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Equation of state for hot QCD and compact stars from a mean-field approach
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The thermodynamic properties of high temperature and high density QCD matter are explored within the
chiral SU(3)-flavor parity-doublet Polyakov-loop quark-hadron mean-field model, CMF. The quark sector of the
CMF model is tuned to describe the μB = 0 thermodynamics data of lattice QCD. The resulting lines of constant
physical variables as well as the baryon number susceptibilities are studied in some detail in the temperature–
chemical-potential plane. The CMF model predicts three consecutive transitions: the nuclear first-order liquid-
vapor phase transition, chiral symmetry restoration, and the crossover transition to a quark matter phase. All three
phenomena are crossovers, for most of the T -μB plane. The deviations from the free ideal hadron gas baseline at
μB = 0 and T ≈ 100–200 MeV can be attributed to remnants of the liquid-vapor first-order phase transition in
nuclear matter. The chiral crossing transition determines the baryon fluctuations at much higher μB ≈ 1.5 GeV.
At high baryon densities, μB ≈ 2.4 GeV, the behavior of fluctuations is controlled by crossover to quark matter.
The CMF model also describe well the static properties of high μB neutron stars as well as recent neutron star
merger observations. The effective equation of state presented here describes simultaneously lattice QCD results
at μB = 0 as well as observed physical phenomena (nuclear matter and neutron star matter) at T ∼= 0 and high
densities, μB > 1 GeV.
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I. INTRODUCTION

At low temperatures and high baryonic densities a tran-
sition from hadronic matter to a cold deconfined state with
quark degrees of freedom is expected [1]; this transition is
supported by perturbative QCD calculations [2]. This phe-
nomenon is a particular case of appearance of a deconfined
state as in quark-gluon plasma (QGP) which is expected at
large temperatures [3]. The study of the unknown QCD phase
diagram is one of the main motivations for the state-of-the-
art research in the nuclear and particle physics community.
A rich phase structure is conjectured for finite temperatures
and chemical potentials [4–8]. The QCD phase structure is
an important ingredient for the understanding of the early
universe, of ultrarelativistic heavy ion collisions, and of the
evolution, structure and inspirals of neutron stars [9]. Even
though QCD is a well-established theory with only a few
parameters, perturbative calculations are inappropriate in the
crossover regions of T and μB discussed here due to the large

*Deceased.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

values of the QCD coupling constant at scales relevant for
most of these applications [10]. The infamous sign problem
[11] prohibits lattice QCD (LQCD) calculations at finite
densities.

The running experiments at the Large Hadron Collider
(LHC), at the Relativistic Heavy Ion Collider (RHIC), at the
Super Proton Synchrotron (SPS), and at the Heavy Ion Syn-
chrotron (SIS) provide state-of-the-art data of the measure-
ments of properties of matter produced in heavy-ion collisions
(HIC). The detailed information of the particle production
as measured in these experiments allows us to extract both
thermodynamic and kinetic characteristics of the system that
is created.

Astrophysical observations of compact stars, along with
data from the recent gravitational-wave detection by LIGO
and VIRGO collaborations [12] provide an additional tool
to probe the equation of state of dense nuclear and possibly
quark matter [13–19] in the region of moderate temperatures
and high baryon densities, close to those created in HIC.

First principle LQCD calculations suggest a smooth
crossover transition at vanishing baryochemical potential
μB = 0 from hadronic to partonic degrees of freedom [20].
Although there is no indication of a first- or a second-
order phase transition in the energy density, pressure, entropy
density, and speed of sound, there are other observables in
LQCD: chiral susceptibilities which seem to indicate a chiral
crossover at a pseudocritical temperature Tpc ≈ 155 MeV
[21,22]. However, the extension of LQCD calculations to
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finite μB is a difficult problem. Approximate lattice methods,
such as extrapolations by Taylor expansion and the analytic
continuation from purely imaginary to real μB, are reasonable
only for small baryon densities. The exploration of higher
baryon densities requires effective QCD models, which re-
spect the known symmetries of QCD and describe appropri-
ately the known phenomenology of strong interactions.

The current knowledge of the properties of strongly inter-
acting matter suggests a number of features that ought to be
incorporated in any reasonable effective QCD model:

(i) First, nuclear matter and the nuclear liquid-vapor
phase transition at moderate temperatures, close to the
nuclear saturation density [23].

(ii) Second, at high temperature and at high chemical
potential the Stefan-Boltzmann limit for massless
quarks and gluons should be reached by thermody-
namic quantities [24].

(iii) The transition from hadronic to quark-gluon degrees
of freedom, at high temperatures and/or chemical
potentials, is a crucial ingredient for the consistent
description of QCD matter.

Often, these different aspects of QCD are modeled within
separate frameworks, which are then merged through various
constructions.

The present work formulates a single combined framework
to describing the QCD thermodynamics, which simultane-
ously satisfies all the constraints from lattice QCD and known
nuclear matter properties as well as neutron star observations.

The resulting equation of state is then used to estimate var-
ious properties of systems created in both heavy-ion collisions
and neutron star physics. Section II presents the description of
the chiral SU(3)-flavor parity-doublet Polyakov-loop quark-
hadron mean-field model, CMF. Section III describes the fine
tuning of model parameters to the μB = 0 LQCD data on the
trace anomaly, and presents a comparison of the CMF model
predictions for various conserved charge number fluctuations
with the corresponding lattice data. The QCD phase diagram
deduced from the CMF model is studied in Sec. IV. The
creation of hot and dense QCD matter as created in heavy-
ion collisions at various collision energies is studied using
the one-dimensional hydrodynamics in Sec. V; the respective
trajectories along the QCD phase diagram are explored as
well. Section VI presents the CMF model predictions for the
observed neutron star properties.

