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Baryon preclustering at the freeze-out of heavy-ion collisions and light-nuclei production
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Following the idea of nucleon clustering and light-nuclei production in relativistic heavy-ion collisions close to
the QCD critical-end point, we address the quantum effects affecting the interaction of several nucleons at finite
temperature. For this aim we use the K-harmonics method to four-nucleon states (α particle), and also develop a
novel semiclassical “flucton” method at finite temperature, based on certain classical paths in Euclidean time, and
apply it to two- and four-particle configurations. To study possible effects on the light-nuclei production close
to the QCD critical point, we also made such calculations with modified internuclear potentials. For heavy-ion
experiments, we propose new measurements of light-nuclei multiplicity ratios which may show enhancements
due to baryon preclustering. We point out the special role of the O(50) four-nucleon excitations of α-particle,
feeding into the final multiplicities of d, t , 3He, and 4He, and propose to directly look for their two-body decays.
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I. INTRODUCTION

In the past decade the physics of heavy-ion collisions has
significantly widened its scope. Traditional studies of Au +
Au and Pb + Pb collisions at the highest energies of the RHIC
(Relativistic Heavy-Ion Collider) and the LHC (Large Hadron
Collider) have quantified the unusual properties of the quark-
gluon plasma. A significant progress was reached in studies of
“small systems,” central p + A and high-multiplicity p + p,
in which radial, elliptic and triangular flows have been ob-
served, confirming hydrodynamical explosions at sufficiently
large multiplicities [1]. The final particle composition is well
described close to the phase transition line by the so-called
statistical hadronization models [2].

With these progresses at the high-energy frontier, there is
a growing interest in better understanding the lower collision
energies, related to larger baryonic densities. The suggestion
of the possible existence of the QCD critical point and there-
fore increased event-by-event fluctuations [3] has lead to the
RHIC Beam-Energy Scan (BES) program. Complementing
it, dedicated low-energy colliders are under construction in
Germany (FAIR-GSI, Darmstadt) and Russia (NICA, Dubna),
with similar projects under consideration in China (HIAF) and
Japan (J-PARC-HI).

At this time, experiments show two particular intriguing
observations which might be related to the QCD critical point.
One is the significant modification of the shape of net-proton
multiplicity distribution (large scaled kurtosis) at the lowest
RHIC collision energies observed by the STAR Collaboration
[4]. Another (to be shown in Fig. 11) is an apparent increase
at

√
sNN = 20 − 30 GeV of the tritium production relative to

deuterium and to the statistical hadronization model in the
same experiment [5].

In our previous paper [6] we put forward the idea that a
sizable scaled kurtosis of the proton distribution is another

aspect of the preclustering of nucleons (or prenuclei) at the
freeze-out stage, due to the modification of NN potential.
This effect would also lead to an increase of light-nuclei
production with respect to the statistical model expectations.
Let us present some qualitative arguments emphasizing the
main points made in Ref. [6].

To begin with let us compare the situation at the freeze-
out of high-energy heavy-ion collisions with other known
situations in which various nuclear fragments—and especially
light nuclei—are known to be produced [7,8]. In particular,
their natural production is known to occur in the Big Bang,
and later in stars. In these cases the temperature T is much
lower than the binding energy of the states, T � B,1 and
the corresponding Boltzmann factors exp(B/T ) are large and
play a crucial role. In heavy-ion collisions at semirelativis-
tic energies, one has T ≈ B and the production of nuclear
fragments.

Unlike these conditions, the freeze-out temperatures we
will consider are large compared to the binding energy,

B ≈ few MeV � T = 100–150 MeV,

and therefore the binding energies of the resulting light nuclei
are basically irrelevant.

The preclusters we discuss are statistical correlations of
several nucleons at relative distances 1–2 fm induced by the
interbaryon potential V (r). The phenomenological (unmodi-
fied) nuclear potential that we considered in Ref. [6] (called
VA′ in that paper) was the Serot-Walecka potential [9],

V (r) = −ασ

e−mσ r

r
+ αω

e−mωr

r
, (1)

1We will use natural units in this paper, h̄ = c = kB = 1. In some
places of this paper we will make h̄ explicit.
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FIG. 1. The effective nuclear potential in Eq. (1) with vacuum
σ mass (solid line) and with a reduced mass supposedly to happen
close to the critical region (dashed line). Those we consider to be
the minimal and maximal possible magnitude for near-critical line
potential.

with ασ = 6.04, mσ = 500 MeV, αω = 15.17, mω =
782 MeV. The potential with these parameters is shown
in Fig. 1 with a black solid line.

However, the relevant ratio for precluster formation is not
B/T but the Boltzmann factor with the maximal depth of the
potential to temperature exp [−V (rmin)/T ]. For the potential
Eq. (1) this ratio is

|V (rmin)|
T

≈ 1

3
− 1

2
,

and thus clustering is relatively scarce.
However, there are two important regimes in which this

simple conclusion can be reversed, and rather large correla-
tions can be achieved. The first regime is when the effective
mass of the σ mode is strongly reduced because of the close-
ness of chiral symmetry restoration at T > Tc ≈ 155 MeV.
According to studies of chiral transition at μ = 0 [10], and
to the discussion in our previous paper [6], the initial NN
potential the σ mass can be reduced from 500 MeV down to
mσ ≈ 285 MeV. As shown in dashed line in Fig. 1 this mod-
ification results in crucial changes of the effective potential,
inverting the situation to

|V (rmin)|
T

≈ 2 − 3.

This situation becomes more evident in the vicinity of the
QCD critical point (if it exists) since the hypothetical critical
mode becomes (nearly) massless, making appear long-range
forces associated with its exchange.

These large Boltzmann factors exp(|V (rmin)|/T ) play
much more important role when several nucleons are in-
volved. For example, the system composed by N = 4 nu-
cleons in an approximate tetrahedral configuration has six
relative potentials, so the Boltzmann factor enters with the
sixth power.

In Ref. [6] the real-time dynamics has been quantified by
means of classical Molecular Dynamics (MD) simulations.
While we studied specific clusters with 4–13 nucleons, our
main focus in that paper was on skewness and kurtosis of
the baryon number distribution, in connection with the results
of the BES program at RHIC. We have demonstrated that
even modest modifications of the nuclear potentials at the
freeze-out conditions may significantly enhance the baryon
correlations.

However, the Boltzmann factor describes only classical
thermodynamics, and the MD simulations account only for
the classical dynamics of nucleons. In the onset of clustering,
one needs to include also quantum effects, expected to reduce
the formed correlations. This is the question we focus on in
this paper, where we continue the study of preclusters.

More specifically, we will focus on quantum corrections
of pairwise potentials between nucleons, and introduce a
semiclassical method at finite temperature giving rise to the
“flucton” configuration. This method will be also applied
to states with three and four particles with a very specific
symmetry. In addition, we will focus on four-nucleon preclus-
ters of the ppnn (or α-particle) type. Only in this case one
may think of all four particles as distinguishable (all in
different spin-isospin states), without account for effects of
Fermi-Dirac statistics. Its ground state is the only light nuclei
which is relatively strongly bound. In fact, it is well known
that 12C, 16O, and perhaps even 24Mg have strong α-particle
correlations, and their lowest states are consistent with few
α-particle Bose-Einstein condensation [11]. The four-nucleon
preclusters are qualitatively different from two- and three-
body clusters. While the latter have only one (barely) bound
states, the former has one deeply bound ground state and ≈50
states incorporating next-shell excitations near zero energy.
While this fact is experimentally known, it has been over-
looked in any discussion (we are aware of) of the d, t, 3He
production. We use this novel semiclassical method, as well
as the K-harmonics method, to correctly include quantum
effects. Finally, we will comment on how experiments can
access an overproduction of light nuclei, and propose new
experimental measurements of light-nuclei ratios (in the same
lines of the recently proposed t p/d2 ratio) with an increased
ability to signal the presence of the QCD critical point.

In Sec. II we study the two- and four-nucleon systems
using a genuine quantum mechanical method by solving the
two-body Schrödinger equation and the K-harmonics method,
respectively. We will see that important quantum corrections
appear when the interaction potential dominates over thermal
effects. In Sec. III we introduce the “flucton” method at
finite temperature as a semiclassical approximation to the
full quantum solution. We apply it to two- and four-nucleon
systems at finite temperature, and consider the effect of a
modified NN potential due to the critical-point dynamics.
In Sec. IV we propose several observables in the form of
light-nuclei ratios in which the critical correlations could be
observed in experiment. Some discussions on the connection
between preclusters and light-nuclei are presented in Sec. V,
where we also comment on the experimental situation of the
4He spectra and the need to account for its excited states.
Finally, in Sec. VI we present our conclusions.
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II. THEORY OF FEW-NUCLEON QUANTUM SYSTEMS
IN A THERMAL ENVIRONMENT

Before we begin the theory part of this paper, let us
recapitulate its main goals:

(i) develop the necessary tools to evaluate the density
matrices for few-nucleon systems at finite tempera-
ture;

(ii) quantify clustering probabilities, focusing on the four-
nucleon system;

(iii) study how the clustering phenomenon depends on
possible in-matter potential modifications.

