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In this paper, we have calculated the α-decay half-lives of superheavy nuclei with 106 � Z � 126 and a
neutron number of 150 � N � 200 within proximity potentials and deformed-spherical Coulomb potentials
by using W S4 α-decay energy and the semiclassical Wentzel-Kramers-Brillouin approximation for penetration
probability. Besides, we have included the preformation factor within the cluster-formation model. We have
investigated magic numbers and submagic numbers in the mentioned region; with high probability, 162, 178,
and 184 are predicted as neutron magic numbers. We also have confirmed that there is good agreement between
our predicted half-lives and the ones obtained from semiempirical relationships such as Royer, VSS, UDL, and
SemFIS2.
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I. INTRODUCTION

In recent years, the subject of superheavy nuclei (SHN)
has attracted scrutiny in the field of nuclear physics from both
the theoreticians and the experimentalists. Theoreticians [1–3]
have been attempting to predict the decay properties. On the
other hand, several experiments have been performed [4–8]
with the purpose of synthesizing SHN.

Because the stability of nuclei is due primarily to the shell
effects, the predictions for the shell structures are significant
[9–12]. The most dominant decay in the superheavy region
is α decay. Many studies have been done in this region
within different models that use α-decay half-lives [13–23]
to achieve information related to nuclear shell structure. Also,
researchers have investigated the island of stability through
empirical formulas [24–26].

A study in the superheavy region with Z = 110−118 has
indicated that the most stable configurations are the deformed
ones at neutron number N = 162 [27]. Also in another study
[28], a doubly magic nucleus was predicted with Z = 108 and
N = 162. A prior paper [29] predicted a doubly magic nucleus
with Z = 114 and N = 184, and other investigations [30–33]
have confirmed these results. More recent studies like Yukawa
plus the exponential model with Woods-Saxon single-particle
potentials [34,35] have also predicted 298114 as being the next
spherical doubly magic nucleus. Nonrelativistic microscopic
models such as the Skyrme-Hartree-Fock-Bogoliubov method
have predicted Z = 120 to be as probable as Z = 114 to be
magic [36]. Furthermore, Stoyer [37] has predicted that magic
islands exist around Z = 120, 124, or 126 and N = 184.
One of the significant outcomes of these measurements is
the increased stability of SHN when approaching N = 184.
The heaviest neutron-rich nuclei in the vicinity of the closed
spherical shells N = 184 and Z = 114 (or possibly 120, 122,
or 126) were expected to mark a considerable increase in

nuclear stability, similar to the effect of closed shells on the
stability of the doubly magic 208Pb nucleus.

The problem of the quantum many-body system is com-
plex; hence, the α-preformation factors are obtained from
the ratios of calculated to experimental α-decay half-lives
[38,39]. The recently proposed cluster-formation model
[40–44] suggests that the α-preformation factor can be ex-
tracted in terms of the α-cluster-formation energy based on
the binding-energy differences of the participating nuclide.
Meanwhile, the behavior of Qα and Pα values of 118 � Z �
128 isotopes with increasing neutron number N has been
systematically studied [20]. In consequence, it is suggested
that N = 178 may be the neutron magic number.

We have already carried out a comprehensive investigation
of the SHN [45]. As a result, we have demonstrated the
applicability of nuclear potentials along with a spherical-
deformed Coulomb potential for predicting α-decay half-lives
of SHN, and the present study could be considered as an
extension of our earlier works in this region. In this paper, we
have performed a considerable study of the α decay of nuclei
with 106 � Z � 126 and 150 � N � 200 to find out which
possible magic numbers could be placed in which neutron
numbers. This paper is organized as follows. The theoretical
framework is introduced in Sec. II. Results and corresponding
discussions are given in Sec. III. The conclusion of the entire
work is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Half-life formalism

We have calculated the α-decay half-life through the for-
malism

T1
2

= ln 2

ν0P
. (1)
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FIG. 1. The α-preformation factors (Pα) with respect to the neutron number N for even Z = 106 to 126 isotopes that were computed within
the CFM by using the W S4 mass model.