II. CHIRAL SU(3)-FLAVOR PARITY-DOUBLET
POLYAKOV-LOOP QUARK-HADRON MEAN-FIELD

MODEL, CMF

The chiral SU(3)-flavor parity-doublet Polyakov-loop
quark-hadron mean-field model, CMF, is an extension of the
previously proposed σ model with parity doubling for nuclear
and hadron matter [25–30]. The CMF model was extended
to include quark degrees of freedom [31–35]. This model is
a phenomenological effective unified approach to describe
interacting hadron-quark matter. The Lagrangian includes
essential symmetries and features of QCD. These include

(i) Chiral symmetry restoration in the hadronic sector, in
particular the baryon parity doubling so an explicit
mass term for baryons is possible, even when chiral
symmetry is restored. This leads to a restoration of
mass degeneracy among baryons and their respective
parity partners [36,37].

(ii) Eigenvolume corrections for hadrons, which allow for
an effective modeling of their repulsive interactions.
This suppresses hadronic densities and ensures a tran-
sition to a parton-dominated matter at large densities,
when quark and gluon degrees of freedom appear.

(iii) Chiral symmetry restoration for quarks and a dynam-
ical generation of their masses.

(iv) The Polyakov loop via a QCD-motivated potential,
incorporates the deconfinement transition.

A detailed description of the hadronic part of the CMF
model can be found in the literature [31,32,34,38]. It is based
on a realization of a σ model in the mean-field description.
Here the relevant fermionic degrees of freedom are baryons
that interact through mesonic mean fields. The version of
this model used here includes all states in the SU(3) f baryon
octet, together with their parity partners, i.e., states with the
same quantum numbers but opposite parity. The LQCD data
suggests that the same mechanism should be implemented
for higher baryonic states: the baryon decuplet [37]; this is
a plan for future studies. In the limit of chiral symmetry
restoration these parity partner states should be degenerate
and their masses equal, which then serves as a signal for chiral
symmetry restoration. To allow for such a behavior, the baryon
masses are dynamically generated by the scalar σ field and the
scalar strange ζ field, which serve as the order parameters for
the chiral transition:

m∗
i± =

√[(
g(1)

σ i σ + g(1)
ζ i ζ

)2 + (m0 + nsms)2
] ± g(2)

σ i σ ± g(2)
ζ i ζ .

(1)

Here + stands for positive and − for negative parity states, g( j)
i

are the coupling constants of baryons to the two scalar fields,
and m0 = 759 MeV is the baryon mass at the restored phase.
In addition, there is an SU(3) f symmetry-breaking mass term
proportional to the strangeness content of the baryons; there
ns is the number of strange quarks in the baryon and ms =
130 MeV is the mass of the strange quark. The couplings g( j)

i
are tuned to reproduce the vacuum masses of baryons.

The mean-field values of the chiral fields are driven by the
thermal contribution from baryons and quarks, and controlled
by the scalar meson interaction, driving the spontaneous
breaking of the chiral symmetry:

V = V0 + 1
2 k0I2 − k1I2

2 − k2I4 + k6I6, (2)

with

I2 = (σ 2 + ζ 2), I4 = −(σ 4/2 + ζ 4),

I6 = (σ 6 + 4 ζ 6)
(3)

where V0 is fixed by demanding that the potential vanishes in
the vacuum.

The parameters of the scalar and the vector interac-
tions are fitted to describe nuclear matter properties [34,39].
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Contributions of all established hadronic resonances are in-
cluded here with their vacuum masses [40]. These states
can be coupled to meson fields as parity doublets as well.
However, this is not done in the current implementation; they
interact with the other particles via their excluded volume
only.

The quark degrees of freedom are incorporated in ac-
cord with the Polyakov-loop extended Nambu–Jona-Lasinio
(PNJL) approach [41]. The appearance of quarks is controlled
by the value of Polyakov loop L and its conjugate L† which are
matrices in color space. L plays the role of the order parameter
for the deconfinement transition. The coupling of the quarks to
the Polyakov loop is introduced through the thermal energy of
the quarks. Their thermal contribution to the grand canonical
potential � is given by

�q = −V T
∑
i∈Q

di

(2π )3

∫
d3k

1

Nc
Trc ln(1 + Le−(E∗

i −μ∗
i )/T )

(4)

and

�q = −V T
∑
i∈Q

di

(2π )3

∫
d3k

1

Nc
Trc ln(1 + L†e−(E∗

i +μ∗
i )/T ).

(5)

After carrying out the trace in color space, the Eqs. 4 and 5
can be formulated in terms of the traced Polyakov loop
� = (TrcL)/Nc and �̄ = (TrcL†)/Nc [41]. At finite μB the
Polyakov loop may become complex, which leads to the
fermion sign problem [42–44]. In our calculations we impose
� and �̄ to be real valued, so all thermodynamic quantities
are real. At vanishing quark density � = �̄, while at finite
net quark density � �= �̄. The quark thermodynamic potential
obtains the following form:

�q = −V T
∑
i∈Q

di

(2π )3

∫
d3k

1

Nc
ln(1 + 3�e−(E∗

i −μ∗
i )/T

+ 3�̄e−2(E∗
i −μ∗

i )/T + e−3(E∗
i −μ∗

i )/T ) (6)

and

�q̄ = −V T
∑
i∈Q

di

(2π )3

∫
d3k

1

Nc
ln(1 + 3�̄e−(E∗

i +μ∗
i )/T

+ 3�e−2(E∗
i +μ∗

i )/T + e−3(E∗
i +μ∗

i )/T ). (7)

The sums run over all light quark flavors (u, d , and s), V
is the system’s volume, di = 2 × 3 is the the corresponding
degeneracy factor, and E∗

i =
√

m∗2
i + p2 is the energy. The

quark chemical potential μ∗ is defined by the quarks’ quantum
numbers and is not modified by repulsive interactions as
those are disfavored by LQCD calculations [39,45]. Note that
two- and three-quark contributions to � are omitted in the
CMF model since hadronic excitations are explicitly included.
The present model does not consider color superconductivity
phenomena [46,47] and inhomogeneous phases [48].

