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Within the ultrarelativistic quantum molecular dynamics model, in which the Lorentz covariant treatment of
nuclear mean-field potential is considered, the fluctuations of net-baryon, net-charge, and deuteron multiplicity
distributions in Au + Au head-on collisions at

√
sNN = 3.0–5.0 GeV are calculated. The results show that the

nuclear mean-field potential can significantly enhance the magnitude of baryon number fluctuations in narrow
rapidity windows, and this enhancement rapidly weakens with increasing beam energy. However, for proton
and net-charge number fluctuations, the mean-field effects are less noticeable than that for baryon number. In
addition, for net-charge number fluctuations, the negative binomial distribution agrees well with the calculated
results at the midpseudorapidity window. Finally, the event-by-event fluctuations of deuteron number in the
coalescence production picture are calculated as well, and it is found that its cumulant ratios decrease linearly
with increasing the average multiplicity of deuterons per event, i.e., increase with increasing beam energy.

DOI: 10.1103/PhysRevC.101.034915

I. INTRODUCTION

A fundamental motivation for studying relativistic heavy-
ion collisions (HICs) is to investigate the properties of hot
and dense nuclear matter which is believed to undergo a
phase transition to the quark-gluon plasma (QGP). Lattice
quantum chromodynamics (QCD) calculations show that the
phase transition from the QGP state to hadronic gas is a
smooth crossover at zero net-baryon chemical potential μB,
while QCD-like models predict that the phase transition is
first-order at large μB. The possible existence of an end
point of the first-order line, called the critical end point,
has attracted considerable attention, see e.g., Refs. [1–6] and
references therein. To determine the exact location of this
critical point, if it exists, is one of the prime goals of the
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Beam Energy Scan (BES) program at the Relativistic Heavy
Ion Collider (RHIC). The fluctuations of conserved charges
have been proposed as a sensitive observable to explore the
critical point [7–13]. The STAR Collaboration has found
that the quartic cumulant ratio, i.e., κσ 2 of the net-proton
number, exhibits a nonmonotonic energy-dependent behavior
in the most central Au + Au collisions near

√
sNN = 7.7 GeV

[14–17]. This would be an expected signal near the critical
region and a motivation for the BES-II program at RHIC.
In addition, the fixed target experiments from

√
sNN = 2.7

to 4.9 GeV have been proposed at the Compressed Baryonic
Matter (CBM) detector at the future Facility for Antiproton
and Ion Research (FAIR) for complement [18]. The NA61
experiment at CERN Super Proton Synchrotron (SPS) [19], as
well as dedicated future programs at the Nuclotron-based Ion
Collider Facility in Russia [20], the Japan Proton Accelerator
Research Complex [21], and the High Intensity heavy ion
Accelerator Facility in China [22], may also contribute to the
understanding of the QCD phase diagram.
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Recent studies suggested that net-proton fluctuations are
also influenced by other noncritical effects such as hadron
phase [23,24], system volume fluctuations [25,26], baryon
clustering [27], and global charge conservation [28–30]. In or-
der to understand the behavior of fluctuations at beam energy
below

√
sNN = 7.7 GeV, in our previous works, we calculated

the cumulant ratios of net-baryon and net-proton numbers in
Au + Au collisions at beam energy Elab = 1.23 GeV/nucleon
(experiments have been measured by the HADES Collabo-
ration) by the ultrarelativistic quantum molecular dynamics
(UrQMD) model, and it is found that both mean-field potential
and clustering can influence the magnitude of cumulant ratios
[31,32]. In the present work, we use the UrQMD model to
illustrate more explicitly the influence of nuclear mean-field
potential and clustering on higher cumulant ratios of the net-
baryon, net-charge, and deuteron multiplicity distributions in
head-on Au + Au collisions at

√
sNN = 3.0–5.0 GeV which

correspond to the future CBM experiment.

II. BRIEF DESCRIPTIONS OF URQMD MODEL
AND FLUCTUATION OBSERVABLES

In the UrQMD model, hadrons obey Hamilton’s equations
of motion and can be represented by Gaussian wave packets
in phase space. Previous work has pointed out that mean-field
potential plays an essential role for describing HICs, espe-
cially at low and intermediate energies [33,34]. The following
density- and momentum-dependent potential is adopted as the
same as that in Refs. [35,36]:

U = α

(
ρ

ρ0

)
+β

(
ρ

ρ0

)γ

+
∑

k=1,2

t k
md

ρ0

∫
f (r, p′)dp′

1 + [
(p − p′)/ak

md

]2 .