The standard textbook definition of the density matrix—the
probability to find quantum/thermal system at a (multidimen-
sional) coordinate x0—is straightforward to compute as

P(x0) =
∑

i

|ψi(x0)|2 e−Ei/T , (2)

by combining probabilities in all stationary states, bound and
unbound, with their subsequent weighting with the Boltzmann
factor. ψi(x0) and Ei are the wave functions (eigenfunctions)
and energies (eigenvalues) of the state i. We will be applying
this definition in this section, first for two and then for
four nucleons. An alternative semiclassical approach to this
problem at finite temperature will be developed in the next
section.

A. The density matrix for two nucleons

The two-nucleon problem is essentially a one-dimensional
(radial) problem, so the density matrix at finite T can be
calculated using a complete set of solutions of the Schrödinger
equation. Simplifying the situation to central forces, without
spin/isospin dependence and without electromagnetism, one
combines the pn, nn, pp pairs into one generic NN case. In
this case one should find with sufficient accuracy that there is
one (near) bound state with essentially zero energy.

The original Serot-Walecka potential in Eq. (1), while it
can lead to reasonable properties for infinite nuclear matter
[6], does not possess any bound state. For an illustration let us
reduce the repulsion, and use αω = 9.42, to increase the depth
of the potential. This is the value we are using in this section
only.

In addition to the NN potential one needs to separately
consider the centrifugal potential,

�V L
rot = L(L + 1)

2mRr2
, (3)

for various nonzero values of L = 0, 1, 2, ... (mR = mN/2 is
the reduced mass, with mN being the nucleon mass). In order
not to deal with a continuous spectrum of scattering states
we use a standard method: put a system in a confining “cup”
potential, chosen in a form

Vcup =
(

r

Rcup

)8

, (4)

with large enough Rcup = 10 fm.

With all these ingredients we numerically solve

−u′′
L(r)

2mR
+ (

VNN + Vcup + �V L
rot

)
uL(r) = ELuL(r), (5)

with uL(r) = rRL(r) and the radial wave-function RL(r) has
been factorized from the total one together with the spherical
harmonics [ψ (r) = R(r)Y (θ, φ)]. The normalization of ψ (r)
imposes, as usual, ∫

dr|uL(r)|2 = 1. (6)

We find 60 energies and wave functions for each L. The
beginning of the energy spectrum at L = 0 is (in units of
fm−1 ≈ 197 MeV)

EL=0
i = −0.0113, 0.0749, 0.204, 0.369, 0.564, 0.786...

The only bound state is “Walecka deuteron” with an en-
ergy of −2.2 MeV and a root-mean-square (r.m.s.) radius of√

〈r2〉 � 2.6 fm (the physical deuteron also contains a small
admixture of L = 2 component, which we do not obtain in
this simple example with a central potential).

Using this set of states one can find the quantum-thermal
density matrix

P(r, T ) =
∑
i,L

(2L + 1)|ψL,i(r)|2e−βEL
i , (7)

where β = 1/T , and i runs over all states with a given
quantum number L. We consider L = 0, 1 and 2 (in all our
examples the angular dependence is included in the wave
functions ψL,i(r) and conveniently integrated over). In our
approximation with an external Vcup all states are bound.
Otherwise, the continuum version of Eq. (7) should be used
to account for the unbound states [12].

Examples at two different temperatures are shown in Fig. 2,
for T � 20, 100 MeV for different angular momenta. We sum
over the first 60 levels for each value of L. It is important to
note that in the results of this figure, the NN potential itself is
not yet modified by the temperature. The difference between
the curves is entirely given by thermal excitation of states
other than the ground one.

From these plots one observes that states with nonzero
angular momentum L > 0 contribute only minimally at low
temperatures (upper plot), even including their larger degen-
eracy 2L + 1. At high temperatures (lower plot) these states
contribute substantially to the density matrix. However, at
such temperature one also expects the in-medium modifica-
tion of the NN potential. Using a Serot-Walecka potential
with mσ = 285 MeV we get the result at T = 100 MeV in
Fig. 3. Again, the higher-partial waves are subdominant with
respect to L = 0 in the density matrix. In Sec. V we will come
back to the deuteron example and comment about the wave
package interpretation of the cluster from this density matrix,
and introduce the Wigner distribution of the deuteron.

B. K-harmonics method and four-nucleon clusters

In this section we study the four-body system using a pure
quantum mechanical method, the K-harmonics, which goes
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FIG. 2. The density matrix Eq. (7) for the Serot-Walecka poten-
tial with mσ = 500 MeV at T = 20 MeV (upper panel) and T =
100 MeV (lower panel) for different values of the quantum number
L. The units of the OY axis are fm−3.

back to the 1960’s [13]. Its main idea is to focus on quan-
tum mechanics along the “hyperdistance” axis in the nine-
dimensional space, while other coordinates can be treated via
corresponding angular harmonics. We present more details in
Appendix A. Historically, this method was applied only to
the ground states of light nuclei, which it describes well. In
particular, it correctly reproduced the binding of 4He [14].

As usual, we start with the lowest, most symmetric ground
states, obtained from a 1D radial Schrödinger equation for the
hyperdistance ρ, defined in Eq. (A3) as a sum over Jacobi
coordinates squared. We briefly indicate in Appendix A the
derivation of the corresponding Schrödinger-like equation in
the case of 4He [14] here we only note that the squared
hyperdistance is related to r coordinate, the distance between
any two nucleons in a tetrahedral configuration, via the simple
relation

ρ2 = 6
4 r2. (8)

Solving the eigenvalue problem in Eq. (A5) we have
obtained 40 lowest eigenstates using the simplest potential
V1 from Ref. [14] and the Coulomb term between the two

L=0

L=1

L=2

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

r(fm)

i=
1

60

(2
L+

1)
|

L,
i(r

)
2

e−
E

iL
−E

0
0

FIG. 3. The density matrix (7) at T = 100 MeV with a medium-
modified Serot-Walecka potential with mσ = 285 MeV at T =
100 MeV for several values of L. The units of the OY axis are fm−3.

protons. The ground-state energy we find is E0 = −27.8 MeV,
close to the experimental value of E exp

0 = −28.3 MeV.
Rather unexpectedly, we also find the second bound state

missed by our predecessors in Ref. [14], with JP = 0+ with
energy E1 = −2.8 MeV. To determine whether this state is
physical, we show in Table I a compilation of the excited
states of 4He. Among them there is just one 0+ state, with
a binding energy of

B = −28.3 MeV + 20.2 MeV = −8.1 MeV, (9)

which is close enough to the one we found to identify them, as
the same second radial excitation. A plot with both 0+ wave
functions χ0(ρ), χ1(ρ) is shown in Fig. 4.

At finite temperature, we also use the unbound states to
weight them with the corresponding Boltzmann factor and
calculate the thermal density matrix. The results are shown
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FIG. 4. Two radial bound state JP = 0+ wave functions for 4He,
which are solutions of Eq. (A5) as a function of the hyperdistance
variable ρ. Their energies are discussed in the text.
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FIG. 5. Solid lines: Boltzmann-weighted density matrix, at T =
100 MeV, using 40 lowest states of the K-harmonics radial equation,
for the unmodified nuclear potential V1 used in Ref. [14] (upper plot)
and a modified one (lower plot). In both cases the blue dashed lines
show the contribution of the lowest bound state. The units of the OY
axis are fm−1.

in Fig. 5 for T = 100 MeV. In the upper plot we present the
results using the potential V1 given in Ref. [14]. The solid line
is the weighted density matrix at T = 100 MeV compared to
the contribution of the lowest bound state only (blue dashed
line). For this (unmodified) potential the contribution of ex-
cited state to the density matrix is important as can be seen
from the difference between the two curves.

C. Modification of the internucleon potential

To see what happens if the interaction potential is medium-
modified, we repeat the calculation with the same form of
the potential, but with the coefficient of the attractive term
double. In this case the minimum of the potential reaches
≈−400 MeV, similarly to what happens in Fig. 1.

This modified potential now has six radial bound states:
Their energies in MeV are

E = −226.1,−120.1,−52.6,−17.3,−3.4,−0.1.