The effective masses of the light quarks are generated by
the σ field (nonstrange chiral condensate) as well; the mass
of the strange quark is generated by the ζ field (strange
quark-antiquark state). The small explicit mass terms are

δmq = 5 MeV and δms = 150 MeV for the strange quark, and
m0q = 253 MeV, which corresponds to an explicit mass term
which does not originate from chiral symmetry breaking:

m∗
q = −gqσ σ + δmq + m0q,

(8)
m∗

s = −gsζ ζ + δms + m0q.

Dynamics of the Polyakov loop is controlled by the effec-
tive Polyakov-loop potential UPol(�, �̄, T ) [41,49]:

UPol(�, �̄, T ) = − 1
2 a(T )��̄ + b(T ) ln[1 − 6��̄

+ 4(�3 + �̄3) − 3(��̄)2],

a(T ) = a0T 4 + a1T0T 3 + a2T 2
0 T 2, b(T ) = b3T 4

0 .

(9)

Note there are other available expressions of the potential
[41,50,51]. The parameters of the used potential can be fixed
to the lattice QCD data in the pure gauge sector [51]. How-
ever, this yields an unsatisfactory description of the (2 + 1)-
flavor QCD thermodynamics when the hadrons are explic-
itly included in the model. Therefore the parameters of the
Polyakov-loop potential are adjusted in the present work to
describe properly the (2 + 1)-flavor lattice data.

The CMF model incorporates excluded-volume (EV) ef-
fects, in order to suppress the hadronic degrees of freedom in
the regions of the phase diagram where physically quarks and
gluons dominate [32]. Consequently, all the thermodynamic
densities, including the quark contribution, are reduced, as
parts of the system are occupied by EV hadrons:

ρi = ρ id
i (T, μ∗

i − vi p)

1 + ∑
jεHRG v jρ

id
j (T, μ∗

j − v j p)
, (10)

where v j are the eigenvolume parameters for the different
species. p is the system pressure and μ∗ is the chemical
potential of the hadron. The v is assumed to be vB = 1 fm3

for (anti)baryons, vM = 1/8 fm3 for mesons, and is set to zero
vq = 0 for quarks.

All in all, the CMF model has the following expression for
the grand canonical potential:

� = �q + �q̄ +
∑

iεHRG

�i − V (Usc + Uvec + UPol ) (11)

where �q and �q̄ are quark and antiquark contributions
given by Eqs. (6) and (7).

∑
iεHRG �i represents the hadronic

contribution and is given by

�i =−V T
di

(2π )3

∫
d3k ln

[
1+ηi exp

(
−E∗

i − μ∗
i + vi p

T

)]
,

(12)

here and in Eqs. (6) and (7). V is the system volume which is
reduced by the presence of EV hadron resonance gas (HRG)
hadrons as

V = V id

(
1 −

∑
iεHRG

viρ
id
i (T, μ∗

i − vi p)

)
. (13)
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For baryons ηi = +1 and for mesons ηi = −1. vi, discussed
above, is the EV parameter of the hadron. Octet baryons,
p, n, �, �+,0,−, 0,−, and their respective parity partners,
N (1535)+,0, �(1405), �(1750)+,0,−, (1950)0,−, are a part
of the HRG in the model, but also interact through mesonic
fields, so their masses in Ei =

√
m∗2

i + k2 are calculated using
Eq. (1) and their chemical potentials are shifted by vector

fields:

μ∗
i = μi − (giωω + giρρ + giφφ), (14)

where μi is the chemical potential with respect to the parti-
cles’ charges. The rest of the HRG hadrons are assumed to
have vacuum mass and are not coupled to vector fields.

The contribution of the mean field scalar mesons is

Usc = 1

2
m2

σ σ 2 + 1

2
m2

ζ ζ
2 + 1

2
k0I2 − k1I2

2 − k2I4 + k6I6 + m2
π fπσ +

(√
2m2

K fK − 1√
2

m2
π fπ

)
ζ − k4 ln

(
σ 2ζ

σ 2
0 ζ0

)
(15)

and the vector mesons’ contributions are given by

Uvector = 1

2
m2

ωω2 + 1

2
m2

ρρ
2 + 1

2
m2

φφ2 + g4

(
ω4 + 1

2
ρ4 + 1

4
φ4 + 3ω2ρ2 + 3ω2φ2 + 4√

2
ω3φ + 2√

2
ωφ3 + 3

2
ρ2φ2

)
. (16)

All of the following calculations are done in the mean-
field approximation. Additionally the no-sea approximation
[52] is used, so vacuum contributions from the Dirac sea
are neglected. The CMF model contains a logarithmic term
[Eq. (15)] similar to the one used in [53] which mimics the
contribution of vacuum fluctuations to the thermodynamics.
We also omit renormalization or quantum fluctuation effects
here due to a lack of systematic knowledge in the range of
temperatures and densities used.

III. CONSTRAINING THE CMF MODEL TO
THE LATTICE DATA

To introduce the constraints on the CMF model parameters
from lattice QCD at high temperature and zero net-baryon
density we use the QCD trace anomaly I , “the interaction
measure,” as a reference:

I

T 4
= ε − 3P

T 4
. (17)

Trace anomaly I is assumed to depict the appearance of
quark degrees of freedom. I effectively reflects the change of
number of degrees of freedom with an increase of temperature
[54]. The hadronic models are capable of reproducing lattice
data on I for T � 150 MeV [32]. In this region I reflects the
increase of number of degrees of freedom due to the excitation
of heavier resonances. However, the subsequent peak in I
and the following decrease is attributed to the appearance
of quarks and gluons and so to the reduction of degrees of
freedom. With this assumption the free parameters of the
present model, namely parameters of the quark sector, are
tuned to reproduce the lattice data on trace anomaly.