(1)

In the high-energy region, the Lorentz covariance treatment
on the mean-field potential should be considered since the
Lorentz contraction effect is significant. In this work, the
covariant prescription of the mean field used in the relativistic
quantum molecular dynamics (RQMD/S) model [37–39] is
adopted.

Moreover, potentials for “preformed” particles (string frag-
ments) have been taken into account in the UrQMD model
[40]. At energies

√
s > 5 GeV, color-string excitation and

fragmentation dominate the production of hadrons. During
the formation time, potentials for “preformed” particles from
color fluxtube fragmentation as well as confined particles are
considered. Especially for SPS and RHIC energies, it has
been found that the “preformed” hadron potentials play an
important role at the early stage of HICs. In this work, a soft
equation of state (EoS) with momentum dependence (SM-
EoS) is adopted with the parameter set α = −110.49 MeV,
β = 182.014 MeV, γ = 7/6, a1

md = 0.443986 GeV/c, t1
md =

−261.416 MeV, a2
md = 0.147995 GeV/c, and t2

md = 200 MeV
for Eq. (1).

The cumulants of multiplicity distributions can be defined
on an event-by-event basis:

C1 = M = 〈N〉,
C2 = σ 2 = 〈(δN )2〉,

C3 = Sσ 3 = 〈(δN )3〉,
C4 = κσ 4 = 〈(δN )4〉 − 3〈(δN )2〉2. (2)

Here δN = N − 〈N〉, the angular bracket denotes an average
from all events, N is the number of particles in a given
acceptance window in a single event. The cumulants are
directly related to the susceptibilities with corresponding con-
served charges in the grand-canonical ensemble. The ratios
of cumulants are usually constructed to cancel the unknown
volume dependence:

C2/C1 = σ 2/M,

C3/C1 = Sσ 3/M,

C3/C2 = Sσ,

C4/C2 = κσ 2. (3)

Here M is the mean value, σ is the standard deviation, S is the
skewness, and κ is the kurtosis.

According to the Delta theorem [41], the statistical error of
the cumulants ratios can be approximated as follows:

error(Cr/C2) ∝ σ (r−2)/
√

n, (4)

where n is the total number of events. In this work, 15
million Au + Au events for each case are calculated. For most
observables, the statistical error are small enough (as can be
seen in following sections). The statistical error for C4/C2 is
visible. One can estimate from Eq. (4) that to cut the error in
half would require four times the number of events.

III. NUMERICAL RESULTS

A. Net baryon

As we know, volume fluctuation is a notorious background
and the centrality definition may significantly affect higher
moments [42]. In this work, only head-on collisions (impact
parameter b = 0 fm) are considered. It is presumable that vol-
ume fluctuation in collisions with a fixed impact parameter is
smaller than that within a range of impact parameter, because
the initial colliding geometry in HICs with a fixed impact
parameter is quite similar. In addition, the formed hot and
dense matter in HICs with b = 0 fm has the largest volume
and density, which then provides a more clean environment
(be less affected by spectators) to study the mean-field effects
on the cumulants. As discussed in Ref. [43], the volume
(the number of participants) still fluctuates even for a fixed
value of impact parameter. Since participants can be precisely
counted in a transport model, we used similar formulas as the
centrality-bin-width correction method [6,44] to further re-
duce the small volume variation caused by different numbers
of participants arising from initial fluctuations even though b
is fixed:

Cn =
∑

r nrCr
n∑

r nr
, (5)

where nr is the number of events with the same number of
participants r and Cr

n is the nth-order cumulants of particle
multiplicity from those events. We excluded those events
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FIG. 1. The rapidity window dependence of cumulant ratios for baryon numbers with transverse momentum cut 0.4 < pT < 2.0 GeV/c.
Black solid squares represent simulation by cascade mode, and open symbols are corresponding binomial distribution baseline (referred to as
BD). In this case, the average fraction of baryons in the acceptance is obtained from the cascade simulation, while the ratios of cumulants are
computed using Eq. (6). Blue triangle symbols represent the result with SM potential. Red circles denote results for free baryon (the baryons
that are not bound in fragments). Where error bars are not shown, they fall within the symbols.

