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Velocity-dependent model for the α-α interaction in the context of the double-folding potential
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We propose a new model to describe the α + α interaction that takes into account the Pauli nonlocality through
a velocity-dependent term. With this interaction, we describe very well the phase shifts obtained from elastic
scattering data analyses for α + α at low energies. We also obtain a good description of the s-wave resonance
related to the 8Be ground-state. The model is based on double-folding procedures and, therefore, it can easily be
extended to other systems. We present a test of the model in the case of elastic scattering for 4He + 208Pb.
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I. INTRODUCTION

Heavy-ion reactions are an important subject that has been
extensively studied from an experimental point of view by
measuring cross sections for several processes, such as elastic
and inelastic scattering, transfer reactions, breakup, and fu-
sion. Within a theoretical context, a heavy-ion nuclear reac-
tion is a quite complicated problem, due to the large number
of nucleons involved in the collision. Some simplification is
thus necessary to obtain a solution to the problem. In partic-
ular, elastic scattering data have been analyzed many times
assuming the optical model (OM) approach, through the usual
single-channel Schrödinger equation with a complex optical
potential (OP). In this case, the corresponding imaginary part
simulates the absorption of flux from the elastic channel to the
reaction processes.

OM data analyses of many systems have resulted in ex-
tracted OP strengths that present significant energy depen-
dence (see, e.g., [1]). At energies around the Coulomb bar-
rier, the energy dependence is associated with the closure of
reaction channels and is known as the threshold anomaly. In
a much wider energy range, the observed energy dependence
has been associated with the effective nucleon-nucleon inter-
action. Many theoretical models were developed to describe
the energy dependence of the nuclear interaction. Among
these models, the São Paulo potential (SPP) [2–5] involves
a dependence of the real part of the OP on the relative
velocity between the colliding nuclei. The SPP is based on
double-folding procedures and also involves a systematic of
nuclear densities [4]. The SPP can be used in combination
with a phenomenological imaginary part of the OP that is
proportional to the real one. The factor of proportionality
is given approximately by NI ≈ 0.8 [6]. In this context, the
SPP has no adjustable parameters and, thus, it is appropriate
for making predictions. In this sense, the model has been
extensively used in several papers as a standard OP to analyze

nuclear reactions data in a wide energy range (to date, Ref. [4]
has about 500 citations).

4He is a tightly bound, spherical nucleus, with its first
excited state at a very high excitation energy (about 20 MeV).
Therefore, it is considered to be a rather nonreactive nucleus.
At energies below 34.6 MeV, the α + α system has only one
open reaction channel, the 4He( 4He, γ ) 8Be capture process,
which presents a very small cross section [7–10]. Due to the
lack of reaction channels, the α + α OM elastic scattering
data analyses at these energies must be performed without an
imaginary part in the OP. Alternatively, the data set can also be
described by adjusting phase shifts. The phase shifts should be
real (no absorption), should correspond to only even angular
momenta L (since we deal with identical particles), and should
involve just a few L values, because of the low energies. In
these conditions, the values of phase shifts extracted from
analyses of experimental elastic scattering angular distribu-
tions have been obtained with quite good accuracy (see, e.g.,
[11–16]). These characteristics make the α + α scattering at
low energies a much simpler problem in comparison with
heavy-ion collisions.

In an earlier paper [17], we analyzed the α + α phase shifts
at low energies in the context of the SPP. We found that,
to account for the data, the strength of the SPP should be
increased by about 10%. However, the renormalization factor
presented some angular momentum dependence, varying from
1.081 for L = 0 to 1.133 for L = 4. In another paper [18],
we analyzed the α + α phase shifts once again, but this time
with two different purposes: (i) to estimate the effects of
relativity on the scattering, and (ii) to obtain a new model
for the effective nucleon-nucleon interaction, with a potential
based on double-folding procedures that provides a good
description of the α + α phase shifts. When dealing with
energies in the range Elab < 30 MeV, which corresponds to
v/c � 0.13, the effect of relativity on the strength of the
potential is small (about 1%). On the other hand, the nuclear
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interaction obtained in that work describes very well the set of
experimental phase shifts. This effective interaction, that we
name here as the α potential, is energy independent and has a
shape with a finite range of about 1.2 fm [18]. It is, therefore,
quite different from the SPP, which is velocity dependent and
of zero-range type [4].