The corresponding density matrix and the lowest bound state
wave function squared are shown in the lower panel of Fig. 5.
In contrast to the upper plot (for unmodified potential) the
lowest state dominates the density matrix. It is not surprising
(we already saw this for the N = 2 case), since its binding
is more than twice the temperature. In that figure we can
read the magnitude of the correlation, relative to the constant
asymptotic distance (the thermal contribution of propagating
positive energy states) increases from ≈0.4 to ≈12, a huge
factor.

Finally, we comment about the normalization of the density
matrix in the N = 4 case. The wave function ψ (ρ) in nine
dimensions is normalized as

1 =
∫

|ψi(ρ)|2d9ρ =
∫

|χi(ρ)|2dρ, (10)

with all the angular dependence factorized and integrated out.
So the integrated density matrix has dimension of 9 or volume
cube; respectively, the effect is to be multiplied by the baryon
density cubed n3

B. The virial expansion of statistical mechanics
calls such a term the fourth virial coefficient.

III. SEMICLASSICAL “FLUCTON” METHOD
AT NONZERO TEMPERATURES

In this section we introduce a novel semiclassical method
to approximate the calculation of the thermal density matrix
for two-, three-, and four-nucleon systems. It is the general-
ization of the “flucton” path [15] to few-body systems at finite
temperature.

A. Semiclassical theory at nonzero temperature

Semiclassical approximations are well-known tools, both
in quantum mechanics and quantum field theory. Stan-
dard textbooks of quantum mechanics usually start with
Bohr-Sommerfeld quantization conditions, and semiclassi-
cal Wentzel-Kramers-Brillouin (WKB) approximation for the
wave function [16]. Unfortunately, extending such methods
beyond the one-dimensional case (or multidimensional with
separable variables) proved to be difficult. Also already the
first WKB correction to classical term, 1/

√
p(x) is not correct

and contains a nonphysical singularity at the turning point.
As shown by Feynman [12,17,18], the density matrix for

any quantum system can be expressed by the path integrals,
over paths passing through the point x0. Analytic continuation
to Euclidean (Matsubara) time defined on a circle τ ∈ [0, β =
h̄/T ] lead to its finite-temperature generalization,

P(x0) =
∮

Dx(τ ) e−SE [x(τ )]/h̄, (11)

taken over the periodic paths which start and end at x = x0.
This expression has led to multiple applications, perturbative
(using Feynman diagrams) or numerical (e.g., lattice gauge
theory).

Another interesting usage of this expression is develop-
ment of a novel semiclassical theory. Its main idea is that
in certain conditions the path integral is dominated by min-
imal action (classical) path, called “flucton.” The idea was
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introduced in Ref. [15] (it was also later suggested inde-
pendently in Ref. [19]). Unlike the WKB approximation,
this approach works for multidimensional and quantum-field-
theory settings. It also leads to a systematic perturbative
series based on Feynman diagrams, with clear rules for each
order.

Systematic application of this method at zero temperature
(β → ∞) for a number of quantum mechanical problems has
been developed in Refs. [20–22]. The quantum corrections
have been calculated to three loops, and shown to be in exact
agreement with asymptotic expansion of the ground-state
wave functions at large distances. The reader can find all the
details in these references. We present a minimal content of
the “flucton” method in Appendix B.

At T = 0 quantum systems are in their ground states,
and therefore studies of the density matrix are related to
semiclassical description of the ground-state wave functions.
It has been shown in the above mentioned papers how
path integral semiclassical higher-order corrections corre-
spond to the asymptotic expansion of solutions to Schrödinger
equation.

At finite temperatures the path integral is modified, but
it can still be dominated by certain “flucton” paths, which
should satisfy a number of conditions. They should

(i) have minimal action, thus satisfy classical equation of
motion with Euclidean time τ = it ;

(ii) be still periodic, starting and ending at the designated
observation point x = x0;

(iii) have a specific time period β in τ , the “Matsubara
time,” related to the temperature by β = h̄

T .

In Fig. 6 we provide two sketches explaining how these
paths look like.

The semiclassical theory at nonzero temperature will be
the subject of a separate paper [23]. Some results, for har-
monic and anharmonic oscillators, are briefly summarized in
Appendix B. Applications of this method to nucleon systems
with N = 2, 4 are given in the following sections.

B. Two-nucleon system as a thermal flucton

In this section we apply for the first time the flucton method
described in Appendix B to a two-body potential at finite
temperature. Before we start let us remind two limits, in which
the method leads to some obvious results:

(1) At large T (β → 0) the periodic paths have no time
to propagate, so the system stays at x(τ ) = x0. The
action is SE → βV (x0) which corresponds to the usual
classical Boltzmann factor.

(2) At small T the system is mostly in the ground state and
the density matrix P → |ψ (x0)|2. The flucton method
obviously yields the semiclassical version of ψ (x0).

For two particles the Euclidean action for their relative
motion reads

SE [r(τ )] =
∫

dτ

[
mN

4
ṙ2 + V (r)

]
, (12)

−V (x)

x

x

x0

turntuuuurn

x0

xturn

τ = 0τ = ±β/2

FIG. 6. Two sketches explaining properties of the flucton classi-
cal paths. The upper one shows the (flipped) potential −V (x) versus
its coordinate. The needed path starts from arbitrary observation
point x0 (red dot), goes uphill, turns back at the turning point xturn

(blue dot), and returns to x0 during the required period β = h̄/T
in imaginary time. The lower plot illustrates the same path as a
function of Euclidean time τ defined on a “Matsubara circle” with
circumference β.

where r is the internucleon distance, ṙ = dr/dτ , V (r) is the
pairwise (inverted) potential VNN , and the coefficient 1/4 in
the kinetic energy appears because of the use of the nucleon
mass instead of the reduced mass mR = mN/2). The classical
equation of motion is

r̈ = 2

mN

∂V (r)

∂r
, (13)

whose solution is the required flucton path r(τ ) = rfluc(τ ) as
a function of the observation point r0. The density matrix is
proportional to the action of this solution,

P(r0) ≈ e−SE [rfluc(τ )]. (14)

The observation point will be simply denoted as r in our plots.
In Fig. 7 we compare the probabilities (not normalized) of

two nucleons being at distance r from each other at a temper-
ature T = 100 MeV, calculated by both methods: the flucton
method (dots) and a classical Boltzmann factor (solid and
dashed lines). We use two potentials, the original Walecka-
like potential Eq. (1) with mσ = 500 MeV, and another with
mσ = 285 MeV, with increased attraction. As one can see,
for the unmodified potential the effect is rather modest,
and classical thermodynamics (solid line) coincides with the

034914-6



BARYON PRECLUSTERING AT THE FREEZE-OUT … PHYSICAL REVIEW C 101, 034914 (2020)

T=100 MeV

Flucton, m =500 MeV

Classical, m =500 MeV

Flucton, m =285 MeV

Classical, m =285 MeV

0.5 1.0 1.5 2.0 2.5 3.0
0.5

1

5

10

50

r (fm)

P
(r

)
=

e
−S

E
(r

)

FIG. 7. The probability for two nucleons being at distance r (fm)
from each other at temperature T = 100 MeV. In symbols we plot
the semiclassical probability distribution calculated via the flucton
method, while lines are Boltzmann factors with the Walecka potential
in Eq. (1). We used two different values of the σ mass.

semiclassical result (squares). At small values of r the poten-
tial presents a steep repulsive wall, which makes the classical
solution go quick to zero, whereas the flucton case presents
larger probability due to the quantum barrier penetration. The
comparison between methods is however very different for the
modified potential, for which the correlation is significant as
VNN it is not small compared to T . Again, quantum penetration
into the potential to the right of the minimum makes the
probability for the flucton larger than the classical expectation.
This is a clear illustration of how quantum effects can be taken
into account in a classical calculation.

The probability P(r) is not directly normalizable. This
happens because the potential has the asymptotic limit to zero
when r → ∞, and therefore P(r) → 1. This is similar to the
pair correlation function of infinite systems (we comment on
these in our Ref. [6]) which tends to 1 at large distances, the
value of the ideal gas. Similarly here, one should normalize
P(r) to the ideal gas value, e.g., to quantify the effect between
potentials, we calculate the so-called correlation volume,

veff = 4π

∫
drr2 [P(r) − 1]. (15)

For the two Boltzmann cases shown in Fig. 7, they are
veff = 5.3 and 151 fm3, respectively. The nucleon density
under freeze-out conditions is a fraction of the nuclear matter
density n0 ≈ 0.16 fm−3. Multiplying it by veff one finds that
while the original potential leads to probability of pair cor-
relations less than one, the modified potential instead predict
strong pairing of the nucleons.