where the number of participants is less than 380. To manifest
the effects of the mean-field potential, calculations with pure
cascade mode are also presented. In addition, a clustering
effect is also taken into account by using an isospin-dependent
minimum-span-tree (MST) algorithm to construct clusters
[45]. The MST procedure in coordinate and momentum space
has been widely used in QMD-like models to recognize
fragments in HICs at energies from several tens of
MeV/nucleon up to several hundreds of GeV, see, e.g.,
Refs. [46–48]. It has been shown in Ref. [48] that, the
deuteron production in p + p, p + A, and A + A collisions
at energies from the FAIR energy regime up to the CERN
Large Hadron Collider energies can be well described with
the UrQMD model in combination with the MST algorithm.
In the present work, if the relative distance between two
protons or two neutrons (neutron and proton) is smaller than
2.8 fm or 3.8 fm, and the relative momentum is smaller
than 0.25 GeV/c, then they are considered to belong to
the same cluster. In addition, unphysical clusters (such as
dineutrons or diprotons) are eliminated by breaking them
into free nucleons. We note here that these coalescence pa-
rameters used in the present work is consistent with our

previous publications, e.g., Refs. [32,49–51]. The values of
the coalescence parameters are selected empirically to yield
a reasonable mass distribution of fragments. Indeed, there is
no strict rule for selecting these parameters, usually differ-
ent parameter sets are used in different models. Fortunately,
various dynamical observables, e.g., the collective flow and
nuclear stopping power, which have been widely used to
deduce the properties of dense nuclear matter, is not very
sensitive to these empirical parameters within a reasonable
range [51]. The production of light clusters in HICs from
model simulations is an ongoing debate, and thermal produc-
tion and coalescence are two popular scenarios [48,52,53].
Different production mechanisms may result in different fluc-
tuations [52]. With the MST algorithm to identify deuterons,
our calculations partly represent fluctuations in the coales-
cence production picture.

The rapidity window dependencies of the cumulant ratios
of net baryons are shown in Fig. 1. The interval of transverse
momentum 0.4 < pT < 2.0 GeV/c is selected by consider-
ing the range and capability of detector systems in experi-
ment. Since the production of antibaryon can be neglected
at this energy scale, we compared the results with BD which
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represents independent production:

σ 2/M = 1 − p,

C3/C1 = (1 − 2p)(1 − p),

Sσ = 1 − 2p,

κσ 2 = 1 − 6p(1 − p), (6)

where p = C1/394 is the average fraction of baryons in a
given acceptance. BD is used in the following figures to
denote the baseline of the binomial distribution with the
C1 obtained from the cascade mode as the input. We have
checked that the baseline of the binomial distribution will not
change much if C1 is taken from other scenarios.

In the midrapidity region which can be appropriately de-
scribed by grand-canonical ensemble, the nuclear mean-field
potential enhances the magnitude of fluctuations compared to
the cascade mode. This is because nuclear potential introduces
final multiparticle correlations. If one compares the results for
free baryons with that for all baryons, then it is found that
the cumulant ratios for free baryons are slightly smaller than
those for all baryons at midrapidity, since at midrapidity free
baryons exclude those baryons which are bound in clusters
(i.e., more correlations). With increasing rapidity window,
baryon number conservation dominates the results and sup-
presses the mean-field effects, forcing all cumulant ratios to
approach to the limit of BD results. The cumulants of free
baryons are less affected by the baryon-number conservation.
Although the tendencies are roughly in accord with the BD
baselines, the divergence among calculations and the BD
baselines for κσ 2 seems visible, suggesting that κσ 2 is more
sensitive to the dynamic processes of HICs and the simple BD
cannot fully describe its behavior.