Here, ν0 is the assault frequency that is related to the oscilla-
tion frequency ω as

ν0 = ω

2π
=

(
2nr + l + 3

2

)
h̄

(2πμR2
n )

= (G + 3
2 )(

1.2πμR2
0

) , (2)

where R2
n = 3

5 R2
0 [46] and G = 2nr + l is the global quantum

number [47]:

G = 2nr + 1 =
⎧⎨
⎩

22 for N > 126,

20 for 82 < N � 126,

18 for N � 82.

(3)

The α-decay penetration probability Pα using the semiclassi-
cal Wentzel-Kramers-Brillouin (WKB) approximation is de-
fined as

P = exp

(
−2

h̄

∫ rb

ra

√
2μ[VT (r) − Qα]dr

)
, (4)

where μ = m Aα+Ad
AαAd

is the reduced mass (Aα = 4 and Ad is
daughter nucleus). Also, ra and rb are the turning points,
which are obtained from VT (ra) = Qα = VT (rb).

B. Nuclear potential

The total interaction potential VT (r) between the α particle
and the daughter nucleus is taken as follows:

VT (r) = VN (r) + VC (r) + Vl (r), (5)

where VN (r), VC (r), and Vl (r) are the nuclear potential, the
Coulomb potential, and the centrifugal potential, respectively.

Because the spin and parity of SHN in the region under
study are not known yet, to obtain a precise prediction we
neglect the centrifugal potential Vl (r) contribution in the
total interaction potential. For the calculation of the nuclear
potential VN (r), the proximity potential is applied:

VN (r) = 4πγ bR�(ξ ), (6)

where γ is the nuclear surface tension. The details of this
formalism are described in Refs. [46,48–50]. In the following,
with respect to our previous work, we denote γ -MS 1967 as
prox. 66 and γ -PD-LDM 2003 as prox. 03 I.

Using the energy density formalism and Fermi distri-
butions for the nuclear densities, Ngô80 and collaborators
parametrized the nucleus-nucleus interaction potential in the
spirit of proximity concept. The interaction potential can be
divided into the geometrical factor and a universal function.
The nuclear part of the parametrized potential is defined as
[51]

V Ngô80
N (r) = R̄φ(r − C1 − C2), (7)

where the nuclear radius Ri reads as

Ri = NRni + ZRpi

Ai
(i = 1, 2) (8)

and the equivalent sharp radii for protons and neutrons are
given by

R(p,n)i = r(p,n)iA
1/3
i . (9)
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FIG. 2. Logarithmic α-decay half-lives with respect to the neutron number N , for isotopes of Z = 106, 108, 110, and 112.

Here rpi = 1.128 fm and rni = 1.1375 + 1.875 × 10−4Ai fm.
The universal function φ(r − C1 − C2) is written as

�(ξ ) =
{−33 + 5.4(s − s0)2 for s < s0,

−33 exp
[−1

5 (s − s0)2
]

for s � s0,
(10)

with s0 = −1.6 fm. This potential is labeled as Ngô80.

C. Coulomb potential

To derive the Coulomb potential for a spherical-deformed
nuclear pair, realistic density distributions and the double-
folding model have been used. In this model, the Coulomb
interaction potential between spherical-deformed nuclei and
deformed-deformed nuclei with separation distance �R be-
tween their centers is given by [52]

VC ( �R) =
∫∫

d �r1d �r2
1

|�s|ρP(�r1)ρT (�r2), (11)

where �S = �R + �r1 + �r2. ρP and ρT show the nuclear charge
distribution in the projectile and target nuclei, which are
normalized to the total charge, respectively. We restrict our
derivation to be for the spherical-deformed nuclear pair with
the coordinates that are defined as

G( �R, β, s) =
∫

ρT ( �R + �r)ρP(�r + �s)d�r, (12)

where β is the orientation angle of the deformed nucleus.
After being solving and substituted into Eq. (11), VC ( �R, β )
becomes

VC ( �R, β ) = 8
∫ ∞

0

∫ ∞

0
sds j0(ks)k2dk

×
∫

d�rρT ( �R + �r) j0(kr)
∫

x2dx j0(kx)ρP(x).