C. Tetrahedral thermal fluctons

Let us now study the N = 4 flucton case at finite temper-
ature. To reduce the number of dimensions we will assume
a particular equilibrium configuration (tetrahedron) and con-

sider unidimensional trajectories along the mutual distance r.
As a warm-up exercise let us work out the equations for the
N = 3 case.

For three particles we also consider a simplified config-
uration to reduce the difficulty of the problem. Based on
symmetry, one expects that classical flucton would correspond
the particles to be at the corners of a equilateral triangle, with
the (time-dependent) side r(τ ). Without loss of generality, this
is achieved when three locations are

{�x1, �x2, �x3} =
{(

r√
3
, 0

)
,

(
− r

2
√

3
,

r

2

)
,

(
− r

2
√

3
,− r

2

)}
.

(16)

The length of each coordinate squared is �x2
i = r2/3 and the

sum of the three adds to r2, so the action is

SE =
∫

dτ

⎡
⎣ 3∑

i=1

mN

2
�̇x2

i +
∑
pairs

V (r)

⎤
⎦

=
∫

dτ

[
mN

2
ṙ2 + 3V (r)

]
, (17)

and the classical EOM for the relative distance is

r̈ = 3

mN

∂V (r)

∂r
. (18)

In a similar manner we can directly proceed to the action
and the equation of motion for four nucleons, assuming a
tetrahedral shape with side r (interparticle distance). In this
case we have N = 4 coordinates, which can be parametrized
without loss of generality as

�x1 =
(

0, 0,

√
3

8
r

)
,

�x2 =
(

r√
3
, 0,− r

2
√

6

)
,

(19)

�x3 =
(

− r

2
√

3
,

r

2
,− r

2
√

6

)
,

�x4 =
(

− r

2
√

3
,− r

2
,− r

2
√

6

)
,

with �x2
i = 3/8r2. The action and the equation of motion are

SE =
∫

dτ

⎡
⎣ 4∑

i=1

mN

2
ẋi

2 +
∑
pairs

V (r)

⎤
⎦

=
∫

dτ

[
3mN

4
ṙ2 + 6V (r)

]
, (20)

and the EOM to be solved for the flucton solution is

r̈ = 4

mN

∂V (r)

∂r
. (21)

As a side remark, it is curious that the equation of motion
in Euclidean time for the three cases N = 2, 3, 4 follows the
general expression

r̈ = N

mN

∂V (r)

∂r
. (22)
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FIG. 8. The exponential part of the four-nucleon density matrix
exp(−SE ) calculated by the flucton method (dots) versus the classical
Boltzmann exponent exp(−6βV ) (lines) at T = 100 MeV. The upper
and lower plots are for Walecka-type potential with σ mass mσ =
500, 285 MeV, respectively.

Unfortunately, there are no more configurations with N > 4
in which all particles stay at the same distance between each
other so this result cannot be generalized for N > 4 (for
results with polyhedra with N > 4 see our paper [6]).

After explaining the setup for four nucleons, we show
the results of semiclassical flucton calculation, paying special
attention to the sensitivity of the particular NN potential
used. In Fig. 8 we compare the semiclassical result for the
density matrix and the classical Boltzmann distribution, for
unmodified (mσ = 500 MeV) and strongly modified σ meson
mass (mσ = 285 MeV) in the Serot-Walecka potential.

In the former case the difference is not so large, as for
the N = 2 example, and Boltzmann expression provides a
fair description. With a deeper potential the situation is quite
different (see lower panel of Fig. 8). Notice that the clustering
is huge for the modified potential: It happens because its depth
of ≈−400 MeV is multiplied by six pairs. Again, quantum
effects (included only in the flucton solution) are important in
those areas where the classical probability is suppressed.
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FIG. 9. The density matrix for four nucleons in the tetrahedral
configuration as a function of internucleon distance r, for temper-
atures T = 50, 25 MeV, from top to bottom. The continuous lines
show the classical Boltzmann factor exp[−6V (r)/T ], while the dots
correspond to the semiclassical flucton configuration. The NN poten-
tial used is the Serot-Walecka potential Eq. (1) with mσ = 500 MeV.

To deepen a bit more the temperature dependence, in
Fig. 9 we compare the exponent in the density matrix from
classical statistical mechanics (solid lines) with the results of
the semiclassical flucton method, for different temperatures
T = 100, 50, 25 MeV without modifying the potential. Note
that as the temperature decreases, the quantum fluctuations
make the width of the distribution significantly wider than that
predicted by the Boltzmann factor. Formally, the semiclassical
approximation should be reliable when the flucton action
is large, SE  1. In this respect the models considered in
Appendix B, the harmonic and anharmonic oscillators, differ
from nuclear potentials. In the former cases the potential
grows indefinitely away from its minimum, so the action also
grows, and semiclassical approximation is improving for large
distances. However nuclear potentials are short ranged, at they
get small at large distances: with them SE gets small as well.
As a result, semiclassical approximation is reliable only in
some interval of distances.
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Note the curious loop in the flucton points at T = 25 MeV.
That means that for certain values of the observation point
r0 (remember that in the plots the subindex 0 has been
removed) the classical equations of motion provide up to
three independent solutions in some region of the potential.
Existence of multiple paths leading to the same final point
x0 and requiring the same propagation time is of course a
phenomenon well known in mechanics. In fact, already in
1659 Huygens discovered the isochrone curve, a cycloide,
sliding along which to the bottom from any initial point (at
zero initial velocity) takes the same time. While several paths
may satisfy the requirements needed for a “finite-temperature
fluctons” with the right period, it is not clear a priori which
of these solutions should contribute to the path integral. One
could select the ones with the smallest action (the largest
contribution to the path integral). In this case, all points
belonging to the loop should simply be disregarded, and
the semiclassical density matrix simply has a jump in the
derivative, a kind of first-order transition (notice the formal
similarity with the Maxwell construction for the determi-
nation of the thermodynamical potential across a first-order
transition cf. Fig. 12 in Ref. [24] by one of us). However, other
solutions to the classical equation of motion might contribute
as well. We plan to study this effect in detail in a future paper
[23].

The exponent of the action, shown in Fig. 9 is huge,
especially in the case of small temperatures. The pre-exponent
effects due to quantum/thermal fluctuations, not yet calcu-
lated, are expected to modify it strongly. While classical
motion preserves the tetrahedral shape, quantum fluctuations
do not, they happen in full 3(N − 1) = 9-dimensional space
and they are not scale-invariant.

D. N = 4 fluctons in the hyperdistance representation

Another—and as it turns out much more realistic—
approach to semiclassical theory is to combine it with quan-
tum mechanics along the hyperdistance ρ axis. As mentioned
in the Appendix A, it leads to appearance of effective re-
pulsive potential Veff(ρ) = 12/(2mNρ2), competing with the
attractive nuclear forces. Without it one would not be able to
reproduce light nuclei binding by a simple one-dimensional
equation.

It is therefore reasonable to apply the semiclassical meth-
ods, at zero or nonzero T , in the hyperdistance representation
including this potential. As shown in the Appendix the effec-
tive potential for the 1D Schrödinger equation is (given as a
function of the hyperdistance ρ)

Veff(ρ) = W (ρ) + 12

2mNρ2
+ VC (ρ), (23)

where VC is the Coulomb potential.
We solve the semiclassical equations of motion to find the

flucton solution for two temperatures T = 25, 100 MeV, using
the potential Veff(ρ) and its version with a double attraction,
to see the effect of the critical point on the NN potential.

In Fig. 10 we present our results in four panels, for the four
combination of temperatures and potentials.
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FIG. 10. e−SE for the K-harmonics potential of 4He. Top panels:
The Veff(ρ ) used is the one shown in Eq. (23) with NN potential in
Eq. (A7). Bottom panels: same potential but with doubled attraction.
Left panels: T = 100 MeV. Right panels: T = 25 MeV.

In the top left panel we start with a temperature of T =
100 MeV and the potential in Eq. (23), where the NN pairwise
potential is given in Eq. (A7) as used in Ref. [14]. In this case
the system is classical and the Boltzmann factor account for
all dynamics. For lower temperatures, where the potential is
well suited, we can see the result in the top right panel. One
can already see some quantum deviations from Boltzmann
expectations. In the bottom left panel we present the NN
potential Eq. (A7) with increased attraction by a factor of
2 at T = 100 MeV. In this example the temperature is still
dominating over the potential, and a sizable deviation from
Boltzmann is only obtained for T = 25 MeV.

IV. PRECLUSTERS AND PRODUCTION
OF LIGHT NUCLEI

The main motivation for this paper is that the possible
modification of the NN potential close to the freeze-out time
will lead to a preclustering effect of nucleons in heavy-ion
collisions. Furthermore, this effect is significantly enhanced
if the internucleon potential is modified due to the σ mass
modification near the QCD critical point [6].

