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Schematic reaction-theory model for nuclear fission
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The K-matrix formalism is applied to a schematic model for nuclear fission. The purpose is to explore the
dependence of observables on the assumptions made about the configuration space and nucleon interaction in
the Hamiltonian of the fissile nucleus. As expected, branching ratios in induced fission are found to depend
sensitively on the character of the residual interaction, whether it is pairing in form or taken from a random
ensemble. On the other hand, the branching ratio is not much affected by the presence of additional configurations
that do not introduce new fission paths.
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I. MOTIVATION

Nuclear fission is one of the most challenging topics in
the quantum theory of finite many-particle systems. Useful
phenomenological models are available that take into account
both nuclide-dependent shell effects and nucleon-blind col-
lective variables; see [1,2] for recent reviews. But anchoring
these models to the underlying many-body Hamiltonian faces
enormous obstacles related to the huge number of many-body
configurations participating in the dynamics.

It is obvious that the practical theory should be informed by
microscopic Hamiltonian dynamics, but, since a full Hamil-
tonian theory is presently out of reach, it might be useful to
examine simple models that include qualitative aspects of the
complete Hamiltonian. Perhaps the reliability of the various
approximation schemes can be assessed in much smaller
spaces than would be required for a quantitative theory. It is
the goal of the present work to propose a simplified model for
this purpose.

Most fission theory based on nucleonic Hamiltonians is
carried out in the time domain, for example, with time-
dependent mean field approximations [3,4]. In contrast, the
physical observables in fission reactions are the energy-
dependent cross sections. This is another reason for using
reaction theory in constructing models.

II. REACTION THEORY

The K-matrix formalism is well suited for a Hamiltonian-
based reaction theory of multiparticle systems.1 It has been
used in a number of different branches of physics [7–11].
In nuclear physics, it has been applied to nucleon-induced
reactions using Hamiltonians based on nucleon-nucleon in-
teraction [12]. It has also been successfully applied to develop
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1This is in contrast to the R-matrix theory [5] which is convenient

for phenomenological models but is not easy to apply at the level of
realistic Hamiltonians. See Ref. [6] for a recent application to fission.

statistical reaction theory [13,14]. The K-matrix formalism is
built on two matrix components. The first is a Hamiltonian
matrix H in the space of internal or quasibound configura-
tions. Some of these configurations have decay amplitudes to
possible final-state channels. These amplitudes are contained
in a second matrix γ̃ . It has Nconf rows corresponding to the
dimension of H and Nch columns corresponding to the number
of decay channels. The K matrix is defined as

K = πγ̃ T 1

E − H
γ̃ , (1)

where E is the total energy of the reacting system. The S
matrix is computed as

S = 1 − iK

1 + iK
. (2)

The partial width �μc for a configuration μ decaying through
channel c is

�μc = 2πγ 2
μc. (3)

Equation (1) effectively separates the computational problem
into separate tasks. The first task is the construction of a
Hamiltonian matrix2 H for the internal states. It requires
setting up a basis composed of many-body configurations and
computing the interactions among the configurations. This
configuration-interaction (CI) approach is very well known,
and it has been very successful in many fields including
nuclear structure physics. The second task is to calculate
γ̃ , the matrix of partial decay widths of the internal states
to the continuum channels. This is much more challenging
when the channel states are all composite particles; at this

2More rigorously, the matrix H should include the dispersive en-
ergy shifts due to coupling to continuum channels. In practice, these
shifts are said to be small and can be ignored for most purposes. It
should also be mentioned that Eq. (2) as given neglects effects of the
scattering potentials on the elastic phase shifts within the individual
channels. They are not needed for angle-integrated cross sections.
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FIG. 1. Single-particle spectra at different deformations, taking
vQ < 0 in the model Hamiltonian. The orbital occupancies of low-
energy configurations are indicated by the filled circles.

point the needed approximations are not testable with simple
models [15]. Given the two matrices, all that remains of the
computation is ordinary linear algebra.

III. MODEL HAMILTONIAN

The requirements for the model Hamiltonian are that it

(i) is expressible in terms of one- and two-body Fock-
space operators;

(ii) defines an operator Q̂ that can be used to measure the
evolving shape of the fissioning system;

(iii) is flexible enough to simulate induced fission as well
as spontaneous fission.