TABLE I. Best fit values of parameters extracted from a scan
over the parameter space.

T0 (MeV) a1 a2 b3 gqσ = gsζ

180.0 −11.67 9.33 −0.53 −1.0

The LQCD trace anomaly permits one to calculate all ob-
servable thermodynamic quantities. Analysis of other lattice
data (chiral susceptibility) seems to show that for chirally
related observables there is a crossover transition with a
“pseudocritical” temperature at T ≈ 156 MeV. The analysis
of this data by a phenomenological model suggests a half-
hadron, half-quark composition in that region [55].

The parameters of the CMF model’s quark sector needed to
reproduce the trace anomaly data from LQCD are found by a
least-mean-squares fitting procedure for the parameters of the
Polyakov-loop potential UPol(�, �̄, T ) and for the coupling
constants gqσ and gsζ of the quarks to the chiral condensates σ

and ζ , respectively. All in all this fixes five model parameters:
T0, a1, a2, b3, and gqσ = gsζ (we set gqσ and gsζ to the same
value). The quark parameter fitting is performed through a
scan over the parameter space on a 8 × 6 × 7 × 6 × 6 sized
grid, minimizing the root-mean-square deviation of the CMF
model data on I/T 4 from results computed on the lattice.
The resulting parameter values are presented in Table I. A
comparison of the CMF model to the lattice data is shown
in Fig. 1.

FIG. 1. Trace anomaly I at μB = 0 as a function of tempera-
ture T . Comparison between model predictions and LQCD results
[21,22].
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FIG. 2. The temperature dependence of net baryon number sus-
ceptibility ratio χB

4 /χB
2 is shown as a function of temperature T . The

red line depicts calculations within the CMF model, and blue and
green color bands are the results of the lattice QCD calculations
from the Wuppertal-Budapest and the HotQCD collaborations, re-
spectively [56–59].

The values in Table I suggest couplings gqσ , gsζ of quarks
to the chiral fields of about 1/3 of the baryons, which one may
expect from the additive quark model. Larger values of quark
couplings would significantly influence the size of the peak in
interaction measure I/T 4, as studied in Ref. [34]. In the case
of large values of gqσ , gsζ the strong interplay between the
chiral symmetry restoration and the deconfinement transition

would result in too large values of the interaction measure.
The large peaks in the baryon number susceptibilities are in
contrast to the lattice data.

Higher order baryon number susceptibilities χB
n that are a

LQCD measure of the particle number fluctuations,

χB
n = ∂n(P/T 4)

(∂μB/T )n
, (18)

as well as the curvatures of various lines of constant physical
quantities are also interesting in the scope of LQCD data.

The behavior of χB
4 /χB

2 at μB = 0 is presented in this
section; the study of finite values of μB is presented in Sec. IV.
A comparison of the CMF model with the available LQCD
data for χB

4 /χB
2 is shown in Fig. 2, indicating a fair agreement

of the CMF model with the lattice data.
Lattice QCD studies often explore regions of finite μB by

using the Taylor series expansion. The Taylor expansion in
series of T and μB up to O(μ4

B) was used in [58] to calculate
“lines of constant physics,” i.e., lines in the T -μB plane where
certain thermodynamic quantities like pressure, energy den-
sity, and entropy density, P, ε, s, are constant. The coefficients
κ

f
2 and κ

f
4 ( f ≡ P, ε, s) represent these contour lines in the

T -μB plane using the following parametrization [58]:

Tf (μB) = T0

(
1 − κ

f
2

(
μB

T0

)2

− κ
f

4

(
μB

T0

)4
)

. (19)

Here the coefficients κ
f

2 and κ
f

4 are calculated from Eqs. (20)
and (21); see Ref. [58] for details:

κ
f

2 = 1

T0

f2(T0)
∂ f0(T )

∂T

∣∣
(T0,0)

, κ
f

4 =
1
2 (κ f

2 )2T 2
0

∂2 f0(T )
∂T 2

∣∣
(T0,0) − κ

f
2

(
T0

∂ f2(T )
∂T

∣∣
(T0,0) − 2 f2(T0)

) + f4(T0)
∂ f0(T )

∂T

∣∣
(T0,0)

. (20)

Here

f2n(T ) = 1

(2n)!

∂2n f (T, μB)

∂ (μB/T )2n

∣∣∣∣
(T,0)

. (21)

The coefficients κ
f

2 and κ
f

4 are calculated in the CMF
model for the pressure P, the energy density ε, and the entropy
density s as functions of the temperature T (see Fig. 3). The
CMF model predictions are in a reasonable agreement with
recent LQCD calculations [58]. The rather low values of κ

f
2

and κ
f

4 suggest also small curvatures of lines of constant
physical observables in the temperature region studied here.
Effects of the finite chemical potential are small, therefore
these lines are almost horizontal in the T -μB plane. The
coefficients for the entropy and the energy density indicate
that κs

2 < κε
2 , meaning a decrease of the entropy density along

the lines of constant energy density.

IV. THE CMF MODEL PHASE DIAGRAM

Two order parameters, the chiral condensate σ and the
Polyakov loop �, plus the interacting baryon octet within the
SU(3)-flavor σ model permit four different phases within the
CMF model. These phases are characterized as

(i) A dilute gas of interacting hadrons.
(ii) A hadronic liquid: a dense hadronic phase, the transi-

tion from the hadron gas to the hadronic liquid is the
nuclear liquid-vapor phase transition. Quarks start to
appear in the hadronic liquid, but they are negligible.

(iii) A chirally restored phase, where the mass symmetry
between the parity partners is restored. Here the quark
masses are decreased, hence quarks give a sizable
contribution to the thermodynamics.

(iv) A quark matter phase, where baryonic density is
carried by quark degrees of freedom. The gluon con-
tribution is modeled by the Polyakov-loop potential
[51] and 1

3 nq/nB = 1.