Since the α potential is based on the double-folding ap-
proach, it is easily extended to other systems, through the
corresponding nuclear densities. This potential was already
applied in data analyses of several α-nucleus systems [19,20].
The model was successful in accounting for experimental
cross sections of elastic scattering, inelastic excitation, and
fusion at near barrier energies, but some discrepancies were
observed in the case of the elastic scattering in the backward
angular region. These discrepancies could be associated with
the effects of coupling to inelastic states with high excitation
energies [20]. These effects were investigated assuming a
schematic set of couplings in the case of the elastic scattering
for α + 208Pb, from sub-Coulomb to intermediate energies
[21], assuming the energy-independent α potential. The con-
clusion of that work is that part of the observed energy
dependence of the phenomenological OP that fits elastic
scattering data within the OM could, in fact, be related to
inelastic couplings. Indeed, the couplings assumed in [21]
provide a good description of the elastic scattering data in
a wide energy range of 20 � Elab � 104 MeV, but fail at
higher energies (139 � Elab � 340 MeV). Therefore, there is
still room to consider significant energy dependence of the
effective nucleon-nucleon interaction.

The purpose of the present paper is to include the depen-
dence on the velocity assumed in the SPP in the α potential.
To reach this goal, we readjust the parameters of the α

potential by fitting the experimental α + α phase shifts at low
energies, but this time including a velocity-dependent term in
the interaction. Again the α + α potential is obtained within
the context of the double-folding approach, to facilitate the
extension of the model to other systems.

In the next section we provide a brief review of the SPP and
α potential. The phase-shift analysis is presented in Sec. III.
In Sec. IV, we test the new interaction in the case of the
elastic scattering for 4He + 208Pb. Section V contains the
main conclusions.

II. SPP AND α-POTENTIAL

Within the double-folding approach, the nuclear potential
is obtained through

V (R) =
∫

ρ1( �r1)ρ2( �r2)u( �R − �r1 + �r2) d �r1 d �r2, (1)

where the ρi represent the nuclear distributions and u(�r) is
the effective interaction. In most models, ρi is associated
with the nucleon distribution of the nucleus while u(�r) rep-
resents the nucleon-nucleon interaction. This is not the case
for the SPP and α potential, for which ρi represents the matter
density of the nucleus and u(�r) is associated to the interaction
between two elementary amounts of nuclear matter [4]. The
relation between matter density and nucleon distribution is
analogous to the relation of charge density to the proton

TABLE I. The table presents the parameter values, volume inte-
grals, and RMS radii related to the trial functions of equation (3),
obtained in [18]. The units assumed for these values are U0 (MeV),
a and rRMS (fm), V0 (MeV fm3).

Label f (r) U0 a V0 rRMS

1 e−(r/a)2
87.226 0.95 416.4 1.164

2 e−r/a 330.61 0.37 420.9 1.282
3 r e−(r/a)2

161.22 0.80 414.9 1.131
4 r e−r/a 1042.0 0.27 417.5 1.207

distribution. In the case of the α particle, the corresponding
matter density is equal to the respective charge density mul-
tiplied by 2 (due to the normalization of the densities). We
assume that the 4He charge density is obtained from electron
scattering experiments [22].

The effective nuclear interaction of the SPP is given by [4]

u(�r) = −V0 δ(�r) e−4v2
REL/c2

, (2)

where V0 = 456 MeV fm3, c is the speed of light, and vREL

represents the local relative velocity between the two nuclei.
This dependence on the velocity is associated to the Pauli
nonlocality that arises from the exchange of nucleons between
target and projectile [2–4]. Due to the δ function involved in
this equation, the SPP effective nuclear interaction is obtained
within a zero-range approach. An alternative finite range
effective nucleon-nucleon interaction can also be obtained for
the SPP within this context [4].

In the case of the α-potential, ρi still represents the matter
density of the nucleus. In [18], we assumed the following
model for the effective nuclear interaction:

u(�r) = −U0 f (r), (3)

where the function f (r) involves one adjustable parameter.
Four trial shapes for f (r) were tested in the fits to the α + α

phase-shift data. The adjustments were not sensitive to the
shape assumed for f (r). Probably this behavior is related to
the fact that the four trial functions resulted in quite similar
values for the corresponding volume integral (V0) and root-
mean square radius (rRMS):

V0 = U0 4π

∫ ∞

0
f (r) r2 dr, (4)

rRMS =
√∫ ∞

0 f (r) r4 dr∫ ∞
0 f (r) r2 dr

. (5)

The parameter values, volume integrals, and RMS radii of
these f (r) functions, obtained in [18], are provided in Table I.