Our previous work found that collisions dominate the evo-
lution of cumulants in the compressed stage and the nuclear
attractive potential plays a crucial role in the development
of fluctuations in the expansion stage [32]. With increasing
beam energy, baryons move away from each other faster
and the effect of mean field weakens rapidly. In Fig. 2, we
carefully chose certain rapidity windows for different cases to
fix C1 ≈ 40, near 10% of the total net-baryon number, in order
to eliminate the potential misleading information caused by C1

dependence. The difference between the numerical results of
SM-EoS and cascade mode steadily decreases with increas-
ing energy. This indicates that the correlation derived from
mean-field potential is decreasing when the system decouples
quickly.

The cumulant ratios in a fixed rapidity window (i.e.,
−0.1 < y < 0.1) are displayed in Fig. 3. The ratios of cu-
mulants for baryon are also decreasing with increasing beam
energy in the mean-field case, but the decline is slower than
that in Fig. 2 (with fixed C1), because the decreased C1

weakens the decline of cumulant ratios (e.g., C2/C1). The
opposite behavior is observed for the cascade case, the cu-
mulant ratios are increasing with beam energy both with a
fixed C1 and with a fixed rapidity window. And this ascent
is more evident with fixed rapidity window because of the
decreased C1 at high energies. We note here that the rapidity
window (i.e., −0.1 < y < 0.1) used in this work is smaller

FIG. 2. The energy scan of cumulant ratios with fixed baryon
number (C1 ≈ 40). The results for proton are computed in the same
rapidity window as that for baryon. Solid symbols represent the
result for baryon number while open symbols for the case of proton
number.

than the commonly employed one (i.e., −0.5 < y < 0.5) by
STAR Collaboration at energies

√
sNN = 7.7–200 GeV. As

we have known, with increase of the collision energy, the
rapidity distribution of baryons become more wider, see e.g.,
Ref. [54]. Thus, it is reasonable to apply a smaller rapidity
window at lower energies. We have checked that with rapidity
window −0.5 < y < 0.5, the values of baryon number C1 are
180 and 147 at

√
sNN = 3.0 and 5.0 GeV in the cascade case,

respectively. The cumulant ratios obtained with SM-EoS and
cascade modes are very close to each other because of the
domination of the baryon-number conservation, which also
can be seen from Fig. 1.

FIG. 3. The energy scan of cumulant ratios with rapidity window
−0.1 < y < 0.1. Black lines represent simulation by cascade mode
while blue lines represent that with SM-EoS. Solid symbols represent
the result for baryon number while open symbols for the case of
proton number.
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FIG. 4. The pseudorapidity window dependence of cumulant ratios for net charge with transverse momentum cut 0.2 < pT < 2.0 GeV/c.
Black solid squares represent simulation by cascade mode, and open symbols are corresponding negative binomial distribution baselines. Blue
triangles represent the results with SM potential.

Cumulant ratios of the net proton number is an experimen-
tal proxy observable of net baryon number. But fluctuations
of proton number are more complicated than that of baryon
number due to isospin reversal processes in inelastic nucleon-
nucleon collisions mediated by the 	 resonance [23]. There
is no strict conservation law for proton number at every event
and this introduces other form of fluctuations. Especially at
intermediate energy, unlike in high-energy collisions where
nucleons completely lose their original isospin information,
some protons retain their initial isospin, so Nproton �= 1

2 Nbaryon.
The numerical results indicate that all of these ratios are
enhanced by the mean-field potential, but the enhancement is
more evident for baryons than for protons. From Figs. 2 and 3,
we can infer that, with a small rapidity window around midra-
pidity, the cumulant ratios decrease with collision energy in
the presence of mean-field potential, but this trend is being
reversed in the cascade case.

B. Net charge

The pseudorapidity window dependence of cumulant ratios
for net charge (pT interval 0.2–2.0 GeV/c) are shown in
Fig. 4, and the energy dependence of net-charge fluctuations

with fixed pseudorapidity window |η| < 0.5 are show in
Fig. 5. In addition, results from negative binomial distribution
(NBD), which has been used to characterize the multiplicity

FIG. 5. The energy dependence of net-charge fluctuations with
fixed acceptance windows: |η| < 0.5, 0.2 < pT < 2.0 GeV/c. Nota-
tions are the same as in Fig. 4.
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distribution and higher cumulants of charged particles in
high energy [15,55,56], are also shown. NBD assumes that
the production of positive and negative charged particles are
unrelated to each other. A NBD with mean M and variance
σ 2 can be described by two parameters, q = M/σ 2 and m =
Mq/(1 − q):