The baryon number susceptibilities χB
n , that can be cal-

culated using Eq. (18), are proportional to the respective
cumulants of the baryon number distribution. Higher-order
baryon number susceptibilities do increase in proportion to
the increasing powers of the correlation length [60]. Such an
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FIG. 3. Second κ
f

2 (a) and fourth κ
f

4 (b) coefficients of lines of constant pressure P, energy density ε, and entropy density s versus
temperature T . Explanation and lattice data can be found in [58].

increase in correlation length would be reflected in large val-
ues of second- and higher-order susceptibilities in the vicinity
of a critical point and in the region of phase transition. Hence,
these quantities are useful indicators of a critical behavior in
the CMF model. Deviations of χB

n from the corresponding
baselines indicate a transformation between different phases,
which is reflected usually in a nonmonotonic behavior of these
observables, e.g., skewness χB

3 /χB
2 and kurtosis χB

4 /χB
2 .

The calculated skewness (χB
3 /χB

2 ) and kurtosis (χB
4 /χB

2 )
(Fig. 4) in the CMF model exhibit nontrivial structures in
the T -μB phase diagram. The regions of deviations from
baseline separate regions with quantitatively different proper-
ties, which are often dubbed “phases.” Note that sharp phase
boundaries indicate first-order phase transitions, FOPTs; these
are only observable at quite moderate temperatures T <

50 MeV. The hadron phase located at both low temperatures T
and baryon chemical potentials μB represents a dilute gas of
interacting hadrons. There, the fluctuation measures χB

2 /χB
1 ,

χB
3 /χB

2 , χB
4 /χB

2 are quite close to unity, consistent with the
Skellam distribution baseline. The system exhibit a FOPT to
a dense hadronic liquid phase with rising chemical potential
μB ≈ 1 GeV. Here, fluctuations are reduced due to the repul-
sive interactions. Quarks start to appear in moderation. The
liquid phase exhibits an additional FOPT at μB ≈ 1.5 GeV
and a second-order transition at μB ≈ 2.4 GeV, which show
up in the structure of the baryon number susceptibilities at
these high μB. The transition at μB ≈ 1.5 GeV is due to
the restoration of chiral symmetry. The transition at μB ≈
2.4 GeV is due to the quark matter phase where baryonic
density is mainly contributed by quarks. The nonmonotonic
behavior of the fluctuation measures χB

3 /χB
2 and χB

4 /χB
2 re-

flect the transitions. In contrast to the liquid-vapor transition,
those two transitions do not change the Skellam baseline.
Hence, the fluctuation measures are rather small, �1, before
and after the “transition.”

The chiral critical point (CP) of the CMF model is located
at a rather low temperature T CP

chiral ≈ 17 MeV. This value is
close to the critical temperature of the nuclear liquid-gas tran-
sition in the same model; the critical μCP

B is remarkably dif-
ferent, though. The appearance of the parity partners controls
the dynamics of the chiral fields: as the parity partners—in the
CMF model—obey the same repulsive interaction strength as

the nucleons, the critical point appears at that low temperature.
This phenomenon has been observed in various mean-field
models before.

The different phases shown in Fig. 5 in the T -μB plane are
related to the chiral field σ and the quark fraction. The chiral
field is close to its vacuum value, σ = σ0, in the hadron gas
region; here the quark fraction is close to zero, as expected.
Both observables deviate from their vacuum values at higher
densities and temperatures only.

FIG. 4. Ratios of the CMF baryon number susceptibilities:
χB

3 /χB
2 skewness (a) and χB

4 /χB
2 kurtosis (b) in the plane of baryon

chemical potential μB and temperature T . Note the 3 distinct crit-
ical regions, with their remnants reaching from T = 0 up to T >

200 MeV. Note the absence of calculation results for skewness at
μB ≈ 0 and T < 100 MeV region.

034904-6



EQUATION OF STATE FOR HOT QCD AND COMPACT … PHYSICAL REVIEW C 101, 034904 (2020)

FIG. 5. The normalized nonstrange chiral condensate σ/σ0 (the
sigma field) (a), the quark fraction 1

3 nq/nB (b), and the value of
Polyakov loop � (c) of the CMF model in the plane of baryon
chemical potential μB and temperature T . Note that the rather fast
change of the chiral condensate appears at moderate energy densities,
while deconfinement appears only at much higher energy densities
and/or chemical potentials.

The chiral field drops off more slowly for μB = 0 than
seen in lattice QCD calculations, where the chiral field rapidly
drops around T = 155 MeV. The reason for this discrepancy
is due to the fact that in the present CMF model the ther-
modynamics at these temperatures are strongly influenced by
baryonic resonances which are not coupled to the chiral fields.
Baryon resonances like the � ought to be coupled to chiral
fields including their chiral partners. This brings down the
chiral condensate to lower temperature, as can be seen in [61].

The speed of sound is another important signature for
simulations of the dynamics of heavy-ion collisions and neu-
tron star mergers. c2

s/nB
presents a derivative c2

s/nB
= ∂P

∂ε
at

FIG. 6. The CMF model results for the square of the isentropic
speed of sound, c2

s = ( ∂ p
∂ε

)
s/nB

, calculated along lines of constant total
entropy density per net baryon density, s/nB = const, from Eq. (22).

constant S/A = s/nB entropy per baryon, that allows one to
estimate a speed of propagation of sound-like excitations in
nondissipative hydrodynamic evolution. The isentropic speed
of sound can be calculated as [62]

c2
s/nB

= n2
B ∂T s − 2 nB s ∂μB s + s2 ∂μB nB

(ε + P)(∂μB nB ∂T s − (∂T nB)2)
. (22)

The partial derivatives with respect to the chemical potential
and to the temperature are performed at constant temper-
ature and at constant chemical potential, respectively. The
calculated speed of sound shows three local minima which
correspond to three locally softest points of the equation of
state (EoS); see Fig. 6. These three minima correspond to
phase boundaries, where the baryon number susceptibilities
present a nonmonotonic behavior. Note that the speed of
sound reaches quite large values, c2

s ≈ 0.7, in the higher
density region of nuclear matter. This high speed of sound
is due to the strong repulsion between the baryons, before the
onset of deconfinement. Thereafter, the vector repulsion and
baryon excluded volume cease, as such terms have not been
predicted for the quarks [39,45].