III. PHASE-SHIFTS ANALYSIS

From now on, we assume the following model for the
effective nuclear interaction:

u(�r) = −U0 f (r) e−4v2
REL/c2

. (6)

034603-2



VELOCITY-DEPENDENT MODEL FOR THE … PHYSICAL REVIEW C 101, 034603 (2020)

TABLE II. The same as Table I, but now considering Eq. (6) for
the intrinsic nuclear interaction.

Label f (r) U0 a V0 rRMS

1 e−(r/a)2
735.813 0.50 512.2 0.612

2 e−r/a 4139.55 0.17 511.1 0.589
3 r e−(r/a)2

2617.10 0.42 511.7 0.594
4 r e−r/a 20432.8 0.135 511.7 0.604

Although here we analyze only data at low energies, we relate
the local relative velocity to the kinetic energy in terms of the
theory of relativity:

EK (R) = E − VC (R) − VN (R), (7)

v2(R)/c2 = 1 −
(

μc2

μc2 + EK (R)

)2

. (8)

VC is the Coulomb potential (which is also calculated through
a folding procedure) and μ is the reduced rest mass of
the system. The nuclear interaction between the α particles,
VN (R), is calculated according to (1) and (6) and is assumed
to be the real part of the OP in the α + α phase-shift analysis.
As already commented, no imaginary part is included in
the OP.

For f (r), we adopt the same trial functions used in [18].
These functions involve two parameters, U0 and a, for which
the corresponding values were obtained from the phase-shift
fits. The best fit parameter values are presented in Table II,
which also includes the corresponding volume integrals and
RMS radii.

Figure 1 presents the α + α experimental phase shifts from
[11–16] for L = 0, 2, and 4. We used the fact that the phase
shifts can be changed by multiples of 180 degrees to avoid
overlapping values for different angular momenta. All four
trial functions of Table II provide quite similar and very good
data fits, represented by the solid lines in Fig. 1.
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FIG. 1. Comparison between experimental phase shifts for L =
0, 2, and 4 and the theoretical results obtained with trial function 1
of Table II.
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FIG. 2. sin2(δ0) obtained with our theoretical calculations as a
function of the α + α center-of-mass energy.

The U0 values of Table II are presented with six digits,
which represents a precision much higher than that obtained
through the phase-shift fits. In fact, this precision was obtained
from the fit of the known s-wave resonance of the 8Be ground
state. 8Be is unbound, with an experimental Q value (relative
to the two-α channel) of about 92 keV and a width of about
6 eV. Figure 2 shows the behavior of sin2(δ0) as a function of
the energy of the α + α system (in the center-of-mass frame),
obtained with our theoretical calculations.

As already mentioned, the four functions of Table II pro-
vide almost identical fits of the α + α phase shifts. On the
other hand, these functions have quite different shapes, as
illustrated in Fig. 3(a). Even so, due to the double-folding
procedure involved in Eq. (1), the resulting nuclear potentials
(obtained assuming these four functions) are very similar for
most of the systems. In order to illustrated this point, we have
calculated the nuclear potentials for three different systems:
proton-proton, proton-α, and α-α, which are presented in
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FIG. 3. (a) U0 f (r) as a function of r. The labels of these func-
tions are the same as indicated in Table II. The figure also presents
the nuclear potential obtained with the four trial functions, for the
(b) proton-proton, (c) proton-α, and (d) α-α systems.
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FIG. 4. Experimental and theoretical elastic scattering angular
distributions for 4He + 208Pb at Elab. = 23.6 MeV. Note the change
from (a) linear to (b) logarithmic scale. The solid black and dotted
red lines correspond to calculations performed with and without the
couplings to the inelastic states, respectively.

Figs. 3(b), 3(c) and 3(d). Only for the proton-proton system
is it possible to see (at internal distances) small differences
among the nuclear potentials obtained with different U0 f (r).
For proton-α and α-α the nuclear potentials obtained with the
four functions of Table II are almost indistinguishable. We
have verified that even smaller differences are obtained for
heavier systems.

IV. TEST OF THE MODEL

Since the nuclear potential is obtained from the double-
folding method, the α potential can be extended to other
systems. In order to test the model, we have chosen, as
example, the 4He + 208Pb system. We selected two experi-
mental elastic scattering angular distributions to perform our
analyses: one at Elab. = 23.6 MeV, which is slightly above
the Coulomb barrier, and the other at Elab. = 139 MeV (about
35 MeV/nucleon) from [23,24].