Before proceeding to discuss potential observables, let us
start by reminding once more what we call the preclustering
phenomenon. It is very important to keep in mind that the
preclusters we study are very different from “nuclear frag-
ments” and also light nuclei (cf. Table I in Ref. [6]).

The light nuclei we will be discussing, with N = 2, 3
nucleons, d, t, 3

�H, 3He, typically have only one bound state.
Furthermore, they all have very small binding energies,
even in nuclear standards. The deuteron binding is only
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Bd = 2.2 MeV. An extreme case is the hypertriton 3
�H = pn�

[25]: its binding energy is only [26]2

B�

(
3
�He

) = 0.13 ± 0.05 MeV. (24)

Clearly the physical sizes of these states are very large,
comparable or larger than fireballs they come from.

These objects are therefore very fragile, easily destroyed
in any collision due to large cross section, and the cascade
codes typically predicted strong suppression of their produc-
tion. And yet, as shown in Ref. [2], their production rate is
in good agreement with the prediction of statistical thermal
model based on “resonance gas” thermodynamics. This model
knows only vacuum masses of these particles, entirely ig-
noring their small binding. To reconcile the data with codes,
in literature [28] some so-far unobserved “resonances” were
introduced, which have small sizes and “reasonable” destruc-
tion cross section, decaying into light nuclei after freezeout.
The explanation we suggest is that one does not need such
hypothetical resonances: their role is played by preclusters
we study. They are not bound states or resonances, just
statistical correlations, with an energy uncertainty �E ≈ T
and relatively compact in coordinate space.

Basically, there are two experimental signatures of preclus-
ters. One, discussed in detail in Ref. [6] is a modified proton
multiplicity distribution. Another one, which we will address
below, is a certain modification of light-nuclei production.

As we already mentioned, overall production of light
nuclei (and antinuclei) is well reproduced by the statistical
thermal model; see, e.g., Ref. [2]. By “overall” we mean that
each extra nucleon (antinucleon, upper sign) is suppressed by
the same factor exp[−(mN ± μB)/Tch]. The fitted values of
chemical freezeout temperature and baryon chemical potential
are key parameters, which give us ideas about matter as enters
the hadronic world, and their dependence on the collision
energy is well documented in Ref. [2]. From the experimental
results of the NA49 collaboration [29] one can also see the
good agreement between the 3He and t multiplicity and the
thermal model at different collision energies. However, recent
preliminary results of the STAR Collaboration [30] do not
show a similar agreement. It will be important to study in the
future the origin of this discrepancy with the thermal model.

However, behind this (overall successful) description one
can observe some “finer structure.” It becomes visible in ra-
tios, where the mentioned suppression factors cancel out. One
observable ratio is the tritium-proton-deuterium combination
defined as

Otpd = Nt Np

N2
d

, (25)

has been previously discussed in Ref. [31].
In this work we also propose the following ratios involving

4He (=α):

Oαp3Hed = NαNp

N3HeNd
, Oαt p3Hed = NαNt N2

p

N3HeN3
d

. (26)

2A recent measurement by the STAR Collaboration gives a value
three times larger [27].

All these ratios have the same powers of fugacity in denomi-
nators and numerators, which thus cancel, eliminating the triv-
ial dependence on baryonic chemical potential. Furthermore,
in classical statistical mechanics the momentum and coordi-
nate partition functions factorize, simplifying the discussion.
Mean kinetic energy per nucleon, either a single one or inside
any precluster, is the same, 〈K〉 = 3T/2. So, in all ratios the
kinetic parts of the Boltzmann factor, exp(−K/T ) for each
nucleon, do cancel as well. Volume factors also cancel. What
is left are factors from statistical weights, powers of masses in
the preexponent, and potential energies:

Otpd = 4

9

(
3

4

)3/2 〈e−3V/T 〉t

〈e−V/T 〉2
d

≈ 0.29〈e−V/T 〉, (27)

where the factor 3 in the exponential reminds that in tritium
there are three nucleon pairs, and the right-hand side is simpli-
fied under approximation that the averaged relative potential
is the same. Analogously,

Oαp3Hed = 1

3

(
2

3

)3/2 〈e−6V/T 〉α
〈e−3V/T 〉3He〈e−V/T 〉d

≈ 0.18〈e−2V/T 〉, (28)

where 6 is the number of nucleon pairs in 4He, and

Oαt p3Hed = 8

54
23/2 〈e−6V/T 〉α〈e−3V/T 〉t

〈e−3V/T 〉3He〈e−V/T 〉d

≈ 0.42〈e−3V/T 〉. (29)

Related to this last example, if one has an approximate
isospin symmetry, then one can also consider the simpler ratio

Oαpd = NαN2
p

N3
d

= 4

27
2−3/2eμQ/T 〈e−6V/T 〉α

〈e−V/T 〉3
d

≈ 0.05eμQ/T 〈e−3V/T 〉, (30)

where μQ is the charge chemical potential signaling a possible
breaking of the isospin symmetry. Notice that the STAR
Collaboration has performed statistical thermal fits in the BES
completely neglecting this chemical potential [32], whereas
NA49 collaboration has extracted this parameter in their fits
getting values μQ/T � −0.05 MeV [29], so one can safely
neglect it in what follows.

After introducing all these ratios let us look at experimental
results of the first of them, Otpd.

In Fig. 11 we show available experimental data on the
energy dependence of the combination Eq. (27), normalized
by relevant statistical weights in g = 0.29. Ignoring the t
and d bindings in a statistical model, one would expect this
combination to be equal to unit value. It is indeed the case at√

sNN = 200 GeV (the most-right point), with good accuracy.
Focusing on the specific ratios of α, t, p, d production,

in which many kinematical factors drop out, one should
expect their non monotonous energy dependence. The status
of experimental measurements of these ratios is as follows. A
maximum in t − p − d combination was originally reported,
by NA49 [29], to be around

√
sNN ≈ 9 GeV. Very recent

preliminary data [5] from STAR BES also see a maximum,
although at

√
sNN = 20–30 GeV.
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FIG. 11. The ratio Eq. (25) as a function of collision energy. The
ratio is normalized by the corresponding statistical weight g = 0.29.
Note that the high-energy RHIC point at the right side of the plot
gives the ratio value consistent with 1. Deviation from 1 is related to
nonzero interaction potential as shown in Eq. (27).

However, at collision energies
√

sNN ≈ 10–40 GeV the
value of the ratio observed is larger than one, roughly by
the factor 2. If correct, then this enhancement implies that
under such conditions the potential and the temperature are
comparable V/T ≈ O(1) as indicated in the relation Eq. (27).
We suggest that this extra tritium production comes from the
preclustering phenomenon we discuss.

With the current data accuracy it is not possible to tell
whether Fig. 11 show a one-maximum or a double-hump
distribution. Let us note that apart from the hypothetical QCD
critical point, the nonmonotonous behavior can be caused
by the onset of other (perhaps less exciting but still very
important) phenomena that are also expected in the same
energy range.

One of them is the maximum fireball lifetime as a function
of

√
sNN , well documented by recent femtoscopy data [33],

located at
√

sNN ≈ 47 GeV. As indicated already on the
early study [34] of hydrodynamical expansion, there are two
reasons for its existence, playing together in this energy range.
Those are: (i) the “softest point” in the equation of state, a
minimum in the speed of sound c2

s = (dP/dε)s or maximal
compressibility of matter; (ii) the maximal re-scattering rate
at the freeze-out. When the densities of pions and nucleons
are comparable Nπ ≈ NN , the largest relevant cross section
(reaching σπN ≈ 200 mb at the � peak) is most effective.

Focusing only on STAR data, and assuming that the de-
viation from 1 and the corresponding peak of the Otpd ratio
is due to the modification of the NN potential, it is very
tantalizing to consider the ratios Eqs. (28)–(30), as heavier
nuclei (with a larger number of nucleon pairings) would
produce an enhanced effect. These ratios involving 4He would
increase the power in the exponential by a factor 2 or 3.

Assuming the effect is entirely ascribed to the modification
of VNN , it is very easy to generate an approximate prediction
for each of these ratios, using experimental ratio Otpd [5] as
input. We plot the results in Fig. 12 for each of the ratios
(notice that the result for Oαt p3Hed has been divided a factor
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FIG. 12. The ratios Eqs. (28)–(30) as a function of the collision
energy computed from the ratio Eq. (27) in Ref. [5] assuming the
only effect of the NN potential modification.

of 5). While the absolute value of these ratios depends on
spin degeneracies and other factors, the important feature is
the relative difference between the peak and the values at low
and high energies.