V. APPLICATION TO HEAVY-ION COLLISIONS

The presented EoS is used as input for hydrodynamical
simulations of both heavy-ion collisions and neutron star
mergers. To illustrate which regions of the phase diagram can
be reached in collisions at low and moderate collision ener-
gies, the stationary one-dimensional Taub adiabat model is
used [63–65]. The expansion is described at lines of constant
entropy per baryon, S/A = const (isentropes). These lines
depict the isentropic matter evolution of ideal fluid dynamics
at different collision energies.

The entropy is produced in the earliest stage of a heavy-ion
collision by the shock of violent compression [66]. During
the system’s expansion there is only a moderate increase
of entropy due to the rather small viscosity [67,68], hence,
an isentropic expansion scenario is a reasonable approxima-
tion [69].

The expansion of the equilibrated matter then continues
until the system becomes so dilute that the chemical as well
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as the kinetic freeze-out occur and the chemical composition
is fixed.

The entropy per baryon (S/A) is calculated in the one-
dimensional stationary scenario of central heavy-ion col-
lisions: the two colliding slabs of cold nuclear matter
[65,66,70–74] conserve the baryon number, energy, and mo-
mentum across the shock front in accord with the relativistic
Rankine-Hugoniot equation (Taub adiabat), RRHT [63,64].
Thus, the produced entropy is directly associated to the col-
lision energy. The thermodynamic properties across the shock
front are described by the RRHT equation

(P0 + ε0) (P + ε0) n2 = (P0 + ε) (P + ε) n2
0, (23)

where P0, ε0, and n0 correspond to the initial pressure, energy
density, and baryon density in the local rest frame of each of
the two slabs. The two symmetric slabs consist of the nuclear
matter in the ground state, P0 = 0, ε0/n0 − mN = −16 MeV,
and n0 = 0.16 fm−3. With any known relation P = P(ε, n),
Eq. (23) can be solved. Furthermore, the collision energy is
related to the created density as follows:

γ CM = εn0

ε0n
, γ CM =

√
1

2

(
1 + Elab

mN

)
. (24)

Here γ CM is the Lorentz gamma factor in the center-of-mass
frame of the heavy-ion collisions and Elab is the beam energy
per nucleon in the laboratory frame of a fixed target collision.
This relation can be obtained from the full stopping condi-
tion [65,66,71–75]. The initial state thermodynamics (density,
temperature, and entropy) of the hot, dense participant matter
is obtained from Eqs. (23) and (24) as a function of the
collision energy. The known initial entropy yields the lines of
constant entropy which give the trajectories of the heavy-ion
collisions in the phase diagram.

The predicted isentropic expansion trajectories are shown
in the T -μB plane phase diagram in Fig. 7.

Note that one-dimensional (1D) stationary RRHT-adiabat
scenario predicts a very strong compression and heating al-
ready at intermediate laboratory (fixed target) bombarding
energies. The heavy-ion participant system crosses the weak
chiral transition predicted by the present CMF model already
at Elab ≈ 2 A GeV, i.e., at GSI’s SIS18 accelerator facility.
Here the specific total entropy is predicted to reach S/A ≈ 3,
in accord with previous RMF calculations [74] which also
used the 1D RRHT-scenario. The T -μB values, T ≈ 70 MeV,
μB ≈ 1.2 GeV, with net baryon densities nB/n0 ≈ 3, reached
here in heavy-ion collisions, coincide with the T -μB values
reached in binary neutron star collisions, as recent general
relativistic fully 3 + 1-dimensional hydrodynamical calcula-
tions have confirmed [16,18] for the gravitational wave event
GW170817. At these temperatures and densities, T ≈ 70
MeV and nB/n0 ≈ 3, the RRHT model predicts that about
20% of the dense matter has already transformed to quarks.

At Elab = 5.6A GeV and
√

sNN = 3.5A GeV roughly 40%
of the CMF matter is in the quark state in the RRHT model,
which is a prerequisite for hot quarkyonic matter. Hence, this
energy, which is presumably only reachable by the BMN
detector at the Nuclotron at JINR Dubna and by the FXT fixed
target setup at the STAR detector at RHIC, is of great interest:

FIG. 7. Evolution of heavy-ion collisions in the high baryon
density region of the T -μB phase diagram for different collision
energies. Black line: Taub adiabat which describes the initial state
of heavy ion collisions as an implicit function of

√
sNN . Colored

lines: isentropic lines of constant entropy per baryon S/A at different
bombarding energies

√
sNN . See Table II for details.

here the matter starts to be dominated by quarks, rather then
by in-medium baryons, at T > 100 MeV and μB � 1.5 GeV.
This is predicted by the present CMF model, when using
the 1D RRHT ideal hydrodynamics. This model predicts that
the quarkyonic transition is crossed also at higher energies,
using the isentropic expansion of the matter at specific total
entropy S/A > 6. In fact, nonequilibrium viscous effects may
increase the specific entropy of the system. However, pre-
freeze-out radiation, e.g., of kaons and other hadrons with
small scattering crosssections which can escape early from the
semiequilibrated baryon-rich, dense system, can considerably
lower the specific entropy during the expansion. So an answer
to the question of whether the local entropy per baryon
increases or decreases during the time evolution awaits more
detailed microscopic and macroscopic modeling.