(13)

The charge density distribution of the deformed nucleus is
then assumed to be

ρ(r, θ ) = ρ0

1 + e
r−R(θ )

a

, (14)

where R(θ ) = r0[1 + β2Y20(θ, 0) + β4Y40(θ, 0)] is the half-
density radius of this Fermi distribution. The parameters β2

and β4 are respectively the quadrupole and hexadecapole
deformation parameters of the residual daughter nucleus and
their numerical values are taken from Ref. [53].

D. Cluster-formation model

The cluster-formation model (CFM) is a new quantum
mechanical theory was first promoted to calculate the α-
preformation factors Pα of even-even nuclei [41,44]. After
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that, this model was proposed to calculate odd-A and odd-odd
nuclei [40,42,54]. The total state  of the parent nucleus is
a linear combination of its n possible clusterization states i,
which can be defined as

 =
n∑

i=1

aii, (15)

where ai is the superposition coefficient of i. It can be
expressed as

ai =
∫

∗
i dτ . (16)

Orthogonality condition requires that
∑n

i=1 |ai|2 = 1. The to-
tal wave function is an eigenfunction of the total Hamiltonian
H = ∑n

i=1 Hi = 1, where Hi denotes the Hamiltonian for the
ith-clusterization state i. Because all the clusterization states
describe the same nucleus, they are assumed to share the same
total energy E of the total wave function. So the total energy
E can be represented as

E =
n∑

i=1

|ai|2E =
n∑

i=1

E f i, (17)

where E f i is the formation energy of the cluster in the ith
clusterization state i. Hence, the α-preformation factor can
be obtained by

Pα = |aα|2 = E f α

E
, (18)

where aα represents the superposition coefficient of the α-
clusterization state α , E f α represents the formation energy
of the α cluster, and E represents energy actually composed
of the formation energy of the α cluster and the interaction
energy between the α cluster and the daughter nuclei. Within
the CFM, for even-even nuclei, the α-cluster-formation energy
E f α and the total energy E of a considered system can be
expressed as [55]

E f α = 3B(A, Z ) + B(A − 4, Z − 2)

− 2B(A − 1, Z − 1) − 2B(A − 1, Z ), (19)

E = B(A, Z ) − B(A − 4, Z − 2), (20)

where B(A, Z ) is the binding energy of the nucleus with the
mass number A and the proton number Z . In this paper,
the data of nuclei binding energies are taken from the latest
evaluated atomic mass table or W S4 [56] for nuclei under
calculation.

E. Semiempirical relationship for α decay

One of the purposes of this study is to predict the half-life
of the for SHN’s α decay for which the experimental data
of half-life have not been reported yet. Hence, in order to
compare our obtained results with other predictions, some
semi-experimental relationships used in this work are sum-
marized in the following.

1. The Viola-Seaborg-Sobiczewski (VSS) semiempirical
relationship

One of the most famous formulas for calculating α-decay
half-lives is the five-parameter formula offered by Viola and
Seaborg [57]:

log10

(
T1

2

) = (aZ + B)Q− 1
2 + cZ + D + hlog, (21)

where Z is the atomic number of the parent nucleus and a,
b, c, and d are 1.661 75, −8.5166, −0.202 28, and −33.9069
[58], respectively, and

hlog =

⎧⎪⎨
⎪⎩

0 for Z = even, N = even,

0.772 for Z = odd, N = even,

1.066 for Z = even, N = odd,

1.114 for Z = odd, N = odd.