If the experimental reconstruction of α particles [35] can
be performed in these low-energy collisions, and their multi-
plicity measured with certain level of confidence, then these
ratios would prove the sensitivity of the NN potential to the
presence of a near-by critical point.

It is important to mention that on top of the purely ther-
mal production, the particle yields suffer from feed-down of
hadron resonances which must be taken into account, being
the most relevant to this study those decaying into protons.
While we have not considered this effect, we assume that
this proton feed-down is constant enough around the critical
region, so that a maximum of these ratios can still be sensible
indicators of the critical behavior.

V. FROM PRECLUSTERS TO LIGHT NUCLEI

The understanding of the formation of various nuclear
species is among the central topics of nuclear physics, ex-
tensively studied in cosmological and astrophysical settings.
As commented in the introduction, what is common to the
regimes in which nuclei are produced in cosmos is that
the available temperatures are much lower than the binding
energies, T � |B|. The nuclear binding therefore dominates
the respective Boltzmann factors exp(−B/T ).

The setting we discuss here—the freeze-out of high-energy
heavy-ion collisions—is in the opposite regime, in which
light-nuclei bindings are few MeV and negligible, B � T .
One might therefore think that such fragile objects cannot be
produced. In other words, “Snow flakes do not jump out of a
hot oven.” We already mentioned that experiments show this
conclusion to be wrong, and we now propose and explanation.
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There are basically two ideas which we try to develop
in this work. One is that this pessimistic conclusion does
not hold for systems of four and more nuclei. First of all,
the ground-state binding of 4He is no longer small, even
for unmodified potential. Second, starting with four-nucleon
clusters, multiple (≈50) states exist near zero binding, with
interesting decay modes. Furthermore, let us emphasize, once
again, that one should not be looking at the stationary states or
their binding, but for preclustering phenomenon. Therefore,
one has to compare 3T/2 (the average thermal energy per
nucleon) to the value of the total potential energy per particle,

Vi = 1

2

∑
j �=i

Vi j,

produced at the location of particle i by all other particles. For
four particles there are three terms in the sum, and even for an
unmodified potential at 1 fm distance 3|V (1 fm)| ≈ 100 MeV,
comparable to T . For a modified potential like the one shown
by blue line in Fig. 1, the value is one order of magnitude
larger than T . For an increasing number N of particles Vi ≈
(N − 1)/2〈V (r)〉  3T/2, and the corresponding Boltzmann
factor would lead to very a strong clustering. Of course, this
argument does not hold for very large N with the standard
nuclear potential, because due to its short-range nature, nu-
cleons start to become blind to those far away from them.
Nevertheless the values of N when this happen increase with
the criticality of the potential, as it becomes more long-ranged.

Potential deviations of the nuclear ratios from the statistical
predictions imply that interaction strength V and T are com-
parable, in the specific collision energy range. This is only
possible when the distances between nucleons are 1–2 fm/c,
which we called “preclusters” [6]. Our dynamical studies in
Ref. [6] have shown that the corresponding correlations can be
large, especially if the nuclear forces are modified as expected.

In this section we comment on the differences between
the precluster formation and the final, observable, light-nuclei
production. While the former at produced in the hot regime
B � T , where a potential modification of the nuclear interac-
tions are expected, the later are only observed in a situation
with vanishing temperature where the standard NN potential
dominates the nuclear dynamics.

A. Precluster decay into stationary states

When discussing preclusters we have so far calculated
the thermal density matrix in coordinate space P(x; T ); see,
e.g., Figs. 5, 7, and 8. This function typically has the form
of a peak, centered at distances ≈1 fm between particles
(or hyperdistance ρ ≈ 2 fm) tending to a constant at large
distances. Let us introduce the notion of precluster wave
package, which by definition is proportional to the square root
of the density peak in coordinate density matrix

|ψcluster(x)|2 ≈ [P(x) − P(x = ∞)]. (31)

Because the asymptotic value at large distances is sub-
tracted, this wave package is by definition well localized. For
the 4He case, this would be the wave package in which four
nucleons are at freeze-out. When the thermal medium rapidly
disappears after that, this precluster wave package evolves

further. Its decomposition into stationary states |�n〉, with the
appropriate phases,

ψcluster(t, x) =
∑

n

〈�n(x)|ψcluster(0, x)〉e−iEnt�n(x), (32)

takes a time �t ≈ h̄/�E , where �E ≈ En+1 − En is the level
spacing. As we will see, for the excited states of 4He this �E
is of the order of few MeV, so this decomposition takes a long
time, much longer than explosion itself. Therefore, there is no
paradox of “fireball creating objects larger than itself”: the
stationary states (with large sizes) do appear much later in
time, basically at zero density! Furthermore, these states are
also unstable and decay into smaller systems: This also takes a
similarly long time �t ≈ 1/� ≈ 50 fm (see further discussion
in Sec. V C).

B. On Wigner function projection

If one would like to refine the previous picture, one can
use a more precise procedure. Note that so far we focused on
spatial locations of the nucleons in the precluster, ignoring the
momentum distribution. That was possible because in a ther-
mal state of nonrelativistic particles the kinetic and potential
energy are simply additive, and momenta distributions are just
Maxwell-Boltzmann’s ones (with the corresponding effective
mass for relative motion, Meff).

The product of this Maxwell distribution and the spatial
density matrix should be projected to the Wigner function
of the corresponding stationary states W0(x, p), the quantum
analog of the phase space distribution,∫

d3x
d3 p

(2π )3
e
− q2

2MeffTf P(x, T )W0(x, p), (33)

where x is the relative coordinates and q is relative momenta.
Let us also note that for the temperature we should use the
so-called kinetic freeze-out temperature Tf ≈ 100 MeV. After
the stage with Tf , there are—by definition—effectively no
collisions, as witnessed by mesonic and baryonic p⊥-spectra
well explained by a convolution of hydrodynamic flow and
thermal distributions [32].

This Wigner projection is not a new idea, and people
using cascade or molecular dynamics codes for the description
of heavy-ion collisions have been using it. However, this
projection is customarily done by an oversimplified Gaussian
form of the Wigner function [36],

W0(r, p) = 8 exp

(
− r2

d2
− p2d2

)
, (34)

normalized to

1 =
∫

d3r
d3 p

(2π )3
W0(r, p) =

∫
d3r

d3 p

(2π )3
W 2

0 (r, p).

(35)

The form Eq. (34) has only one parameter d , related to
the r.m.s. radius. For the deuteron d = 1.7 fm is usually used,
corresponding to the r.m.s. deuteron radius of 2.1 fm. Fur-
thermore, it was claimed that even dependence on the specific
value of d is rather weak, and that all what matters is that the
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FIG. 13. Ground-state wave function (squared) for the “Walecka
deuteron” obtained numerically from Eq. (5), and probability density
Eq. (37) for the Gaussian Wigner function Eq. (34) of Ref. [36].

phase space volume has the right magnitude, corresponding to
a single state.

We call this approach “oversimplified” because it ignores
the fact that wave functions have at least two very different
parts, “in” and “out” of the potential well. Even the origi-
nal approach to deuteron, by Bethe [37], via a rectangular
attractive potential well, illuminated clearly existence of two
distinct components of the wave function. An appropriate
parametrization should have, at least, two Gaussians to be
somewhat realistic. The “in” component possesses large mo-
menta related to the potential well depth V , the “out” has
large size related to binding. Since B � V they have different
properties and do not correspond to the single Gaussian.
Even larger difference should be present for multinucleon
case.

In Fig. 13 we illustrate the “Walecka deuteron” wave
function squared, |ψL=0,i=1(r)|2 = |uL=0,i=1(r)|2/(4πr2), ob-
tained in Sec. II, which is normalized as∫

d3r|ψL=0,i=1(r)|2 = 1. (36)

We plot together the quantity [38],

ρ(r) =
∫

d3 p

(2π )3
W0(r, p) = exp

(−r2/d2
)

π3/2d3
, (37)

using the Gaussian Wigner function in Eq. (34). This proba-
bility density is, in fact, equal to the squared wave function
[38] of the deuteron. With the chosen normalization for the
Wigner function, one has∫

d3rρ(r) = 1, (38)

so it makes sense to compare the square wave function ob-
tained from Walecka potential and this probability density
for a Gaussian wave function. We show the comparison in
Fig. 13.

TABLE I. Low-lying resonances of the 4He system, from BNL
properties of nuclides.a JP are the total angular momentum and
parity, � is the decay width. The last column is the decay channel
branching ratios, in percent. p, n, d correspond to the emission of
proton, neutron, or deuterons, respectively.