Hence, heavy ion fixed target experiments using SIS at
FAiR and SPS at CERN as well as the STAR BES program at
RHIC probe temperatures 50 < T < 280 MeV and chemical
potentials 500 < μB < 1700 MeV for the collision energy

TABLE II. Initial state properties obtained from the one-
dimensional stationary case of the central heavy-ion collision: Taub
adiabat [63,64]. The entropy per baryon S/A, temperature T , the
initial baryon density nB/n0, and the quark fraction 1

3 nq/nB are
presented for various colliding energies.

√
sNN (GeV) Elab (GeV) S/A T (MeV) nB/n0

1
3 nq/nB

2.2 1.6 2.8 60.0 2.8 0.11
2.4 2.1 3.5 76.0 3.4 0.20
2.6 2.7 4.1 87.0 3.9 0.26
3.0 3.9 5.3 105.0 4.9 0.35
3.5 5.6 6.6 127.0 6.0 0.46
4.5 9.9 8.4 163.0 8.6 0.70
6.2 19.6 10.7 208.0 14.8 0.96
7.7 30.7 13.1 247.0 18.7 1.00
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FIG. 8. Speed of sound squared c2
s at constant entropy per baryon

(a) and quark fraction (b) along the isentropes as functions of tem-
perature T . Colored lines correspond to different collision energies
(initial entropy per baryon S/A); black solid lines correspond to the
initial speed of sound and the quark fraction respectively. Isentropes
are the same as in Fig. 7. See Table II for details.

range
√

sNN < 10 GeV considered here. In this region the
CMF model shows not an additional phase transition, but
the remnants of the nuclear liquid-vapor transition at T ≈
20 MeV. The chiral transition at larger chemical potentials
can influence the dynamical evolution, too. The present re-
sults suggest that heavy-ion collisions mostly probe regions
where the nuclear matter liquid-vapor critical point domi-
nates; hence, the observed baryon fluctuations are largely due
to remnants of the nuclear liquid-vapor phase transition. This
had been suggested also in previous works [34,76–78]. The
CP associated with the chiral symmetry restoration in the
CMF model lies at μB ≈ 1.5 GeV and T ≈ 17 MeV. This high
density region is to the best of our knowledge is reachable in
neutron star (NS) interiors and in binary general relativistic
NS mergers [16,17,19,79,80].

Figure 8 presents the square of the isentropic speed of
sound at fixed specific entropy, c2

s , and the quark fraction as
function of the temperature for the studied collision energies;
i.e., it shows how respective observable quantities evolve
during the cooling of the system while it expands. Those
isentropic lines which belong to

√
sNN > 4.5 GeV probe the

softest point of the EoS, which is attributed to the chiral
symmetry restoration. At this energy region there are strong
local maxima and minima of the speed of sound squared,
after which c2

s rapidly increases during the expansion due
to the decrease of the quark fraction; as a result of the
rapid appearance of baryons, the EoS stiffens quickly due to
the hard-core baryon-baryon repulsion. For collision energies√

sNN < 4.5 GeV the initial state is not dominated by quarks,
hence the system starts to expand at rather high values of c2

s ,
which then monotonically decrease during the expansion, as a
result of the diminishing repulsion between the baryons.

VI. APPLICATION TO NEUTRON STARS

The densities in neutron star interiors also can exceed by
several times the nuclear matter saturation density. At these
high densities, the lack of detailed knowledge of the equation
of state and the appropriate microscopic degrees of freedom is
similarly disturbing as in the relativistic heavy-ion collisions
discussed above. The discussion of the role of hyperonic,
quarkyonic, and strange quark degrees of freedom at these NS
densities is ongoing.

The CMF model can be employed directly to describe
neutron star matter. Here we work without any changes to
the coupling constants and parameters used to describe the
μB = 0 LQCD results. The temperatures isolated in neutron
star interiors are negligibly small, in comparison to what we
observe in heavy ion collisions and hot QCD scales. The
calculations here are done in the limit T = 0. In contrast to
ordinary isospin symmetric nuclear matter, the neutron star
matter is in β equilibrium, which preserves the total elec-
tric neutrality of the NS matter and locally ensures stability
with respect to β decay. As a consequence, strangeness and
hypercharges assume finite nonzero values. These constraints
require the presence of leptons. In addition, one must allow
for quark-hadron degrees of freedom. At T = 0 quarks nat-
urally appear due to the deconfinement mechanism of the
Polyakov-loop order parameter. In this case � = �̄ = 0 and
only last term in (6) survives, because the model reduces to the
NJL one.

In the case when two conserved charges are present,
namely, electric and baryonic, a phase transition is noncon-
gruent [81–83] as a result of global charge conservation. The
CMF model predicts only one, chiral, phase transition for
matter in β equilibrium. This transition is noncongruent and
results only in moderate increase of baryon density between
two phases.

Figure 9 depicts the CMF model predictions of the relative
particle densities of all different particle species present inside
a CMF neutron star, at T = 0, as a function of baryochem-
ical potential. One feature of the present CMF model is
the absence of baryon resonances (deltas, etc., and those of
hyperons) even though they are included in the CMF model.
Their total absence in the present CMF model calculation at
T = 0 is due to the very strong hard-core repulsion by the
excluded volume corrections.

The calculated EoS at T = 0 can be used as the input
for the Tolman-Oppenheimer-Volkoff (TOV) equation, which
allows one to relate the mass and the radius of any static,
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FIG. 9. The particle densities, normalized to the baryon density
ni/nB, where a factor of 1/3 is used for quarks, are shown as func-
tions of baryon chemical potential μB. Dotted lines: quarks; dash-
dotted lines: leptons; solid lines: nucleons; dashed lines: nucleon
parity partners p∗ and n∗. The CMF calculations are performed in
β equilibrium at T = 0.

spherical, gravitationally bound object [84,85], i.e., here a
static neutron star. The outer layer of a neutron star presum-
ably consist of mostly neutron rich nuclei and clusters in
chemical and β equilibrium. Those nuclei are not yet included
in the CMF model. Hence, another input for the EoS of the
NS crust is needed. Here, we use the classical crust EoS [86]
matched to the CMF EoS at nB ≈ 0.05 fm−3.