These requirements can be fulfilled by the following
model. Configurations are generated in a space of Norb or-
bitals, each orbital containing two time-reversed pairs k and
k̄. The first Norb/2 orbitals are fully occupied in the ground-
state configuration, while the remaining Norb/2 orbitals are
fully occupied in the doorway state to fission. In operator
representation, the Hamiltonian is

Ĥ =
Norb−1∑

k=0

(k mod Norb/2)εQn̂k + vQQ̂Q̂ +
∑
k,k′

vk,k′ P̂†
k P̂k′ .

(4)

Here n̂k = â†
k âk + â†

k̄
âk̄ gives the occupation number of the

k orbital, P̂†
k = â†

k â†
k̄

is the pair creation operator, and Q̂ =∑
k q(k)n̂k measures the elongation of the configuration. In

the expression for Q̂, the coefficients q(k) are q(k) = 1 for the
first Norb/2/2 orbitals and −1 for the others. Note that the first
two terms in Ĥ are diagonal in the configurations and serve to
define their energies.

The qualitative scheme of orbital energies and how they
are filled for low-energy configurations is shown in Fig. 1,
assuming the parameter vQ in the Hamiltonian is negative.

FIG. 2. Spectrum of the barrier model. The vertical axis has been
shifted to put the entry and prescission configurations at zero energy.
The horizontal positions of the configurations have been slightly
shifted to make visible the degeneracies of the intermediate con-
figurations. The dotted lines join configurations that are connected
by vk,k′ .

The left-hand configuration has all q = −1 orbitals filled and
represents the ground state of the fissile nucleus. The one on
the right with all q = +1 orbitals filled represents a scission
doorway configuration.

For the numerical calculations I take Norb = 6 for the
dimension of the orbital space. The space is half filled with
N = 6 nucleons that occupy the orbitals as pairs. The config-
urations are thus restricted to seniority zero; the dimension of
the space is

Nconf =
(

6

3

)
= 20. (5)

Q in the model ranges from −6 to +6, with one state at
each end point and 18 states in between. As an example,
Fig. 2 shows the energy of the configurations as a function
of Q in the “barrier” model, constructed with vQ = − 1

4 e0.
The figure also shows the connectivity of the network linked
by the two-particle interaction. The state at Q = −6 will be
coupled to an entrance channel, and the one at Q = +6 will
be coupled to a fission channel. With the energies of the
configurations as depicted in Fig. 2, the model could simulate
the fission cross section in the presence of a barrier along the
fission path. Note that Q is a discrete property of individual
configurations. This is to be contrasted with the generator-
coordinate method (GCM) of constrained Hartree-Fock the-
ory [16] which treats the expectation value 〈Q〉 as a continuous
variable.

For the present study I will examine the fission-to-capture
branching ratio at energies above the barriers. Physically, the
level density of internal states is very large. In the model with
vQ = 0, the highest level density of the internal states is at the
entry doorway energy. The resulting configuration energies
are shown in Fig. 3; I shall call this the “no-barrier” model.
Note that the fission doorway energy is also at the point of
highest level density.
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FIG. 3. Spectrum of the “no barrier” Hamiltonian. The vertical
axis has shifted to put the first and last configurations at zero energy.

Two extreme choices for the interaction will be examined.
The first is the pure pairing model,

vk,k′ = −G (pairing), (6)

where G is the pairing strength. The other extreme is a
random interaction taken from a Gaussian ensemble. Here the
probability W of the interaction strength vk,k′ is taken as

W (vk,k′ ) = 1√
2πG2

exp(−v2
k,k′/2G2) (random). (7)

The two model interactions have equal rms matrix elements.
There is a technical problem in using the Hamiltonian

as given for the pairing interaction. Namely, the uniform
spacing of the single-particle energies produces a significant
degeneracy in the energies of the configurations. This might
give rise to unphysical effects in the transport properties of
the Hamiltonian. This problem is mitigated in the numerical
calculations by modifying the single-particle energies to

ε′
k = εk + 0.1rke0. (8)

Here rk is a random number of unit variance taken from a
Gaussian ensemble. In fact, this complication of the model
is physically warranted: the spacings are also not uniform in
more realistic models. The cost of introducing random terms
into the Hamiltonian is that the ensemble must be sampled
multiple times to compute observables.