E (MeV) JP � (MeV) decay modes, in %

20.21 0+ 0.50 p = 100
21.01 0− 0.84 n = 24, p = 76
21.84 2− 2.01 n = 37, p = 63
23.33 2− 5.01 n = 47, p = 53
23.64 1− 6.20 n = 45, p = 55
24.25 1− 6.10 n = 47, p = 50, d = 3
25.28 0− 7.97 n = 48, p = 52
25.95 1− 12.66 n = 48, p = 52
27.42 2+ 8.69 n = 3, p = 3, d = 94
28.31 1+ 9.89 n = 47, p = 48, d = 5
28.37 1− 3.92 n = 2, p = 2, d = 96
28.39 2− 8.75 n = 0.2, p = 0.2, d = 99.6
28.64 0− 4.89 d = 100
28.67 2+ 3.78 d = 100
29.89 2+ 9.72 n = 0.4, p = 0.4, d = 99.2

ahttps://www.nndc.bnl.gov/nudat2/getdataset.jsp?nucleus=
4HE&unc=nds.

C. Possible observation of preclusters and statistical
treatment of nuclear resonances

Preclusters do not have fixed energy, as they are superposi-
tion of physical states in certain energy strip �E ≈ T . Being
left alone, the preclusters decay into many physical states of
the corresponding number of nucleons or light nuclei. In the
previous section we focused on the precluster decay into the
ground state. Now we discuss other decays (which of course
dominate in terms of the total probability).

Let us consider as an example a ppnn precluster. Apart
of forming a single bound state, the α particle or 4He,
it can also decay into (i) four individual nucleons; (ii)
1 + 3 channels p + t, n + 3He; (iii) 2 + 2 channel d + d .
The question then is whether one can experimentally infer
the existence of preclusters by looking at these two-body
channels.

One feature expected would be a peak at small relative
momentum (rapidity). In the invariant mass distribution (p1 +
p2)2 one also should find low-mass enhancement, related to
feed-down from four-nucleon resonances. While we have not
yet derived all of them from quantum mechanics, one can use
those which were found experimentally.

In Table I we list such resonances occupying the strip of
energies of width �E = 10 MeV above the binding threshold,
shown with their quantum numbers and branching ratios for
their decay modes.

Note that already in this strip the resonances are strongly
overlapping, as the decay widths and energy differences
are comparable. A growing density of states and widths
above this strip makes their separation/discovery hard. How-
ever, one does not need to find them one-by-one, but
rather look for a collective enhancement near-zero effective
mass.
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In the spirit of the statistical thermal model, one may
assume that all

Nstates =
∑

i

(2Ji + 1) = 49

states in this energy strip are populated equally in the quan-
tum decomposition of preclusters, which in our classical sim-
ulation have corresponding energies. With this assumption,
and using the decays indicated in the table (interpreted as
p + t, n + 3He, d + d exclusive channels), one further finds
that decays of a single ppnn precluster should produce,
on average, 0.30 (p + tritium), 0.22 (n + 3He), and 0.96
deuterons (0.48 dd pairs). Detector resolution permitting, one
should search for evidences of these p + t, d + d resonances
in heavy-ion datasets. In particular, these evidences can only
show up in the nuclear ratios we have been considering, as
this “feed-down” is just a tiny effect in the absolute yields of
nuclei. Should such “feed down” be found, it would obviously
be a direct evidence for the four-nucleon preclustering we
advocate in this work.

VI. SUMMARY

In our previous paper [6] we studied clustering of nucleons,
at the freeze-out conditions of heavy-ion collisions, especially
close to a possible critical point of QCD. The method used
to simulate the real-time dynamics of nucleons was a clas-
sical molecular dynamics code. Although for calculations in
nuclear matter it was augmented by some phenomenological
“Fermi potential” to mimic quantum effects, it was clear that a
more quantitative study of few-body quantum mechanics was
needed, as is indeed explored in the present paper.

Before we come to their description, let us recall the
main finding of Ref. [6]. It was shown that the clustering
phenomenon and its rate are extremely sensitive to even small
modifications of the internucleon potential. The observable on
which we focused in that paper was the scaled kurtosis of the
(net-)proton multiplicity distribution, which was shown to be
substantially increased by a reduction of the σ -mode mass.

Let us now come to the results of this paper, aiming first at
experiment-oriented readers. The available data on Nt Np/N2

d
ratio versus the collision energy, shown in Fig. 11, are intrigu-
ing. At the highest RHIC energy this ratio is compatible with
the ratio of statistical weights of a noninteracting gas (unit
value on that plot). However, at lower energies it is about twice
larger, perhaps with one (or two) maximum at certain collision
energy. Since the main Boltzmann factors exp[(μB − mN )/T ]
cancel in the ratio, as well as thermal kinetic energy of four
nucleons in numerator and denominator, any deviation from
1 should be assigned to some interaction. In particular, a
stronger attraction in the three-nucleon system as compared
to the two-nucleon one would bring this ratio to values larger
than 1. An enhanced production of t is thus interpreted above
as a contribution from preclusters.

If so, then we propose that similar effects, but enhanced,
should be observed in other ratios, including 4He like

NαNp

N3HeNd
,

NαNt N2
p

N3HeN3
d

,
NαN2

p

N3
d

. (39)

The main object of this study, the four-nucleon preclusters,
were found to be very interesting, even for the unmodified
T = 0 nuclear forces. Out of ≈50 bound states, only one—the
ground state—is the observable 4He. All others have known
decay channels as listed in Table I. We suggest that feed-
down from them is also part of the reason for the enhanced t
production at low RHIC energies. One should study this sug-
gestion experimentally, looking for explicit two-body decay
channels of preclusters, as an enhancement at low invariant
mass in, say p + t, d + d channels. We also propose that
the precluster decay into four protons is contributing to the
enhanced kurtosis of the net-proton multiplicity distribution.

Now we turn to summary for readers interested in many-
body theory. Among the goals of this paper are:

(i) development of a novel semiclassical method for
finite-temperature density matrix, based on path in-
tegrals, called the thermal flucton;

(ii) comparing its results with classical Boltzmann distri-
bution at high temperature, and with quantum ground-
state wave functions at low T ;

(iii) obtaining reliable estimates for precluster decay prob-
abilities into d for two nucleons, and 4He for four
nucleons;

(iv) obtaining estimates for two-body precluster decays,
such as ppnn → p + t , n + 3He, and d + d .

We used first a (rather traditional) method to calculate
the density matrix for four-nucleon system, via solving the
Schrödinger equation for multiple energy levels and weight-
ing them by the Boltzmann factor. We did so for the two-
nucleon system with a Serot-Walecka potential and using the
K-harmonics method for four nucleons. The results, shown in
Fig. 5, show a modest ≈1.4 correlation for the unmodified
potential, but ≈10 enhancement for the modified one with
increased attraction.

A part of this paper is devoted to the methodical devel-
opment of the semiclassical “flucton” method [15], so far
developed for T = 0 only [20,21]. We have shown how to use
it for nonzero temperatures. It does work well for standard
toy models such as the anharmonic oscillator (see Fig. 16),
and it is also applicable to two- and four-nucleon problem at
finite temperatures. The flucton method (see Fig. 8) predicts
somewhat larger effects than K-harmonics do, ≈4 for the
unmodified potential, and really huge enhancement for the
modified one. The difference may be related to the fact that
we only calculated the leading semiclassical part of the four-
nucleon density matrix, exp(−Sflucton), without the one-loop
pre-exponent (determinant) or other corrections. It may also
indicate that the action is not large enough to fully trust the
semiclassical approach.

Note added in proof. The large kurtosis at the lowest energy
central Au+Au collisions observed by the STAR Collabo-
ration (which triggered our study of four-nucleon systems)
was recently also observed by the HADES Collaboration
[39] at even lower energy

√
sNN = 2.4 GeV. The feed-down

from four-nucleon resonances that we suggested in this paper
has been applied in Ref. [40] using a new statistical-thermal
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model, improving the description of HADES hadron produc-
tion data.
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APPENDIX A: WAVE FUNCTION OF 4He USING
K-HARMONICS

The so-called method of K-harmonics was developed
in Ref. [13]. Its main idea is that the multidimensional
Schrödinger equation can be treated with a single “radial”
coordinate plus “angular variables,” for which a complete
set of functions is known. In certain cases a rather good
approximation can be obtained using a single lowest angular
function, with trivial angular dependence. Such cases include
in particular A = 3 nuclei and also 4He, which is the case we
will discuss here following Ref. [14]. Since these papers are
rather old, we indicate in this Appendix their main points.