C1 = m(1 − q)/q,

C2 = m(1 − q)/q2,

C3 = m(q − 1)(q − 2)/q3,

C4 = m(1 − q)(6 − 6q + q2)/q4. (7)

The above are defined either for positive-charge Cn,+ and
negative-charge Cn,−. The odd-order and even-order cumulant
baselines for net charge can be derived from two negative
binomial distribution Cn=odd = Cn,+ − Cn,− and Cn=even =
Cn,+ + Cn,−. NBD is used in the following figures to denote
the baseline of the negative binomial distribution with the
C1 and C2 calculated by cascade mode as the inputs. For a
negative binomial distribution, the probability q should not
exceed the value of 1, i.e., M < σ 2. In general, the results of
NBD are in accord with the UrQMD simulations, especially
for the energy-dependent behavior of C2/C1 and Sσ (ratios
of cumulants with different odd-even parities) at midpseudo-
rapidity. With increasing pseudorapidity window, the devia-
tion among NBD and UrQMD calculations steadily grows
as the condition M < σ 2 for NBD is manifestly violated. In
large pseudorapidity window, the production of positive- and
negative-charged particles are always correlated because the
total charge is strictly conserved.

Unlike in the case for baryons, the cumulant ratios of net
charge are only sightly influenced by nuclear mean-field po-
tential. Because with increasing beam energy more and more
charged mesons are produced through inelastic collisions or
decay of resonances, meson-baryon scattering may play a
dominant role in net-charge fluctuations.

C. Deuteron

It is suggested that a double-peak structure of density
fluctuation can be observed from spinodal instability region to
critical region with increasing beam energy [57–59]. Directly
extracting the information of density fluctuations in heavy-
ion collisions seems impossible since only the momenta of
final-state particles are measured in experiment. However,
light fragments (e.g., deuteron and triton) may be sensitive
to density fluctuations at freeze-out. Moreover, light nuclei
production has been used as a probe of the QCD phase
diagram [60], and thus it is worthwhile to study moments of
deuteron distribution.

Figure 6 displays the result of energy scan of deuteron
cumulant ratios as a function of C1. All cumulants ratios show
a monotonous trend and a fairly good linearity with the aver-
aged deuteron multiplicity. It illustrates that deuteron number
fluctuation tends to monotonically increase with increasing
beam energy in the coalescence production picture.

FIG. 6. The cumulant ratios as a function of the averaged
deuteron multiplicity per event at different collision energies. No
acceptance cuts are applied. More deuterons (larger C1) correspond
to lower beam energy.

IV. SUMMARY

We have calculated the cumulant ratios for the net-baryon,
net-charge, and deuteron multiplicity distributions in Au +
Au collisions at

√
sNN = 3.0, 3.6, 3.9, 4.5, and 5.0 GeV with

the UrQMD model, in which the Lorentz covariance treatment
of nuclear mean-field potential is further considered. The
results simulated with mean-field potential (SM-EoS) mode
were compared to those with cascade mode. It is found
that the nuclear mean-field potential can enhance the magni-
tude of cumulant ratios of net-baryon number and that this
enhancement decreases with increasing beam energy. This
result implies that the correlation of final baryons established
by mean-field potential decreases with increasing collision
energy. With a small rapidity window around midrapidity, the
cumulant ratios decrease with collision energy in the presence
of mean-field potential, but this trend is reversed in the cas-
cade case. The mean-field effects on proton number cumulant
ratios is less conspicuous. On the other hand, it is found
that the mean-field effects on net-charge fluctuation are less
significant and negative binomial distribution can reasonably
describe the behavior of cumulant ratios at midpseudorapid-
ity. Finally, we calculated the deuteron number fluctuations.
The results show that deuteron cumulant ratios are approxi-
mately linear in C1 and that fluctuations of deuteron increase
with increasing beam energy in the coalescence production
picture.

In a future study, to obtain an in-depth understanding of
the influence of mean-field potential on fluctuations, we plan
to investigate the centrality dependence of the cumulant ratios
and the volume fluctuations with mean-field mode.
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