(22)

2. The analytical formula for α-decay half-life (Royer)

An analytical formula for α-decay half-lives has been
developed by Royer [59] and is given by

log10

(
T1

2

) = a + bA
1
6

√
Z + cZ√

Qα

, (23)

where A and Z represent the mass and the charge number of
the parent nuclei. The constants a, b, and c are as follows:

hlog =

⎧⎪⎨
⎪⎩

a = −25.31, b = −1.1629, c = 1.5864 for Z = even, N = even,

a = −26.65, b = −1.0859, c = 1.5848 for Z = even, N = odd,

a = −25.68, b = −1.1423, c = 1.5920 for Z = odd, N = even,

a = −29.48, b = −1.1130, c = 1.6971 for Z = odd, N = odd.

(24)

3. The universal decay law

A new universal decay law (UDL) for α- and cluster-decay
modes was introduced by Qi et al. [60,61] as

log10

(
T1

2

) = aZcZd

√
A

Qc
+ b

√
AZcZd

(
A

1
3
d + A

1
3
c
) + c, (25)

where A = AcAd
Ac+Ad

and the constants a = 0.4314, b = −0.4087
and c = −25.7725 are determined by fitting to experimental
data of both α and cluster decays [60].

4. Semiempirical formula based on fission theory

Poenaru et al. [62] proposed semiempirical formula for α-
decay half-lives based on fission theory (SemFIS2), which is
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FIG. 3. Logarithmic α-decay half-lives with respect to the neutron number N , for isotopes of Z = 114, 116, 118, and 120.

expressed as

log10

(
T1

2

) = 0.43429χ (x, y)κ − 20.446 + H f , (26)

where

κ = 2.52956Zd

(
Ad

AQ

) 1
2

[arccos
√

r −
√

r(r − 1)] (27)

and r = 0.423Q(1.5874 + A1/3)/Zd . The numerical coeffi-
cient χ is a second-order polynomial:

χ (x, y) = B1 + x(B2 + xB4) + y(B3 + yB6) + xyB5. (28)

For super heavy fitting, the values are obtained as
B1 = 0.985 415, B2 = 0.102 199, B3 = −0.024 863, B4 =
−0.832 081, B5 = 1.505 72, and B6 = −0.681 221. The hin-
drance factor H f is 0.63 for even-odd, 0.51 for odd-even, 1.26
for odd-odd, and zero for double-even nuclei. The reduced
variables x and y are defined as

x ≡ (N − Ni )/(Ni+1 − Ni )forNi < N � Ni+1,

y ≡ (Z − Zi )/(Zi+1 − Zi )forZi < Z � Zi+1, (29)

with Ni = . . . , 51, 83, 127, 185, 229, . . ., Zi =
. . . , 29, 51, 83, 127, . . .; hence for the region of SHN,
x = (N − 127)/(185 − 127) and y = (Z − 83)/(127 − 83).

III. RESULTS AND DISCUSSION

Since the applicable and exciting subject in nuclear physics
is to seek magic numbers and islands of stability in the
superheavy region, we have studied the properties of a wide
range of nuclei in this area. Their α-decay half-lives have been
calculated with regard to the dominant decay mode in this
region. For such a purpose, we have applied the formalism
introduced in Sec. II A, which has already confirmed a suitable
compromise with experimental results [45].

To calculate the Coulomb potentials, we have used the
formalism of a Coulomb potential for a spherical-deformed
nuclear pair. The barrier penetrability of the α particle in a
deformed nucleus depends on the orientation of the emitted
α particle, with respect to the symmetry axis of the daughter
nucleus. The average of penetrability over different directions
is done by using the following equation:

P = 1

2

∫ π

0
P(Q, θ ) sin(θ )dθ. (30)

The total potential including the proximity potential and
an exact method to calculate the Coulomb potential between
spherical and deformed nuclei in the framework of the double-
folding model have been used to determine the penetration
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FIG. 4. Logarithmic α-decay half-lives with respect to the neutron number N , for isotopes of Z = 122, 124, and 126.

probability. It is possible that the Q line does not cross the
total potential line in some directions, so the penetration prob-
ability and thereby the half-life are not measurable; therefore
these directions are neglected in the calculation of Eq. (30).