As a preliminary information, let us note that 4He is a
surprisingly compact nucleus, with a r.m.s. radius of only
R(4He) ≈ 1.6 fm. Its binding energy may appear to be large
B(4He) = 28.3 MeV, but since there are six nucleon pairs the
“binding per pair” is rather small and only about twice that of
the deuteron.

The first standard step in many-body physics is the sepa-
ration of the center of mass motion from the relative coordi-
nates. It is usually done using Jacobi coordinates, which for
the A = 4 case are

�ξ1 = �x1 − �x2√
2

, �ξ2 = �x1 + �x2 − 2�x3√
6

, (A1)

�ξ3 = �x1 + �x2 + �x3 − 3�x4

2
√

3
. (A2)

The radial coordinate, or hyperdistance, is defined as

ρ2 =
3∑

m=1

(�ξm)2 = 1

4

⎡
⎣∑

i �= j

(�xi − �x j )
2

⎤
⎦. (A3)

The radial part of the Laplacian in these Jacobi coordinates is
ψ ′′(ρ) + 8ψ ′(ρ)/ρ, and using the substitution

χ (ρ) = ψ (ρ)ρ4, (A4)

one arrives to the conventional-looking Schrödinger equation
for K = 0 harmonics,

d2χ

dρ2
− 12

ρ2
χ − 2mN

h̄2 [W (ρ) + VC (ρ) − E ]χ = 0, (A5)
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FIG. 14. W (ρ ) and Veff(ρ ) potentials used in Ref. [14] for the
solution of Eq. (A5). The second potential is also used in the
semiclassical solution in Sec. III D using the flucton path.

where W is the projection of the potential to this harmonic.
According to Ref. [14],

W (ρ) = 315

4

∫ 1

0
VNN (

√
2ρx)(1 − x2)2x2dx, (A6)

where VNN (r) is the two-body nuclear potential.
We consider the simplest nuclear potential of Ref. [14]

(called V1 there),

VNN (r) = −83.34 e−r2/1.62 + 144.86 e−r2/0.822
, (A7)

with the prefactors given in MeV while the radii in the expo-
nents in fm. In Eq. (A5) also appears a Coulomb repulsion
between the two protons, which adds VC (ρ) = 2.23 MeV ·
fm/ρ. The discussion of the solutions of this equation is given
in the main text, where not only the ground state but also the
first JP = 0+ excitation can be identified with physical states.

For the application of the problem Eq. (A5) into the
semiclassical flucton solution, it is easy to realize that it is
equivalent to a 1D Schrödinger equation,

− h̄2

2mN

d2χ

dρ2
+ Veff(ρ)χ = Eχ, (A8)

with the effective potential,

Veff(ρ) = W (ρ) + 6h̄

mNρ2
+ VC (ρ). (A9)

Therefore, we can apply the standard flucton method de-
scribed in the text to obtain the flucton solution to the inverted
potential −Veff(ρ). The potentials W (ρ) and Veff(ρ), for the
special case of the NN potential in Eq. (A7), are plotted in
Fig. 14.

APPENDIX B: SEMICLASSICAL THEORY
AT FINITE TEMPERATURE

In this Appendix we illustrate how the flucton method
is applied for the 1D harmonic oscillator problem, with the
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FIG. 15. Flucton path for the anharmonic oscillator with g = 1
and T = 1 (in units of the mass), for the observation point x0 = 2.
Notice that, as expected, τ ∈ (−β/2, β/2) with β = 1/T = 1 and
x(τ = 0) = x0.

Euclidean action

SE [x(τ )] =
∫

dτ

(
ẋ2

2
+ x2

2

)
, (B1)

where three mechanical units are chosen to have h̄ = m =
ω = 1. The dot indicates derivative over the Euclidean time
τ = it , and the circle at the integral reminds us that it is
defined on a Matsubara circle. Note that the sign of the
potential in the action is reversed, which is the consequence
of i2 = −1 in the kinetic term.

The flucton is a classical path which: (i) passes through
some observational point x0; and (ii) is periodic with the
period β in τ . At zero temperature, because in Euclidean time
the potential is inverted, the particle is “sliding” from the max-
imum τ = 0 to τ = ±∞. Most of the previous applications
were at T = 0 (β = ∞) and the slide was always started from
the maximum, at zero energy.

At nonzero T such slides also start with zero velocity
but from a certain “turning point” xturn and proceed toward
the observational point x0. The turning point, by symmetry,
should be separated from x0 by the time equal to half period
β/2. For any one-dimensional motion there is no need to
use the Newton’s equation of motion. Expressing the velocity
from the energy conservation on the path, this condition can
be put into the general form

β

2
=

∫ x0

xturn

dx√
2(V (x) + E )/m

. (B2)

For the harmonic oscillator, with V (x) = x2/2, it is easy to
find the turning point by solving

E = V (xturn) = x2
turn

2
, (B3)

and calculate the integral for the period

β

2
= arccosh

(
x0√
2E

)
. (B4)
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FIG. 16. Top panel: Density matrix P(x0) vs. x0 for anharmonic
oscillator with the coupling g = 1, at temperature T = 1, calculated
via the definition Eq. (2) (line) and the flucton method (points). The
line is based on 60 lowest-state wave functions found numerically.
Bottom panel: Comparison of the logarithmic derivative of the
density matrix of the upper panel.

The classical flucton path is therefore given by

xfluc(τ ) = x0
cosh(τ − β/2)

cosh(β/2)
, (B5)

and at both τ = 0 and τ = β it returns to the desired point x0.
Now, substituting this solution into the Euclidean action one
finds that

SE [xfluc(τ )] = x2
0 tanh

(
β

2

)
, (B6)

and the density matrix is therefore Gaussian at all tempera-
tures

P(x0) ≈ e−SE [xfluc(τ )] = e−x2
0 tanh( β

2 ). (B7)

This reproduces the result obtained by Feynman [12] via
the explicit calculation of the Gaussian path integral. As it
happens for any Gaussian path integral, this semiclassical
formula is, in fact, exact.
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Let us now proceed to illustrate the first nontrivial problem,
the anharmonic oscillator, defined by

SE [x(τ )] =
∫

dτ

(
ẋ2

2
+ x2

2
+ g

2
x4

)
. (B8)

The tactics used in the previous example are not easy to
implement: in particular, the period condition Eq. (B2) defin-
ing the energy E needs to be solved numerically for each
value of the x0. Furthermore, using energy conservation leads
naturally to τ (x) representation of the path, rather than the
conventional x(τ ).

After trying several strategies we concluded that the sim-
plest way to solve the problem is:

(i) solve numerically the second-order equation of
motion,

ẍ = ∂V (x)

∂x
= x + 2gx3, (B9)

starting not from the observation point x0 but from the
turning point xturn at τ = −β/2. This is easier because
the velocity vanishes at this point, and a numerical
solver can readily be used;

(ii) follow the solution for half period β/2 and thus find
the location of x0 = x(τ = 0);

(iii) calculate the corresponding action and double it, to
account for the other half period τ ∈ (0, β/2).

Notice that this method provides x0 as an output after solv-
ing the equations of motion with initial conditions x(−β/2) =
xturn and ẋ(−β/2) = 0. One could also tweak a bit the method
to use x0 it as an input by using the constraints x(0) = x0 and

ẋ(−β/2) = 0. The details of this procedure and its compari-
son with the numerical results based on the definition Eq. (2)
for the anharmonic oscillator will be provided in a separate
methodical paper [23].

In Fig. 15 we show the numerical solution of the flucton
path for the anharmonic oscillator with g = 1 and T = 1 (in
units of the mass). We choose the observation point x0 = 2,
which is reached as expected, at τ = 0 (cf. Fig. 6). The flucton
is periodic in τ with period β = 1/T .

Here we present the upper panel of Fig. 16 comparing the
summation over 60 squared wave functions, and Boltzmann
weighted (solid line), with the result of the flucton method
(points) at T = 1 (in units of the mass). The coupling is
set to g = 1. For additional comparison we also present the
numerical results of a path integral Monte Carlo calculation
with the same parameters which simulates quantum paths
of one particle in the anharmonic oscillator potential. The
method is inspired by the nice reference [41] and will be
reviewed in Ref. [23].

As a semiclassical approach one expects that the flucton
solution works better when the action is large, i.e., for large
values of x0. However, one observes that the flucton system-
atically overestimates the solution based on the Schrödinger
solution. Part of the discrepancy comes from normalization
issues as described in Ref. [21]. To remove those it is enough
to compare the logarithmic derivative of the density matrix
d log P(x0)/dx0. In the bottom panel of Fig. 16 we show the
logarithmic derivative of the density matrix in linear scale.
While the agreement is nearly perfect, a small difference can
still be detected. We ascribe it to the loop corrections of the
thermal flucton solution [21].
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