The two-particle interaction strength is the last parameter
in the Hamiltonian that needs to be set. Here one can get
guidance from empirical pairing systematics. The mixing
among low-lying Hartree-Fock configurations is controlled by
the ratio of pairing gap � and the average level spacing e0 of
the single-particle orbitals. In actinide nuclei, the (neutron)
pairing gap is about

� ≈ 12./A1/2 ≈ 0.75 MeV. (9)

The neutron orbital spacing is given roughly by

e0 ≈ 4ε f

3N
≈ 0.33 MeV (10)

TABLE I. Parameters for the model Hamil-
tonian. Energies are in units of e0.

Parameter Value

Norb 6
N 6
vQ 0
G 1

in terms of the number of neutrons N in the nucleus and
their kinetic energy at the Fermi surface ε f . This yields a
ratio �/ε0 ≈ 2.25. This is close to the calculated ratio for the
barrier model taking the pairing strength to be G = e0; this
value is adopted for numerical computation in the following
section. Table I summarizes the numerical parameters for the
no-barrier model.

IV. APPLICATION TO BRANCHING RATIOS

In this section the model is applied to the fission-to-capture
branching ratio. To treat this as a reaction in the K-matrix
theory, I need to assign partial widths for the entrance, cap-
ture, and fission channels. For a fissile nucleus such as 235U
bombarded with low-energy neutrons, the fission and capture
widths are comparable, and the entrance channel width is
small compared to both of them. This is achieved by the partial
widths assignments shown in Table II.

I can now apply the K-matrix formula to calculate the
S-matrix elements for the three channels. The cross sections
show large fluctuations associated with individual resonances
in the internal structure of the fissioning nucleus. This may
be seen in Fig. 4, plotting the strengths |Snc|2 and |Snf |2 as a
function of energy.

The branching ratios are highly fluctuating quantities as
a function of energy, so I only report energy averages. The
fission-to-capture ratio is calculated as

α−1 = 〈|Snf |2〉
〈|Snc|2〉 , (11)

where the brackets denote the averages, taken here in a
window of energies from E = −4ε0 to E = 4ε0. The results
are shown in Table III under the column α−1. The first
entry in the Table uses the pairing Hamiltonian following
Eqs. (4) and (6). The branching between capture and fission
is close to one for the chosen parameters. This is just what
one expects in the naïve compound nucleus model, since

TABLE II. Partial widths for modeling the fission-to-capture
branching ratio. Channel labels: n, for entry channel as in neutron-
induced fission; c, capture leading to the ground state of the fissile
nucleus; f , fission decay.

Configuration μ Channel �μ,c/e0

1 n 0.063
1 c 1.0
20 f 1.0
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FIG. 4. S-matrix transmission strengths for the pairing Hamilto-
nian. Upper panel: (a) |S01|2; (b): |S02|2.

the Hamiltonian has equal couplings to neutron capture and
fission.3 However, from the perspective of transport theory
one would have expected that the branching to the exit channel
from the entry doorway would be much favored. That turns
out to be the case when the random interaction is used in the
model, as may be seen in the second line of Table III. There
the calculated branching ratio is a factor 3 smaller than the
pairing or compound nucleus models. Clearly, the coherence
of the pairing interaction has a major effect on branching
ratios between different decay modes. While that qualitative
conclusion does not come as a surprise, the model shows that
the means to study such issues are at hand, given an adequate
basis of configurations and their couplings to decay channels.

I would also like to see the effects of the severe model
space truncation. It is easy to add configurations that couple to
the ones in the Hamiltonian but do not change the deformation
Q; these may be called “spectator” configurations. The bottom
two lines in Table III show the results for augmenting the

3This ignores the usual width-fluctuation correction.

TABLE III. Branching ratio α−1 for the parameter treatments
discussed in the text. The error bars are the standard deviations
of the ratios given by Eq. (11) for 20 Hamiltonians with random
contributions from Eq. (8) for all the entries and in addition from
Eq. (7) for the entries labeled “random.” The computer scripts I use
to calculate this table are available in the Supplemental Material [17].