In this study, we consider that α transitions occur from
a parent nuclei in the ground state to a daughter nuclei in
the ground state. Under this condition, all the parent and
residual nuclei have zero spin and positive parity. Hence,
we are expecting that α-decay half-lives of inclusive nuclei
are well-suited to exploring shell closure in the superheavy
region.

It is vital to select suitable α-decay energies (Qα ) and pre-
formation probability (Pα ) values in the calculations because
these physical characters significantly affect the accuracy of
α-decay half-life estimations. Among 20 formalisms, Wang
et al. [63] determined that W S4 [56] is the formula best-suited
to predict the most accurate mass excess and to reproduce the
experimental Qα values of the SHN. Moreover, the α-particle
is assumed to be formed before penetrating the barrier, so we
have calculated the Pα within the CFM by using the W S4 mass
model that is explained in Sec. II D. The behavior of Pα is
shown in Fig. 1. From this figure, one could find out that the
formation of α particles is less probable in some specified
neutron numbers. In the following, we have extended our

formalism to predict the α-decay half-lives of SHN with
106 � Z � 126 by using estimated Qα values and also tak-
ing preformation factors under consideration to obtain more
realistic and reliable predictions in the superheavy region.
To have a quantitative analysis, one can use the root-mean-
square deviation (RMSD), which is defined as RMSD =√

1/n
∑n

i=1[T cal
i /T Exp.

i ]2, in which n is the number of nuclei

taken into account and T cal
i and T Exp.

i are the calculated and
experimental α-decay half-lives, respectively. For even-even
nuclei from Table 3 of Ref. [45], by considering Pα we have
obtained RMSDs for prox. 03 I, prox. 66, and Ngô80 as
0.5055, 0.5802, and 0.8949, respectively. Furthermore, for
the mentioned nuclei with their experimental Qα values, the
RMSDs of semiempirical formulas such as SemFIS2, Royer,
VSS, and UDL are 0.52059, 0.4921, 0.4967, and 0.5250,
respectively.

We have estimated the α-decay half-lives of SHN and the
results are shown in logarithmic form in Figs. 2–4. From
these figures, one can obviously see that half-lives calculated
by using our formalisms fundamentally had the same trend.
Besides, in Figs. 2–4, there are four additional plotted lines,
which refer to the semiempirical relationships for calculating
α-decay half-lives that were introduced in Sec. II E.
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Figure 2 determines that for Z = 106 and 108 α-decay
half-lives smoothly increase to N = 162 and then dramati-
cally decrease and immediately after that smoothly increase
up to N = 178. The neutron number N = 182 shows slightly
more stable half-lives relative to its very adjacent nuclei. For
Z = 110 and 112, one is able to notice the same behavior of
half-lives up to N = 162, after that increases in half-lives con-
tinued up to N = 184. In Fig. 3 at Z = 114, a likelihood trend
near N = 162 is completely recognizable. In consequence,
N = 162 could be the probable magic number. Further, the
second neutron number that shows more stability relative to
its neighbor could be N = 184.

From Figs. 3 and 4 toward Z = 116 to 124, the magic-
number-like trend can be observed at N = 178 and N = 184.
According to our preceding claim and the half-lives currently
trending around N = 182, possibly it is a submagic number.
Apparently, one can see that there is a significant maximum in
Pα corresponding to the computation of half-lives at N = 186;
immediately after that, there is a sharp tendency to reach the
more stable behavior. This could be an inverse performance
concerning the preformation factor, which was explained pre-

viously. For Z = 126 it seems that we need more proficiency
to have a more comprehensive discussion about it.

