN
N

nN
+ nN

N

3N3
c nN

(
1 − nN

N

/
n0

)
]
.

(47)
When the energy density is added the leading-order terms
cancel. The minimum is found when we extremize

εN − κN2
c n5/3

N ∼ 5

9
κN2

c n5/3
N

(
nN

N

nN

)2
{

−1 + 1

N3
c

(
1 − nN

N/n0
)
}

.

(48)

This has an extremum when n/n0 = 1 − bN−3/2
c and is inde-

pendent of density. The minimum occurs when

nN
N/n0 = 1 − 1√

2N3
c

∼ 0.86, (49)

in agreement with our numerical analysis.
The thickness of the shell is approximately

� ∼ nN
ex/k2

F ∼ n0

N1/2
c k2

Q

. (50)

This equation implies a rapid transition to a thin shell in the re-
gion where the matter is transitioning from primarily nucleons
to primarily quarks. The precise value to the thickness will of
course depend on the details of the relationship between quark
Fermi momentum and density, and this is of course corrected
by relativistic and nonperturbative effects in the transition

2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

( 0)

v s2

=0.8 GeV, n0=4 0

=0.8 GeV, n0=5 0

arXiv:1903.03400

FIG. 4. The sound velocity for a two-flavor equation of state as
above with value of v2

s vs. energy desnity ε compared to the result of
Ref. [9] (blue boxes).

region. It is nevertheless encouraging to see the overall 1/k2
F

dependence of the thickness as predicted in Ref. [2].

VI. SUMMARY

A comparison with possible acceptable neutron star equa-
tions of state is beyond what we present here. Such a com-
parison would require that we properly match onto well-
determined nuclear matter equations of states at 1–2 times
nuclear density and that we include effects of β equilibrium
in the equation of state. Nevertheless, we can take our naive
equations of state computed above and see whether for chosen
values of the hard-core density, we are in approximately
the right range to describe equations of state extracted from
the properties of neutron stars. Such a comparison to the
extraction of Fujimoto et al. [9] is shown in Fig. 4. This plot
shows semiquantitative agreement with the extracted equation
of state.
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