Figure 10 presents the results on the NS mass-radius rela-
tions obtained by solving the TOV equation with the present
CMF EoS, matched just to that crust EoS. The total fraction
of the star’s mass which consists of light and strange quarks
is presented in color code. The most massive stable solution
of the TOV equation contains only <30% deconfined quarks;
i.e., for lighter NSs only a small fraction of the star’s mass
originates from deconfined quark matter. If the quark fraction
is increased above 30% the stars become unstable. The central
density of the stable stars can never exceed nB = 6 n0, as
shown in the lower part of Fig. 10. Here again the maximum
mass indicates the “last stable star.” The continuous slow
transition from NS matter to a sizable deconfined quark phase
implies a smooth appearance of quarks in the star structure.
This does prohibit a strict separation between a quark core and
the hadronic interior of the star. This is a CMF result due to the
Polyakov-loop implementation of the deconfinement mecha-
nism and no vector repulsion among quarks. The absence of
quark repulsion along with the smooth appearance of quarks
disfavors a “second family” of neutron stars since in the quark
phase EoS is soft and cannot support strong gravitational
compression. Though LQCD data disfavors repulsive forces
for quarks, there is active discussion in the astrophysical
community on the role of the vector repulsion in the physics
of neutron stars [87–89]. An approach with density dependent
quark vector coupling is developed in [90] where it is argued
that the repulsion arises from nonperturbative gluon exchange.

Results similar to ours are obtained in the quarkyonic
matter model, where the deconfinement is realized by the

FIG. 10. The CMF mass-radius diagram (a) for neutron stars is
shown as calculated within the CMF model. The CMF neutron star
mass is shown as a function of central density nc normalized to
saturation density n0 (b). Color indicates the fraction of the star’s
mass due to quarks.

appearance of quarks from inside of the Fermi sea while
the hadrons there reside exclusively on the surface shell in
momentum space [1]. A similar approach to deconfinement
was suggested in [91,92]; however, there the produced mass-
radius diagram differs from the CMF model [35] due to the
different realization of the chiral symmetry restoration.

The response of a neutron star to nonspherical gravitational
fields is reflected in the tidal deformability coefficient λ [93],
which depends strongly on the EoS. During the inspiral phase
of a binary neutron star merger, both neutron stars experience
tidal deformations induced by the accompanying neutron
star partner. The tidal deformability λ is a measure of the
induced quadruple moment Qi j in response to the external
tidal field Ei j :

Qi j = −λEi j . (25)

λ is directly proportional to the second Love number k2:

λ = 2
3 k2R5. (26)
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FIG. 11. Tidal deformability � as function of NS mass (a) and
radii (b). Blue bands correspond to � constraints of a NS with M =
1.4Msun, and yellow bands correspond to constraints on the radius of
a NS with M = 1.4Msun [14].

For convenience, usually the dimensionless tidal deformabil-
ity � is presented as

� = λ

M5
= 2

3
k2

(
R

M

)5

. (27)

Here, M and R are the mass and radius of the neutron star.
A proper value of � is important for the description of the
inspiral stage during the merger of two neutron stars.

Various estimates of � emerged after the detection of
GW170817 by the LIGO and the Virgo collaborations [12].
Reference [13] argued that for a 1.4M	 neutron star the tidal
deformability and star radius are constrained to �1.4M	 >

120 and R1.4M	 < 13.6 km. It was concluded by means of
a Bayesian analysis that for a 1.4M	 star the deformability
should be 375.5 < �1.4M	 < 800 and the radius is at 12.00 <

R1.4M	 < 13.45 km, with respective 2 σ confidence levels; see
Ref. [14] and Fig. 11. A recent analysis by the LIGO and

Virgo collaborations [15,94] provides detailed constraints, by
using a Bayesian analysis based on reproducing the details of
the gravitational wave signal.

VII. SUMMARY

A unified and consistent approach to QCD thermodynam-
ics, which is appropriate for essentially all temperatures and
densities relevant for both heavy-ion collisions and for neu-
tron star matter, is presented. The chiral SU(3)-flavor parity-
doublet Polyakov-loop quark-hadron mean-field model, or
CMF model, includes the main features of QCD hadron
phenomenology, as well as a good description of known QCD
thermodynamics. The CMF model allows for a simultaneous
description of many nuclear (astro)physical data, consistent
with astrophysical observations of compact stars as well as
heavy-ion collisions. The CMF model is improved by fixing
the relevant CMF parameters for the quark sector to the
state-of-the-art LQCD data on the interaction measure. Here,
the parameters of the Polyakov-loop potential and of the
quark couplings to the chiral fields have been fixed. A good
agreement is found between the CMF model predictions for
LQCD data on both the baryon number susceptibilities and the
“lines of constant physics.” The CMF model is used to explore
the phase diagram of strongly interacting matter for a wide
range of T and μB. Three critical regions are found, which
are connected to the nuclear liquid-vapor phase transition,
to the chiral symmetry restoration, and to the quark matter.
The model predicts two critical points: one associated with a
nuclear liquid-vapor phase transition with critical temperature
T nucl

CP ≈ 20 MeV and one from chiral symmetry restoration
with T CP

chiral ≈ 17 MeV. The transition to quark matter is al-
ways a smooth crossover. The region of the phase diagram
accessible to experiments of high energy heavy-ions collisions
is dominated by remnants of the nuclear liquid-vapor phase
transition. Other critical regions may be probed by neutron
star structure and binary neutron star mergers. The calculated
properties of neutron stars, such as the mass-radius relation,
the chemical composition, and the tidal deformability, are in a
good agreement with recent experimental observations. The
applicability of the improved CMF model to such a wide
range of strongly interacting systems is impressive. For the
first time, a QCD-motivated EoS is presented which precisely
describes the thermodynamic observables for the whole QCD
phase diagram.
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