IV. CONCLUSION

We have calculated α-decay half-lives of a great number
of superheavy isotopes with 106 � Z � 126 within proximity
potentials and Coulomb spherical-deformed potentials. In our
formalism, we have used Qα from the W S4 formalism to com-
pute the penetration probability within the WKB approxima-
tion and also we have included the preformation factor within
the CFM. Furthermore, we have compared our obtained half-
lives with ones computed from semiempirical relationships,
such as Royer, VSS, UDL, and SemFIS2, that show a good
agreement. Isotopes of different proton numbers generally
show the same behavior at N = 162, 178, and 184 and in their
vicinity, which make them the probable magic numbers in this
region. Moreover, at N = 182 and also at 170 and 174, we can
expect the submagic numbers. The results we have obtained
will prompt inquiries about the nuclear structure and provide
information for future experiments.

[1] H. C. Manjunatha and K. N. Sridhar, Phys. Part. Nucl. Lett. 16,
647 (2019).

[2] A. Sobiczewski, Phys. Rev. C 94, 051302(R) (2016).
[3] Y. T. Oganessian, A. Sobiczewski, and G. Ter-Akopian, Phys.

Scr. 92, 023003 (2017).
[4] S. Hofmann, J. Phys. G: Nucl. Part. Phys. 42, 114001 (2015).
[5] Y. T. Oganessian et al., Phys. Rev. C 79, 024603 (2009).
[6] Y. T. Oganessian et al., Phys. Rev. Lett 109, 162501 (2012).
[7] Y. T. Oganessian et al., Phys. Rev. C 74, 044602 (2006).
[8] Y. T. Oganessian et al., Phys. Rev. C 72, 034611 (2005).
[9] S. Hofmann, Lect. Notes Phys. 764, 203 (2009).

[10] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 88,
061302(R) (2013).

[11] I. Petermann, K. Langanke, G. Martínez-Pinedo, I. V. Panov,
P.-G. Reinhard, and F.-K. Thielemann, Eur. Phys. J. A 48, 122
(2012).

[12] S. Hofmann, EPJ Web Conf. 182, 02054 (2018).
[13] U. B. Rodríguez, C. Z. Vargas, M. Gonçalves, S. B. Duarte, and

F. Guzmán, Europhys. Lett. 127, 42001 (2019).
[14] Z. Ge, G. Zhang, S. Cheng, Y. Li, N. Su, W. Guo, Y. S.

Tsyganov, and F.-S. Zhang, Eur. Phys. J. A 55, 166 (2019).
[15] A. Soylu, Chin. Phys. C 43, 074102 (2019).
[16] J. P. Cui, Y. L. Zhang, S. Zhang, and Y. Z. Wang, Phys. Rev. C

97, 014316 (2018).
[17] K. Santhosh and C. Nithya, At. Data Nucl. Data Tables 119, 33

(2018).
[18] Z. Ge, C. Li, J. Li, G. Zhang, B. Li, X. Xu, C. A. T. Sokhna, X.

Bao, H. Zhang, Y. S. Tsyganov, and F. S. Zhang, Phys. Rev. C
98, 034312 (2018).

[19] S. Guo, X. Bao, Y. Gao, J. Li, and H. Zhang, Nucl. Phys. A 934,
110 (2015).

[20] H.-M. Liu, J.-Y. Xu, J.-G. Deng, B. He, and X.-H. Li, Int. J.
Mod. Phys. E 28, 1950089 (2019).

[21] J.-Y. Xu, J. L. Chen, J. G. Deng, J. H. Cheng, H. M. Liu, and
X. H. Li, Commun. Theor. Phys. 71, 1328 (2019).

[22] M. Ismail and A. Adel, Phys. Rev. C 97, 044301 (2018).

[23] M. Ismail, A. Y. Ellithi, A. Adel, and H. Anwer, J. Phys. G:
Nucl. Part. Phys. 43, 015101 (2015).

[24] A. Soylu, Int. J. Mod. Phys. E 28, 1950042 (2019).
[25] D. T. Akrawy and A. H. Ahmed, Phys. Rev. C 100, 044618

(2019).
[26] G. Royer, Nucl. Phys. A 848, 279 (2010).
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