The present model of the α potential with the velocity-
dependent term was adopted for the real part of the OP in
our theoretical calculations. In the case of Elab. = 23.6 MeV,
we adopted a Woods-Saxon potential for the imaginary part
of the OP, with parameter values of RI = 6 fm, aI = 0.25 fm,
and W0 = 60 MeV. The same imaginary potential was used
in [20], where the α potential without the velocity-dependent
term was assumed for the real part of the OP. These values
result only on internal absorption, in order to simulate the fu-
sion process. We have also considered the inelastic couplings
to the first 2+ and 3− 208Pb excited states, with the same
deformation parameters of [20].

Figure 4 shows data and theoretical elastic scattering angu-
lar distributions for Elab. = 23.6 MeV, using (a) linear and (b)
logarithmic scales. The solid black and dotted red lines in the
figure correspond to calculations performed with or without
the couplings to the inelastic states, respectively. The effect
of the couplings is quite small at this low energy and the
theoretical results are in quite good agreement with the data.
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FIG. 5. Experimental and theoretical elastic scattering angular
distributions at Elab. = 139 MeV. The solid black and dotted red lines
correspond to calculations performed with and without the coupling
to the inelastic states.

In the case of Elab. = 139 MeV, the use of an internal
imaginary potential is not adequate since significant periph-
eral reactions should occur at high energies. Thus, we still
assumed a Woods-Saxon shape for the imaginary part of the
OP, but in this case we adjusted the corresponding parameters
through a fit to data. We obtained RI = 9.9 fm, aI = 0.812 fm,
and W0 = 12 MeV. Data and theoretical results for this energy
are shown in Fig. 5. The theoretical cross sections agree well
with the data in the forward angular region, but the fit is not
satisfactory for backward angles. Note that the effect of the
inelastic couplings on the elastic channel is quite significant
only in the backward region. Thus, as already discussed in
[21], where, in order to obtain a better fit to the data at this
high energy, it is necessary to consider many other couplings.
This goal is beyond the scope of the present work.

V. CONCLUSION

In the present paper, we have included the velocity de-
pendence of the SPP model in the context of the α-potential
approach. With this theoretical model, we obtain a quite good
adjustment of the experimental α + α phase shifts, as well as
a description of the s-wave resonance of the 8Be ground state.
These results do not depend on the shape assumed for the
four trial functions adopted in our calculations. On the other
hand, all of the functions provided similar volume integrals
and RMS radii: V0 ≈ 512 MeV fm3 and rRMS ≈ 0.60 fm (see
Table II). These values should be compared with those from
the SPP [see Eq. (2)]: V0 = 456 MeV fm3 and rRMS = 0
(zero-range approach). In fact, an increase of about 10% in
the SPP strength is necessary to describe the α + α phase
shifts, as reported in an earlier work [17]. This behavior is
compatible with the volume integral difference found here
for the α potential in comparison with the SPP. An important
inconvenience of the SPP in accounting for the α + α phase
shifts is the (slight) angular momentum dependence of the
renormalization factor necessary to fit the data. This problem
does not exist within the α-potential approach, because of
the additional degree of freedom involved in the respective
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adjustment of the interaction range. In fact, as already com-
mented, the α potential has rRMS ≈ 0.60 fm while the SPP
is of zero range. The present effective nuclear interaction of
the α potential can thus be considered as an improvement
of the SPP.

Since the α potential is obtained through a double-folding
procedure, the model can easily be extended to other systems.
In particular, the model should be useful to investigate the
effect of the dependence on the velocity for α-nucleus systems
at high energies. We provided a test of the model through
elastic scattering data analyses for 4He + 208Pb. For Elab. =
23.6 MeV, near the Coulomb barrier, our theoretical model
provided an excellent description of the data set, without ad-
justing any parameter related to the imaginary part of the OP.
For Elab. = 139 MeV, about 35 MeV/nucleon, we obtained
a good data fit for forward angles but the fit to the data is
not satisfactory in the backward region. In this region, the

theoretical elastic scattering cross section is very sensitive
to inelastic couplings. Therefore, the fit could probably be
improved if many other inelastic couplings were included
in the calculations, as proposed earlier in [21]. Even so, the
results obtained in the present work show that the α potential
should be useful in data analyses of α-nucleus and heavy-ion
systems at low and high energies.
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