Nconf vk,k′ α−1

20 pairing 0.82 ± 0.06
20 random 0.28 ± 0.13
20+18 pairing 0.73 ± 0.05
20+18 random 0.28 ± 0.12

space by adding 18 spectator states, each one coupled to a
nondoorway state of the Hamiltonian depicted in Fig. 3. As
may be seen in Table III, the resulting branching ratio for both
interactions is hardly changed or not changed at all. This is
good news for justifying the drastic truncations of the config-
uration spaces needed in more realistic models. However, it is
somewhat puzzling that models coupling collective variables
to internal degrees of freedom, e.g., Refs. [18,19], show
significant effects in time-dependent dynamics. It may be
that branching ratios are nevertheless insensitive to spectator
configurations, or it might be that the present size of the model
space is too small to see a real effect.

V. EXTENSIONS OF THE MODEL

To make firm conclusions about the approximations in-
voked in realistic fission theory, it is essential to include both
neutron and protons in the Hamiltonian. To this end, one can
easily generalize Eq. (4) to include both species of particles,
allowing them to interact with each other through the field Q̂.
The dimension of the space as constructed in Sec. II increases
from Nconf = 20 to 202 = 400. The resulting model has a
small enough dimension to permit easy coding and quick
execution times on laptop computers. One should not expect
qualitative differences in the comparisons that were presented
with the present model. The changes in the proton shape
distributions will track closely with the neutrons, and the
separate coherences of the two pairing fields will preserve and
perhaps amplify the stronger transport through shape changes.

More challenging for a more realistic model is to extend
the space beyond seniority zero to access quasiparticle excita-
tions. The statistical properties such as level densities depend
crucially on these excitations. In models of fission such as
the Langevin dynamics, the quasiparticles provide a thermal
reservoir for energy exchanges with the collective degrees of
freedom. In the context of the present model, the dimension
of the space (for one species) goes from 20 to(

12

6

)
= 924. (12)

Including both protons and neutrons, the total dimension
becomes ≈106. The resulting computational problem is then
well beyond the capabilities of general-purpose linear algebra
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libraries and laptop computers. Aside from the numerical
challenge, it is far from clear how to parametrize the in-
teraction Hamiltonian between quasiparticles. It is easy to
model the pairing interaction and the Q-dependent mean-field
interaction, but interactions that change the number of quasi-
particles or scatter them from one set of orbitals to another are
not well understood.

A nice feature of CI models of induced fission is that the
same Hamiltonian can also be applied to spontaneous fission.
The physical observable for spontaneous fission is the lifetime
or the decay rate. To calculate the decay widths, one simply
adds partial fission widths i�muf/2 to the diagonal energies of
the fission doorway state and diagonalizes the resulting non-
Hermitian Hamiltonian. The mean lifetime of the ground state
is then given by τ = h̄/2 Im Egs. The tunneling physics would
be simulated by adjusting vQ to make a barrier between the
leftmost configuration and the fission doorway on the right, as
shown in Fig. 2.

For completeness, it should be mentioned that an impor-
tant quantity for reaction theory in a statistical regime is
the channel transmission coefficient Tc. This can be defined
empirically as Tc = 1 − Rc where Rc is the average reflec-
tion probability for an incoming flux in the channel c. The
averaging makes sense only if there are many doorways to
the channel; if that is the case and the average partial decay
width is small, the transmission factor can be calculated
as

Tc = 2π
〈�μc〉

D
, (13)

where D is the average level spacing the doorways. Obviously,
transmission coefficients are beyond the scope of the present
model since it has only one doorway for each decay model.
Whether an extension of the model to many doorways can be

achieved with parameters justified by a nucleonic Hamiltonian
remains to be seen.

VI. SUMMARY

In a general sense, the subject of this work was a simpli-
fied model of large-amplitude shape changes in a fermionic
system. The model can only be solved numerically, but the
dimension is small enough to carry out with desktop tools.
The first finding is confirmation of the accepted wisdom
that the pairing interaction plays a major role in nuclear
fission, although it was not so evident in previous models of
induced fission. With enough excitation energy, the coherence
of the pairing interaction should disappear and the observables
should be close to those calculated with the random interac-
tion. It would be of interest see what the energy limits are and
how they correlate with the collapse of the pairing condensate
at finite temperature.

Another provocative finding concerns the role of spectator
configurations. The naïve expectation is not borne out that
these configurations would decrease the branching ratio of
fission to capture because they would slow down the dynamic
evolution. According to the model, that effect is quite small.
Whether it remains small in larger and more realistic model
spaces is another interesting open question.
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